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Abstract

This paper presents ¢ novel method for surface profile
determination using multiple sensors. QOur approach
ts based on morphological processing techniques to fuse
the range data from multiple sensor returns in a man-
ner that directly reveals the target surface profile. The
method has the intrinsic ability of suppressing spuri-
ous readings due to noise, crossialk, and higher-order
reflections, as well as processing multiple reflections
informatively. The algorithm is verified both by sim-
ulations and experiments in the laboratory by process-
ing real sonar data obtained from a mobile robot. The
results are compared to those obtained from a more ac-
curate structured-light system, which is however more
compler and ezpensive.

1 Introduction

Perception of its surroundings is a distinguishing
feature of an intelligent mobile robot. An inexpen-
sive, yet efficient and reliable approach to perception
is to employ multiple simple sensors coupled with ap-
propriate data processing.

Since sonar sensors are inexpensive devices which
yield accurate range data up to several meters; they
have been widely used in robotics applications. How-
ever, due to their wide beamwidth, the angular resolu-
tion of sonar sensors is low, resulting in an uncertainty
about the location of the object encountered.

Most of the approaches for map-building with sonar
have concentrated on surfaces with fixed or piecewise-
constant curvature, mostly composed of target primi-
tives such as planes, corners, edges, and cylinders [1-6].
In [7], an analytical approach to surface curvature ex-
traction is described which employs differential geom-
etry. The method proposed in this paper is completely
novel in that morphological processing techniques are
applied to sonar data to reconstruct the profile of an
arbitrarily curved surface. It is important to empha-
size that morphological processing is employed here to
process the sonar map being constructed in the robot’s
memory, rather than conventional camera images.

Approaches based on geometrical or analytical
modeling are often limited to elementary target types
or simple sensor configurations. On the other hand,
our approach is aimed at the determination of arbi-
trary surface profiles. The method is extremely flexi-
ble in that it can equally easily handle arbitrary sen-
sor configurations and orientations as well as synthetic

0-7803-4465-0/98 $10.00 © 1998 IEEE

1515

arrays obtained by moving a small number of sensors.
As already mentioned above, a commonly noted dis-
advantage of sonar sensors is the difficulty associated
with interpreting spurious readings, crosstalk, higher-
order, and multiple reflections. The method proposed
is capable of effectively suppressing spurious readings,
crosstalk, and higher-order reflections. Furthermore,
it has the intrinsic ability to make use of echo returns
beyond the first one (i.e. multiple reflections) so that
echoes returning from surface features further away
than the nearest can also be processed informatively.
In Section 2, basic principles of sonar sensing are
reviewed. The morphological processing and curve-
fitting algorithms are introduced and applied in Sec-
tion 3. After describing the system setup, experimen-
tal results are presented and discussed in Section 4.

2 Basics of Sonar Sensing

The ultrasonic sensors used in this work measure
time-of-flight (TOF), which is the round-trip travel
time of the pulse from the sonar to the object and
back to the sonar. Since the speed of ultrasonic waves
is known (¢ = 343.3 m/s), the range r can be easily
calculated from r = ¢t,/2. Many ultrasonic transduc-
ers operate in this pulse-echo mode. The transducers
act both as receiver and transmitter.

The objects are assumed to reflect the ultrasonic
waves specularly. This is a reasonable assumption,
since most systems operate below 200 kHz so that
the propagating waves have wavelengths well above
several millimeters. Details on the objects which are
smaller than the wavelength cannot be detected [7].
The sonars used in our experimental setup are Po-
laroid transducers operating at a resonant frequency
fo = 49.4kHz [10], which corresponds to a wavelength
of A =¢/f, = 6.9 mm at room temperature.

The major limitation of sonar sensors comes from
their wide beamwidth. Polaroid transducers have a
half beamwidth angle of §, = +12.5° [10]. Although
these devices return accurate range data, they can-
not provide direct information on the angular position
of the object from which the reflection was obtained.
Thus, all that is known is that the reflection point lies
on an arc whose radius is determined by r = ct,/2
(Figure 1(a)). More generally, when one sensor trans-
mits and another receives, 1t is known that the re-
flection point lies on the arc of an ellipse whose focal
points are the transmitting and receiving transducers



