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Abstract

Optimal filtering with linear canonical transformations allows smaller mean-square errors in restoring signals degraded
by linear time- or space-variant distortions and non-stationary noise. This reduction in error comes at no additional
computational cost. This is made possible by the additional flexibility that comes with the three free parameters of linear
canonical transformations, as opposed to the fractional Fourier transform which has only one free parameter, and the
ordinary Fourier transform which has none. Application of the method to severely degraded images is shown to be
significantly superior to filtering in fractional Fourier domains in certain cases.

1. Introduction

In this paper, we consider a signal observation model of
the form

g(t)=f_+:h(t,t’)f(t’)dt’+n(t), ¢

where g(z) is the observed signal, f(#) is the signal we
wish to recover, n(t) is an additive and possibly non-sta-
tionary noise signal, and h(t,') is the kernel representing
an undesired time-varying linear distortion.

A general linear estimate f(t) of f(1) in terms of g(7)
may be expressed as

Ay = [ ke, @

where k(1,1) is the kernel representing the recovery opera-
tion.

Under a number of assumptions and given the relevant
correlation functions, the optimal kernel kop[(t,t’), which
minimizes the mean-square error

o2=E{lf- A}
=e{[ "l -fol Lo -io)a). @

is well known [1], and will be reviewed below. However,
obtaining the most general linear estimate by using Eq. (2)
requires computational time of the order of N2, where N

is the time- or space-bandwidth product of the signals.
Under some conditions, it is possible to obtain satisfactory
estimates in much shorter time. For instance, when the
signals involved are stationary and A(z,7) is a time-in-
variant kernel, the optimal kernel kom( t,f') tumns out to be
a time-invariant (or space-invariant) filter which can be
implemented in & (N logN) time. This solution, which
corresponds to multiplicative filtering in the Fourier do-
main, is known as the classical time-invariant Wiener filter
(2]

In Refs. [3,4], the authors show that filtering in frac-
tional Fourier domains [5,6] can offer significant improve-
ment with respect to filtering in the ordinary Fourier
domain for particular signal, noise and distortion character-
istics. This approach allows smaller mean-square errors to
be achieved while keeping the time of computation at
@(NlogN). These improvements are made possible by the
additional flexibility afforded by the fractional order pa-
rameter.

Here, we provide a generalization of the concept of
filtering in fractional Fourier domains which provides even
greater flexibility and thus even smaller errors in certain
cases, while still maintaining #(N logN) computational
time. Thus, the benefits achieved come without any addi-
tional cost. Our method is based on linear canonical trans-
formations which are a family of transformations with
three parameters [7]. (The fractional Fourier transform is a
special case of the linear canonical transformations with
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only a single parameter.) These transformations can be
computed using a fast algorithm in &#(N logN) time. We
first review the classical problem so as to provide a proper
context and establish the necessary notation. Then we
consider recovery filters which correspond to multiplica-
tion by a function in the transform domain. The optimum
multiplicative function will be derived analytically for a
given transform domain characterized by the three parame-
ters of the linear canonical transformation employed. Sub-
sequently, we will seek the optimal values of these param-
eters, thus achieving the smallest possible error with the
proposed method.

2. The classical problem

In this section, the most general linear filtering problem
will be briefly reviewed. Assumptions on the signal and
noise statistics are as follows: The noise process is zero-
mean and independent of the signal process. Both pro-
cesses are, in general, non-stationary and their covariance
functions RA(z,1') and R, (s,1') are known. Under these
assumptions, the cross-correlation function R(z,') be-
tween the input process f(¢) and the output process g(1),
and the correlation function R, g(t,t') of the output process
are found as

+o0
Rp(t0)= [ h(LOR(1,1")dr", 4)

R, (1,0)= fj:h* (t.)R(1,7)dr" + R, (1,1).
)

The most general optimal linear filter with kernel

kop(2,#') enables us to obtain an estimate

N +o ,
FO = [ kon(r.)8(1) 47, (6)
such that the mean-square error given by
o= E{ll £(r) = f()I*}, ()
is minimized. Here, || - || denotes the L, norm:

2 te *
A= [ A" A1)y (®)

The above definition of the mean-square error is appropri-
ate for non-stationary signals of finite energy, whose func-
tional representations are square integrable. It is known
that the optimal kemnel satisfies the following equality
known as the Wiener-Hopf equation [1]:

+ G
ng(t,t’)=f_m ko(t,8 )R (1,47)dt” Vrf. )

As we have mentioned before, obtaining an estimate by
using Eq. (6) requires #(N?) computation time.

3. Filtering with linear canonical transformations

The class of linear canonical transformations is defined
as

(1) =& LON,) = [0 (1,010 a (10)

with
0,(1,.1) =Cpexp[i7r(atp2—231pt+'ytz)], (1)
C,=B'*exp(—im/4), (12)

where we introduced the parameter vector p=[a Bv]
with a, B, and vy being the three real parameters charac-
terizing the transformation. All members of this class of
transformations are unitary. The signal f£,(z,) will be
referred to as the transform domain representation of f(r).
When a=vy=0 and B=1, the above reduces to the
ordinary Fourier transform except for the inconsequential
phase factor exp(—im/4). When a = y = cot(aw/2) and
B =csclam/2), the above reduces to the ath order frac-
tional Fourier transform [9-13], again except for a phase
factor.
We will seek estimators of the form

f(y=e;[m(1,) €,[2(D](1,)] (D). (13)

where &, is the linear canonical transformation operator
and m( tp) is a multiplicative filter applied in the transform
domain. According to the above equation, first the linear
canonical transform of the signal is taken with parameters
«, B and y. Then, the transformed signal is multiplied
with the filter m( tp), and finally, the inverse linear canoni-
cal transform of the resulting signal is taken. In the
following, the optimal filter function in a given transform
domain will be derived for a given parameter vector and
then the mean-square error will be minimized over the
parameter vector.

