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ABSTRACT

This study investigates the use of low-cost infrared sensors in the differentiation and localization

of commonly encountered target primitives in indoor environments, such as planes, corners,
edges, and cylinders. The intensity readings from such sensors are highly dependent on target
location and properties in a way which cannot be represented in a simple manner, making the
differentiation process difficult. In this paper, we propose the uée of angular intensity scans !
from two infrared sensors and present a rule-based algorithm to process them. The algorithm ;
can achieve position-invariant target differentiation without relying on the absolute return signal
intensities of the infrared sensors. The method is verified experimentally. Planes, 90° corners, i
90° edges, and cylinders are differentiated with correct rates of 90%, 100%, 82.5% and 92.5%,
respectively. Targets are localized with average absolute range and azimuth errors of 0.55 cm

and 1.03°. The method demonstrated shows that simple infrared sensors, when coupled with

I

appropriate processing, can be used to extract a significantly greater amount of information than

that which they are commonly employed for.
1. INTRODUCTION

Target differentiation and localization is of importance in robotics applications where there is

L
need to identify targets and their positions for autonomous operation. In this paper, we consider :
the use of infrared sensors for this purpose. Infrared sensors are inexpensive, practical and }

widely available devices. Simple range estimates obtained with infrared sensors are not reliable



58

because the return signal intensity depends both on the geometry and the surface properties of
the target. On the other hand, from single intensity measurements, it is not possible to deduce
the geometry and surface properties of the target without knowing its distance and angular
location. In this study, we propose a scanning mechanism and a rule-based algorithm based
on two infrared sensors to differentiate targets independent of their locations. The proposed
method has the advantage that it does not require storage of any reference templates since the

information necessary to differentiate the targets are completely embodied in the decision rules.

Application areas of infrared sensing include robotics and automation, process control, remote
sensing, and safety and security systems. More specifically, infrared sensors have been used in
simple obj ect and proximity detection, floor sensing, position control [Butkiewicz, 1997], obsta-
cle/collision avoidance [Lumelsky and Cheung, 1993; Lopez et al., 2001], and machine vision
systems [Everett, 1995]. Infrared sensors are used in door detection [Beccari et al., 1998], map-
ping of openings in wallé [Warszawski et al., 1996], as well as monitoring doors/windows of
buildings and vehicles, and “light curtains” for protecting an area. In [Lopez et al., 2001], an
automated guided vehicle detects MOW obstacles by means of an “electronic stick” consist-
ing of infrared sensors, using a strategy similar to that adopted by a blind person. In [Flynn,
1998], infrared sensors are employed to locate edges of doorways in a complementary manner
with sonar sensors for mobile robot navigation. Other researchers have also dealt with the fu-
sion of information from infrared and sonar sensors [Barber et al., 2000; Sabatini et al., 1995].
In [Barbera et al., 2000], data from infrared and sonar sensors are fused using neural networks
and the results are compared with [Flynn, 1998]. In [Cheung and Lumelsky, 1989], system
and implementation issues in infrared proximity sensing for robot arm motion planning are
discussed. Following this work, Lumelsky and Cheung (1993) describe a teleoperated whole-
sensitive robot arm completely covered with an infrared skin sensor to detect nearby objects.

Processing the data from the artificial infrared skin by motion planning algorithms, real-time
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collision avoidance for the entire arm body is achieved in an unknown or dynamic environment.
In another study [Novotny and Ferrier, 1999], the properties of a planar surface at a known
distance have been determined using the Phong illumination model, and using this information,
the infrared sensor employed has been modeled as a range finder for surfaces at short ranges
(3-25 cm). Ando and Graziani (2001) also deal with determining the range of a planar sur-
face. By incorporating the optimal amount of additive noise in the system, the authors were
able to improve the system sensitivity and extend the operating range of the system from 17 cm
to 24 cm. A number of commercially available infrared sensors are evaluated in [Korba et al.,
1994] for space applications. Hashimoto et al. (2000) and Yoshiike et al. (1999) describe a pas-
sive infrared sensing system which identifies the number, locations and activities of the people
in a room. Infrared sensors have also been used for automated sorting of waste objects made of
different materials [Groot et al., 2000; Scott, 1995]. However, to the best of our knowledge, no

attempt has been made to differentiate several kinds of targets and estimate their positions using
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infrared sensors.

Figure 1: Target primitives used in the experiment.

2. TARGET DIFFERENTIATION and LOCALIZATION

The infrared sensor [Matrix Elektronik] used in this study works with 20-28 V DC input voltage
and provides an analog output voltage proportional to the measured intensity. The detector

window is covered with an infrared filter to minimize the effect of ambient light on the intensity
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measurements. The sensitivity of the device can be adjusted with a potentiometer to set the
operating range of the system. Range, azimuth, geometry, and surface parameters of the target

affect the intensity readings of the infrared sensors.
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Figure 2: The experimental setup. Both the scan angle o and the target azimuth 6 are measured

counter-clockwise from the horizontal axis.

The target primitives employed in this study are a plane, a 90° corner, a 90° edge, and a cylinder
of radius 4.8 cm, whose cross-sections are given in Figure 1. They are made of wood, each with
a height of 120 cm. Our method is based on angularly scanning the target over a certain angular
range. We use two infrared sensors horizontally mounted on a 12 inch rotary table [Arrick
Robotics, 2002] with a center-to-center separation of 11 cm [Figure 2]. Targets are scanned
from —60° to 60° with 0.15° increments, and the mean of 100 samples are calculated at each
position of the rotary table. The outputs of the infrared sensors are multiplexed to the input of

an 8-bit microprocessor compatible A/D converter chip having a conversion time of 100 usec.
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Figure 3: Intensity versus scan angle characteristics for various targets along the line-of-sight

of the experimental setup.

Some sample scan patterns obtained from the targets are shown in Figure 3. Based on these
patterns, it is observed that the return signal intensity patterns for a corner, which have two
maxima and a single minimum (a double-humped pattern), differ significantly from those of
other targets which have a single maximum [Figure 3(b)]. The double-humped pattern is a result

of the two orthogonal planes constituting the corner. Because of these distinctive characteristics,
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the comer differentiation rule is employed first. We check if the scan pattern has two humps or
not. If so, it is a comer. The average of the angular locations of the dips in the middle of the
two humps for the left and right infrared sensors provides an estimate of the angular location of

the corner.

If the target is found not to be a corner, we next check whether it is a plane or not. As seen
in Figure 3(a), the difference between the angular locations of the maximum readings for the
planar targets is significantly smaller than that of other targets. Planar targets are differentiated
from other targets by comparing the absolute difference of the angle values at which the two
intensity patterns have their maxima. If the difference between the two maxima is less than
an empirically determined reference value, then the target is a plane, otherwise, it is either an
edge or a cylinder. (In the experiments, we have used a reference value of 6.75°.) The azimuth
estimation of planar targets is accomplished by averaging the angular locations of the maxima

of the two scans associated with the two sensors.

Notice that the above (and following) rules are designed to be independent of those features
of the scans which vary with range and azimuth, so as to enable position-invariant recognition
of the targets. In addition, the proposed method has the advantage that it does not require
storage of any reference templates since the information necessary to differentiate the targets

are completely embodied in the decision rules.

If the target is not a plane either, we next check whether it is an edge or a cylinder. The intensity
patterns for the edge and the cylinder are given in Figures 3(c) and (d). They have shapes similar
to those of planar targets, but the intersection points of the intensity patterns differ significantly
from those of planar targets. In the differentiation of edges and cylinders, the ratio of the
intensity value at the intersection of the two scans corresponding to the two sensors, to the
maximum intensity value of the scans is employed. (Because the maxﬁnum intensity values

of the right and left infrared scans are very close, the maximum intensity reading of either




infrared sensor or their average can be used in this computation.) This ratio is compared with an
empirically determined reference value to determine whether the target is an edge or a cylinder.
If the ratio is greater than the reference value, the target is an edge, otherwise, it is a cylinder. (In
our experiments, the reference value was 0.65.) If the scan patterns from the two sensors do not
intersect, the algorithm cannot distinguish between a cylinder and an edge. However, this never
occurred in our experiments. The azimuth estimate of edges and cylinders is also obtained by
averaging the angular locations of the maxima of the two scans. Having determined the target
type and estimated its azimuth, its range can also be estimated by using linear interpolation

between the central values of the individual intensity scans given in Figure 3.
3. EXPERIMENTAL VERIFICATION of the ALGORITHM