(Figure 1(b)). Notice that the reflecting surface is tan-
gent to these arcs at the actual point of reflection. The
angular extent of these arcs is determined by the sen-
sitivity regions of the transducers. Most commonly,
the wide beamwidth of the transducer is accepted as
a device limitation which determines the angular re-
solving power of the system. In this naive approach,
a range reading of r from a transmitting/receiving
transducer is taken to imply that an object lies along
the line-of-sight of the transducer at the measured
range. Consequently, the angular resolution of the sur-
face profile measurement is limited by the rather large
beamwidth, which is a major disadvantage. Our ap-
proach, as will be seen, turns this disadvantage into an
advantage. Instead of restricting oneself to an angular
resolution equal to the beamwidth by representing the
reflection point as a coarse sample along the line-of-
sight, circular or elliptical arcs representing the uncer-
tainty of the object location are drawn. By combining
the information inherent in a large number of such
arcs, angular resolution far exceeding the beamwidth
of the transducer is obtained.
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Figure 1: a) For the same sonar transmitting and re-
ceiving, the reflecting point is known to be on the
circular arc shown. b) The elliptical arc if the wave is
transmitted and received by different sensors.

3 Processing of the Sonar Data

Structured sensor configurations such as linear and
circular arrays as well as randomly scattered and ori-
ented configurations have been considered.

Figure 2(a) shows a surface, whose profile is to be
determined. Figure 2(b) shows the circular and ellip-
tical arcs obtained from a circular array of sensors,
which both rotate and translate to increase the num-
ber of arcs generated from the available number of
SEnsors.

Notice that although each arc represents consid-
erable uncertainty as to the angular position of the
reflection point, nevertheless one can almost visually
extract the actual curve shown in Figure 2(a) by ex-
amining Figure 2(b). Each arc drawn is expected to
be tangent to the surface at least at one point. At
these actual reflection point(s), several arcs will inter-
sect with small angles at nearby points on the surface.
The many small segments of the arcs superimposed in
this manner create the darker features in Figure 2(b),
which tend to cover and reveal the actual surface. The
remaining parts of the arcs, not actually corresponding

to any reflections and simply representing the angu-
lar uncertainty of the sensors, will remain more sparse
and isolated.
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Figure 2: a) The original surface. b) The circular sen-
sor array mounted on a mobile robot moves to 35 dif-
ferent locations and collects data by rotating around
its center from 45° to 135° with respect to the positive
z axis in 15° steps. The circular array has been shown
at the 35 locations at its 90° position.

In the next sections, morphological rules will be
employed to achieve what is natural for the human
visual perception system: the extraction of Figure 2(a)

from 2(b).

3.1 Morphological Processing

In this study, morphological operators are used to
eliminate the sparse and isolated segments in the arc
map, leaving the mutually reinforcing segments that
directly reveal the original surface profile. Erosion,
dilation, opening, closing, and thinning are the most
widely used morphological operations to accomplish
tasks such as edge detection, enhancement, smooth-
ing, and noise removal in image processing [8]. Ero-
ston and dilation are used to thin or fatten an image
respectively. These operations are defined according
to a structuring element or template. An example 3x3
template is shown in Figure 3.
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Figure 3: Template used for both erosion and dilation.

The algorithm for erosion is as follows: The tem-
plate is shifted over the pixels of the sonar map which
take the value 1 one at a time and the template’s pixels
are compared with those image pixels which overlap
with the template [8]. If they are all identical, the cen-
tral pixel with value 1 will preserve its value; otherwise
it is deleted. For the template shown in Figure 3, all
eight neighbors of the pixel must be 1 (n = 8), and
the image is eroded or shrunk accordingly.

The dilation algorithm is very similar to that for
erosion, but is used to enlarge the image according to
the template. This time, all eight neighbors of those
image pixels which originally equal 1 are set equal to 1.
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In this study, the structuring element for dilation
and erosion is the 3x3 square template, shown in Fig-
ure 3 with the central pixel encircled. Since the tem-
plate is symmetric, the image will be fattened (dila-
tion) or thinned (erosion) in all directions by one pixel.

The direct use of erosion may eliminate too many
points and result in loss of information characteriz-
ing the surface. For such cases, the compound opera-
tions of opening and closing are considered. Opening
consists of erosion followed by dilation and vice versa
for closing. Opening helps reduce small extrusions,
whereas closing enables one to fill the small holes in-
side the image. Closing is applied prior to thinning,
described below, in cases where the points are not
closely connected to each other so that the direct use
of thinning may result in the loss of too many points.
Filling the gaps using closing first may prevent this
from happening.

Thinning is a generalization of erosion with a pa-
rameter n varying in the range 1 < n < 8. In this case,
it is sufficient for any n neighbors of the central image
pixel to equal 1 in order for that pixel to preserve its
value of 1. The flexibility that comes with this pa-
rameter enables one to make more efficient use of the
information contained in the arc map.