The set of linear filters which can be realized in this
manner is a subset of the class of general linear filters.
Thus, the optimal filter we obtain will not be the most
optimal among all linear filters. However, the class of
filters we consider is a much broader class than ordinary
Fourier and fractional Fourier domain filters. In certain
situations involving time- or space-varying degradation
models and non-stationary processes, it is possible to
obtain smaller mean-square errors in comparison to filter-
ing in the conventional Fourier domain or the fractional
Fourier domain. This reduction in mean-square error comes
at no additional cost because the resulting filter can be
implemented in #(N log N) time [8] just like the ordinary
Fourier transform. It can also be implemented optically
with a setup similar to that used for implementing the
ordinary Fourier transform [14-16].
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Since &, is a unitary transform, the mean-square error
is the same in the transform domain:

o7 = E{IA(0) = APy = E{I,(1,) = £ (1)1}
(14)

Now, by inserting
7 ) =@k, = [m(1,) @[ ()](1,)]

in the rightmost expression of the above equation, and
minimizing 0p2 with respect to m( t,), yields the following
result

E{[5(1) =A()] e(1,)} =0, (15)
which we recognize as the orthogonality condition [17,18]:
According to the above condition, the best linear mean-
square error estimate fp(tp) is an orthogonal projection of
the signal f, (t ) into the space spanned by the observa-
tions. The resultmg error, which is unbiased (E{f,(1,) -
f (1,0} = 0), is orthogonal to the observation space, hence
uncorrelated with the observations. Eq. (15) can be solved
for the optlmum filter function m, ( ) by using the
definition of f (t ), and by taking thc complex conjugate
of both sides of the equation

f,,g,,( P)
Mo ) = R ()

where the correlation functions appearing in this equation
can be obtained from the correlation functions R (t,/)
and R, (t,1') by

Rf,g,,(tp”p)
+ e + - , ’
= [T 0,(11) 05 (1,0 Ry (1) A i,
(17)

(16)

Rgrgp( t!”tl’)
+x 400 |
=f_m f_w QP(IP’t) Q, (tp’t')Rgg(‘yt')dt'dt.
(18)

Thus, the optimal multiplicative filter function is found as:

Mo 1)
e -1 ’ N
f—m f_ QP(tp’t)Qp (tpvt)ng(t,t)dt'dt

f_+:f_+:QP( 1) @, (1,00 )R (1,0 dr d2
(19)

By substituting the above expression in Eq. (14), we obtain
an expression for the minimum mean-square error for this
parameter vector:

2
Ty opt

.—_E{fj:[fp( 1) =1 ',,)] . [fp( t,) —£,( t,,)] dt,,}

=T [Rpett) = el (1) Ry (1)

+m0Pt( ’p)m;pt(tp)Rgpgp tp'tp)] dz,. (20)

Now, by employing a standard multi-variate optimization
routine [19], the optimal value Pop Of the parameter vector

=[a By], which minimizes g, ,,, can be found.

4. Examples

We first present a simple one-dimensional example
which illustrates the process as transparently as possible.
Our original signal f(z), which we choose to be a simple
Gaussian function, is shown in Fig. 1(a). In Fig. 1(b), the
original signal is corrupted by the presence of two strong
chirp waveforms. Fig. 1(c) shows the linear canonical
transform of the corrupted signal g(r) for the optimal
parameter vector p,, =[—0.211.75]. In this transform
domain, the original signal and the interfering chirp wave-
forms are effectively separated due to their small degree of
overlap. Transforming back to the time domain, we obtain
a fairly faithful restoration of the original signal (Fig. 1(e))
with a mean-square error of less than 0.001. (All mean-
square errors in this section have been normalized by
E{1 A1I*}.) For comparison, in Fig. 1(d), we show the
fractional Fourier transform of the corrupted signal g()
for the optimal fractional Fourier transform order 0.7. Only
one of the distorting chirps can be well separated while the
other continues to corrupt the signal, so that the minimum

ats b1_5
1
0,5/\
0
-0.5
E 0 5
c, d,
T A 2
0
-5 o] 5 95 0 5
ersf fis
1 1 S
0,5/—\ 05 P N
: B W
-05 .
-5 o 5 —OES 0 5

Fig. 1. (a) Original signal. (b) Corrupted signal. (c) Linear canoni-
cal transform of the corrupted signal where the interfering chirps
(left) are separated from the original signal (center). (d) Fractional
Fourier transform of the corrupted signal where only one of the
interfering chirps (left) is separated from the original signal. (e)
Signal restored by filtering in the linear canonical transform
domain. (f) Signal restored by filtering in the fractional Fourier
transform domain. The original signal is also shown by dashed
lines for comparison.
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Fig. 2. (a) Original ‘‘Plane’” image. (b) Corrupted image (SNR = 1). (c) Image restored by filtering in the linear canonical transform
domain. (d) