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Abstract—Fractional Fourier transforms, which
are related to chirp and wavelet transforms, lead
to the notion of fractional Fourier domains. The
concept of filtering of signals in fractional do-
mains is developed, revealing that under cer-
tain conditions one can improve upon the spe-
cial cases of these operations in the conventional
space and frequency domains. Because of the
ease of performing the fractional Fourier trans-
-form optically, these operations are relevant for
optical information processing.

1. INTRODUCTION

Whenever. we are confronted with an operator, it is
aatural to inquire into the effect of repeated applica-
tions of that operator, which might be considered as
its integer powers. A firther extension is to inquire
what meaning may-be attached to fractional powers of
that operator. The fractional Fourier transform was
defined mathematically by McBride and Kerr [1]. In
[2-6], it is shown how the two-dimensional fractional
Fourier transform can be realized optically and various
mathematical and physical properties are discussed.

‘The definition of the ath order fractional Fourier
transform F*[f] can be cast in the form of a general
linear transformation with kernel B,(z,z’):

(@D E = [ : Bu(z,2)f(z') ',

 i(xd/4-e/2)
Bele ) = g

exp[in(z? cot ¢ — 222’ csc ¢ + 22 cot §))],
for 0 < |¢] < 7 (i.e. 0 < |a] < 2), where
¢=an/2

and A
¢ = sgn(sin ¢).
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The kernel is defined separately for ¢ = 0 and a =
2 as By(z,2') = 6(z — z') and By(z,z') = §(z + 2')
respectively.

The kernel By(z,2’) is a chirp function, allowing the
above transformation to be interpreted as a coordinate
transformation in which the chirp functions play the
role of basis functions. Based on this concept, a for-
mulation of fractional Fourier transforms can be char-
acterized by the following properties:

1. Basis functions in the ath domain, be they delta
functions or harmonics, are in general chirp func-
tions in any other (a’)th domain.

2. The representation of a signal in the ath domain
can be obtained from the representation in the

" (@’)th domain by taking the inner product (pro-
Jection) of the representation in the (a’)th domain
‘with basis functions in the target ath domain.

3. This operation, having the form of a chirp trans-
“form, is equivalent to taking the (a — a')th frac-
tional Fourier transform of the representation in
the (a’)th domain.

The relationship of fractional Fourier transforms to
chirp transforms provides the basis of the concept of
fractional domains, which are generalizations of the
conventional space and frequency domains. The rela-
tionship to wavelet transforms is discussed in [6].

2. FILTERING IN FRACTIONAL DOMAINS

Now we move on to discussing filtering in fractional
domains. We will see that under certain circumstances,
noise separation can be realized effectively in fractional
Fourier domains: Fractional Fourier transforms can be
used to separate signals which cannot be separated in
ordinary coordinate and frequency domains. For in-
stance, consider the signal and noise components shown
in Fig. 1. Their projections on both coordinate and
frequency axes overlap, however, their projections on

.the axis corresponding to the ath fractional Fourier do-

main do not.. Thus, the signal can be separated from
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Fig. 1:

the noise easily.
Now let us give some more concrete examples. Con-
sider the signal

exp[—(z — 4)7]
distorted additively by
exp(—inz®)rect(z/16).

The magnitude of their sum is displayed in part a of
Fig. 2. These signals overlap in the frequency domain
as well. In part b, we show their a = 0.5th fractional
Fourier transform. We observe that the signals are sep-
arated in this domain. The chirp distortion is trans-
formed into a peaked function which does not exhibit
significant overlap with the signal transform, so that
it can be blocked out by a simple mask (part c). In-
verse transforming to the original domain, we obtain
the desired signal nearly perfectly cleansed of the chirp
distortion (part d).

Now we consider a slightly more involved example in
which the distorting signal is also real. The signal

exp(—mz?)
is distorted additively by
cos[2m(z2/2 — 4z)]rect(z/8),

as shown in part a of Fig. 3. The a = 0.5th transform is
shown in part b. One of the complex exponential chirp
components of the cosine chirp has been separated in
this domain and can be masked away, but the other still
distorts the transform of the Gaussian. After masking
out the separated chirp component (not shown), we
take the @ = —1st transform (which is just an inverse
Fourier transform) to arrive at the a = —0.5th domain
(part c). Here the other chirp component is separated
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Fig. 3:

and can be blocked out by another simple mask. Fi-
nally, we take the 0.5th transform to come back to our
home domain (part d), where we have recovered our
Gaussian signal, with a small error.

The examples above have been limited to chirp dis-
tortions which are particularly easy to separate in a
fractional Fourier domain (just as pure harmonic dis-
tortion is particularly easy to separate in the ordinary
Fourier domain). However, it is possible to filter out
more general types of distortion as well. In some cases
this may require several consecutive filtering operations
in several fractional domains of different order [6]. There
is nothing special about our choice of Gaussian signals
other than the fact that they allow easy analytical ma-
nipulation. Also, there is nothing special about the
0.5th domain. It just turns out that this is the domain
of choice for the examples considered above.

In the above examples we have demonstrated tha.t
the method works, but did not discuss what led us to
transform to a particular domain and what gave us the
confidence that doing so will get rid of the distortion.



This becomes very transparent once one understands
the relationship between the fractional Fourier trans-
form and the Wigner distribution. This relationship,
as well as the generdl philosophy behind such filtering
operations is discussed in [6].

3. CONCLUSIONS

The concept of fractional Fourier transforms is re-
lated to chirp and wavelet transforms, as well as being
intimately connected to the concept of ‘space-frequency
distributions. This leads to the notion of fractional
Fourier domains, which are discussed at length in [6]. In
this paper, we have shown numerical examples in which
filtering in a fractional domain can enable effective-noise
elimination. Because of the ease of performing the frac-
tional Fourier transform optically, these operations are
relevant for optical information processing.

The concept of multiplexing in fractional domains is
also investigated in [6], showing that for certain sig-
nal Wigner distributions, efficient multiplexing can be
realized in fractional domains.

In most of this paper, we work with continuous sig-
nals which are represented as functions of space or spa-
tial frequency. Temporal interpretations of our discus-
sions can be provided easily by those interested in them.

REFERENCES

[1] A. C. McBride and F. H. Kerr, “On Namias’s
fractional Fourier transform,” IMA Journal of Applied
Mathematics, 39, 159-175 (1987).

[2] H. M. Ozaktas and D. Mendlovic, “Fourier trans-
forms-of fractional order and their optical interpreta-

tion,” Optics Communications, Vol. 101, 163-169 (1993).

(3] D. Mendlovic and H. M. Ozaktas, “Fractional
Fourier transformations and their optical implementa-
tion: Part I,” Journal of the Optical Society of America
4, Vol. 10, 1875-1881 (1993).

[4] H. M. Ozaktas and D. Mendlovic. “Fractional
Fourier transformations and their optical implementa-
tion: Part II,” to appear in Journal of the Optical So-
ciety of America A.

[5] A. W. Lohmann, “Image rotation, Wigner rota-
tion and the fractional Fourier transform,” Journal of
the Optical Society of America A, Vol. 10, 2181-2186
(1993).

[6] H. M. Ozaktas, B. Barshan, D. Mendlovic, and
L. Onural, “Convolution, filtering, and multiplexing in
fractional Fourier domains and their relation to chirp
and wavelet transforms,” to appear in Journal of the
Optical Society of America A.