In pruning, which is a special case of thinning, at
least one (n = 1) of the neighboring pixels must have
the value 1 in order for the central pixel to remain
equal to 1 after the operation. This operation is used
to eliminate isolated points [8]. Thus, pruning and
erosion are the two extremes of thinning with n = 1
and n = 8 respectively.

Since there are many alternatives for morphologi-
cal processing of sonar data, an error measure is in-
troduced as a success criterion:
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Here, i is the discrete index along the x direction and
y; is the discretized function representing the actual

surface with variance 03 = —11\7 Eﬁ_ﬂ(y‘ - Yiw)? N
is the total number of columns whereas Nj, represents
those columns left with at least one point as a result
of some morphological operation. m; is the vertical
position of the median (centermost) point along the
ith column of the map matrix (e.g. Figure 4(a)). If
there are no points in a particular column, that col-
umn is excluded from the summation. If the number of
columns thus excluded is large; that is, if the morpho-
logical operations have eliminated too many points,
the remaining points will not be sufficient to extract
the contour reliably, even if e is small. We will denote
by f. = Ni/N the fraction of columns left with at
least one point at the end of a morphological opera-
tion. This factor must also be taken into account when
deciding on which method provides a better result.
Additionally, CPU times of the algorithms (tcpy)
are measured. These represent the total time the com-
puter takes to realize the morphological operations
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starting with the raw TOF data. Morphological op-
erations are implemented in the C programming lan-
guage and the programs are run on a 200 MHz Pen-
tium PC.

The result of applying n = 5 thinning to the sonar
data in Figure 2(b) is presented in Figure 4. The re-
sults of various morphological operators applied to the
same map are summarized in Table 1. Error measures
Ey and Ej, given in the same table, will be discussed
in the next section. Since simple erosion results in very
small values of f,, we have considered thinning with
parameter n. The error e tends to decrease with in-
creasing n. However, larger values of n tend to result
in smaller values of f. so that a compromise is neces-
sary. For the time being, we note that the thinning
parameter n allows one to trade off between e and f,.

800
800

600)
-~ 400
3 /
= 200} :’

0|

200

0 200 400 600 800
x {cm)

Figure 4: Result of n = 5 thinning: e = 0.0496,
Je = 0464, tcpy = 1.07 8.

3.2 Curve Fitting

As a last step, curve fitting is applied in order to
achieve a compact representation of the surface profile
in the robot’s memory. Since our aim is to fit the best
curve to the points, not necessarily passing through
all of them, least-squares optimization (LSO) is pre-
ferred to interpolation. LSO finds the coefficients of
the best-fitting polynomial p(z) of order m (which is
predetermined) by minimizing

N M;

El= Z Z[P(-’Ei) - fij)? (2)

i=1 j=1

where Eg is the sum of the squared deviations of the

polynomial values p(z;) from the data points f;;. «;
1s the horizontal coordinate corresponding to the ith
column of the map matrix and f;; is the vertical co-
ordinate of the jth point along the ith column. The
polynomial coefficients are obtained by solving linear
equations obtained by setting the partial derivatives
equal to zero. Once an acceptable polynomial approx-
imation is found, the surface can then be compactly
represented by storing only these coefficients.

To assess the overall performance of the method,
two final error measures are introduced, both compar-
ing the final polynomial fit with the actual surface:
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The first is a root-mean-square absolute error mea-
sure, with dimensions of length, which should be inter-
preted with reference to the wavelength A, that repre-
sents the ultimate resolving power of the system. The
second is a dimensionless relative error measure which
can be interpreted as the error relative to the variation
of the actual surface.

The curve fitted to the surface map after thinning
shown in Figure 4 is presented in Figure 5. Table 1
shows that increasing n improves e but worsens f. and
that F; and Ey achieve a minimum at some value of
n (which in this case happens to occur at n = 5 for
both Ey and E3). In the simulations, where the actual
surface 1s known, it is possible to choose the optimal
value of n, minimizing E; or Es. In real practice,
this is not possible so that one must use a value of
n judged appropriate for the class of surfaces under
investigation.
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Figure 5: Polynomial fit of order m = 11:
Ey = 3.57 cm, E5 = 0.040.
morphological € Je Ticru £, E,
operation (s) | (cm)

thinning (n 0.09 1097 | 1.12] 6.32] 0.068

thinning (n

0.09 {0.83 ] 1.I1 | 4.87 ] 0.053

thinning (n 0.64 | 1.09 | 3.74 | 0.041

thinming (n 0.05 | 0.46 | 1.07 | 3.57 [ 0.039

thinning (n 0.04 | 0.27 | 1.07 | 5.47 | 0.059
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thinning (n 0.03 1013 [1.06 | 6.93 | 0.075

Table 1: Results of various morphological operations.