Using the experimental setup described in Section 2, the algorithm presented in the previous
section is used to differentiate and estimate the position of a plane, a 90° corner, a 90° edge, and

a cylinder of radius 4.8 cm.

Based on the results for 160 experimental test scans, the target confusion matrix shown in Ta-
ble 1, which contains information about the actual and detected targets, is obtained. The average
accuracy over all target types can be found by summing the correct decisions given along the
diagonal of the confusion matrix and dividing this sum by the total number of test scans (160),
resulting in an average accuracy of 91.3% over all target types. Targets are localized within
absolute average range and azimuth errors of 0.55 cm and 1.03°, respectively. The percentage-
wise accuracy and confusion rates are presented in Table 2. The second column of the table
gives the percentage accuracy of correct differentiation of the target and the third column gives
the percentage of cases when a certain target was mistaken for another. The fourth column
gives the total percentage of other target types that were mistaken for a particular target type.
For instance, for the planar target (4 + 3) /43 = 16.3%, meaning that targets other than plane are

incorrectly classified as planes with a rate of 16.3%.
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Table 1: Target confusion matrix (P: plane, C: corner, E: edge, CY: cylinder).

target differentiation result total

P C E CY
P 36 - 4 - 40
C - 40 - - 40
E 4 - 33 3 40
CY 3 - - 37 40
total 43 40 37 40 160

Table 2: Performance parameters of the algorithm (P: plane, C: corner, E: edge, CY: cylinder).

actual correct diff.  differen. differen.
target rate (%) emorI(%) errorII (%)
P 90 10 16.3

C 100 0 0

E 82.5 17.5 10.8
CcYy 925 1.5 7.5
overall 91.25 8.75 8.65

e




Because the intensity pattern of a corner differs significantly from the rest of the targets, the
algorithm differentiates corners accurately with a rate of 100%. A target is never classified
as a corner if it is actually not a corner. Edges and cylinders are the most difficult targets to
differentiate. It may be considered fortunate that edges and cylinders tend to be in general less

common than planes and corners in typical indoor environments.
4. CONCLUSION

In this study, differentiation and localization of commonly encountered targets or features such
as planes, corners, edges and cylinders is achieved using intensity measurements from inexpen-
sive infrared sensors. We propose a scanning mechanism and a rule-based algorithm based on
two infrared sensors to differéhtiate targets independent of their positions. We have shown that
the resulting angular intensity scans contain sufficient information to identify several different
target types and estimate their distance and azimuth. The algorithm is evaluated in terms of cor-
rect target differentiation rate, and range and azimuth estimation accuracy. A typical application
of the demonstrated system would be in mobile robotics in surveying an unknown environment
composed of such features or targets. Many artificial environments fall into this category. We
plan to test and evaluate the developed system on a small mobile robot in our laboratory for map

building in a test room composed of the primitive target types considered in this study.

The accomplishment of this study is that even though the intensity scan patterns are highly de-
pendent on target location, and this dependence cannot be represented by a simple relationship,
we achieve position-invariant target differentiation. By designing the decision rules so that they
do not depend on those features of the scans which vary with range and azimuth, an average
correct target differentiation rate of 91.3% over all target types is achieved and targets are lo-
calized within average absolute range and azimuth errors of 0.55 cm and 1.03°, respectively.

The proposed method has the advantage that it does not require storage of any reference tem-
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plates since the information necessary to differentiate the targets are completely embodied in

the decision rules.

In this paper, we have demonstrated target differentiation using four basic target types having
similar surface properties. Current work investigates the deduction of not only the geometry but

also the surface properties of the target from its intensity scans without knowing its location.
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