In the simulations, higher-order reflections (i.e.
echoes detected after bouncing off from object surfaces
more than once) are ignored since they are difficult to
model, although they almost always exist in practice:
The key idea of the method is that a large number of
data points coincide with the actual surface (at least
at the tangent points of the arcs) and the data points
off the actual surface are more sparse. Those spurious
arcs caused by higher-order reflections and crosstalk
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also remain sparse and lack reinforcement. The thin-
ning algorithms eliminate these spurious arcs together
with the sparse arc segments resulting from the angu-
lar uncertainty of the sensors.

4 Experimental Verification

In this section, the method is verified using the sen-
sor systems on the Nomad 200 mobile robot in our
laboratory.

4.1 System Description

The Nomad 200 is an integrated mobile robot of height
76.2 cm and diameter 45.7 cm, including tactile, in-
frared, sonar, and structured-light sensing systems

. (Figure 6). The robot can translate only in the for-

ward and backward directions but not sideways with-
out rotating first. The maximum translational and
rotational speeds of the Nomad 200 aré 60 cm/s and
60° /s respectively [10].

Figure 6: Nomad 200 mobile robot.

Nomad 200 has onboard computers for sensor and
motor control and for host computer communication.
The communication is managed with a graphic in-
terface (server). The robot can also be run from a
C language program either through the server or di-
rectly [10]. :

The Sensus 200 Sonar Ranging System on the robot
consists of 16 Polaroid transducers which can - yield
range information from 15 ¢cm to 10.7 m with +1 %
accuracy. The Polaroid transducer has beamwidth 25°
and resonant frequency 49.4 kHz.

The Sensus 500 Structured-Light System consists
of a laser diode (as its light source) and a CCD array
camera. The operating range of the system is from
0.305 m to 3.05 m. The range is determined by (laser
line striping) triangulation, which causes decreasing
accuracy with increasing range and also possible an-
gular measurement errors.

In the experiments, both sonar and structured-light
data are collected from various surfaces constructed in
our laboratory. The structured-light system is much
more expensive and complex, requiring higher-power
and sufficient ambient light for operation. Since it



reveals a very accurate surface profile, the surface de-
tected by this system is used as a reference in the ex-
perimental calculation of the errors using sonar data.
In order to prevent any crosstalk between consecu-
tive pulses, the sonars should be fired at 62 ms inter-
vals since the maximum range of operation of Polaroid
transducers is 10.7 m. In the experiments, the sonars
are fired at 40 ms intervals. This prevents much of the
crosstalk, and in the few cases where erroneous read-
ings are obtained due to crosstalk, these are readily
eliminated by the algorithm. This is another aspect
in which the algorithm exhibits its robust character.

4.2 Experimental Results

Several surfaces have been constructed in our labo-
ratory with different curvature and dimensions, using
thin cardboard of height 1.05 m and length 3.65 m.

The sonars on the Nomad 200 are in a circular con-
figuration and only the five front sensors are activated.
Since the robot has a limited number of sensors which
can detect the surface, by moving the robot and rotat-
ing its turret, the equivalent of a much larger number
of sensors is created synthetically. First, the robot re-
mained stationary and collected data by rotating its
turret. However, there were many locations on the
surface which could not be seen by the robot if only
the turret rotated. On the contrary, pure translation
alongside the surface generally provided satisfactory
results.
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Figure 7: a) The surface profile revealed by the

structured-light data, b) sonar data.

The structured-light data obtained from one of the
constructed cardboard surfaces is presented in Fig-
ure 7(a). The sonar data presented in Figure 7(b) is
obtained by translating the mobile robot horizontally
over a distance of 1.5 m along the line y = 0 and col-
lecting data every 2.5 cm. The turret is oriented such
that both the structured-light and the front sonars are
directed towards the surface and it does not rotate
throughout the translational movement.

As expected, the structured-light data provides a
very accurate surface profile. In the arc map obtained
by sonar, there are some arcs which are not tangent to
the actual surface at any point. These correspond to
spurious data due to higher-order reflections, readings
from other objects in the room, or totally erroneous

readings. These points are readily eliminated by mor-
phological processing (Figure 8(a)). If the final curve
in Figure 8(b) is compared with the structured-light
data in Figure 7(a), it can be observed that a close fit
to the original surface is obtained. The errors in this
case are By = 1.41 cm, E3 = 0.156, and tcpy = 0.15 s.
Generally speaking, the error is larger where curvature
is greater.
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Figure 8: a) Result of erosion (n = 8) followed by
pruning (n = 1) applied after erosion. b) Polyno-
mial fit to part (a): E; = 1.41 cm, E; = 0.156, and
topu = 0.15 5.

Several results obtained for this surface are summa-
rized in Table 2. All polynomials are of degree m = 10.
The minimum estimation error E; (obtained from the
case in Figure 8) is not much larger than the wave-
length A = 6.9 mm which represents the fundamental
resolution limit of the system.

morphological terv | EA E,
operation (s) | (cm)
thinning (n =5) 0.12 7 2.58 ] 0.287
thinning (n = 6) 0.12 1 1.96 | 0.21I8
thinning (n = 7) 0.12 1 1.63 | 0.182
erosion (n = 8) 0.11 | 1.42 10.158
erosion & pruning 0.15 | 1.41 [ 0.156
erosion & thinning (n =2) 1 0.14 | 1.50 | 0.167

Table 2: Experimental results.

Closing operations were not needed in processing
the experimental data because the points were suffi-
ciently dense. If this was not the case, one would first
apply closing in order to add extra points to fill the
gaps between the points of the original map.

4.3 Computational Cost of the Method

The average CPU times are in general of the order
of a few seconds, indicating that the method is viable
for real-time applications. For comparison, the time it
takes for an array of 16 sonars to collect all the TOF
data is 16 x40 ms = 0.64 s which is of the same order
of magnitude as the processing time. It should be
noted that the actual algorithmic processing time is a
small fraction of the CPU time, as most of the time is
consumed by file operations, reads and writes to disk,
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matrix allocations etc. Thus, it seems possible that
a dedicated system can determine the surface profile
even faster, bringing the computation time below the
data collection time.

5 Discussion and Conclusion

A novel method is described for determining arbi-
trary surface profiles by applying morphological pro-
cessing to sonar data. The method is both extremely
flexible, versatile, and robust, as well as being simple
and straightforward. It can deal with arbitrary num-
bers and configurations of sensors as well as synthetic
arrays obtained by moving a relatively small number
of sensors. Accuracy increases with the number of sen-
sors used (actual or synthetic) and has been observed
to be quite satisfactory, except when the radius of cur-
vature of the surface is very small [9]. The method is
robust in many aspects; it has been seen that it has
the inherent ability to eliminate undesired TOF read-
ings arising from higher-order reflections as well as
the ability to suppress crosstalk when the sensors are
fired at shorter intervals than that nominally required
to avoid crosstalk. In addition, the method can effec-
tively eliminate spurious TOF measurements due to
noise, and process multiple echoes informatively.

The processing time is small enough to make real-
time applications feasible. For instance, the system
can be used for continual real-time map building pur-
poses on a robot navigating in an environment with
vertical walls of arbitrary curvature. Two extensions
immediately come to mind: First, it is possible for
the robot to continually add to its collection of arcs
and reprocess them as it moves, effectively resulting
in a synthetic array with more sensors than the robot
actually has. Second, the method can be generalized
to three-dimensional environments with the arcs being
replaced by spherical or elliptical caps and the mor-
phological rules extended to three dimensions. In cer-
tain problems, it may be preferable to reformulate the
method in polar or spherical coordinates.

Although the structured-light system has been used
mainly as a reference in this study, the fact that its
strengths and weaknesses are complementary to the
sonar system suggests the possibility of fusing the out-
put of the two systems. The structured-light system
provides a very accurate surface profile, but introduces
errors increasing with range, as a result of the trian-
gulation technique it employs. On the other hand,
sonars yield better range information over a wider
range but are less adept at recognizing the contour de-
tails due to their wide beamwidth. The best properties
of these two sources of information can be combined
by first calibrating the structured-light range errors
using sonar data, and then using the profile found by
the structured-light system as a reference for sonar.
Despite this possibility, the method described in this
paper may be preferable in many circumstances, since
the structured-light system is much more expensive
and complex compared to sonar sensors.

Although not fully reported here, a detailed quan-
titative study of the performance of different morpho-
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logical operations as well as the effect of TOF noise,
and the dependence of the error on surface curvature,
spatial frequency, and distance can be found in [9].

The essential idea of this paper — the use of mul-
tiple range sensors combined with morphological pro-
cessing for the extraction of the surface profile — can
also be applied to other physical modalities of range
finding of vastly different scales. and in many differ-
ent application areas. These may include radar, un-
derwater sonar, optical sensing and metrology, remote
sensing, ocean surface exploration, geophysical expio-
ration, and acoustic microscopy. Some of these appli-
cations (e.g. geophysical exploration) may involve an
inhomogeneous and/or anisotropic medium of prop-
agation. It is envisioned that the method could be
generalized to this case by constructing broken or non-
ellipsoidal arcs.
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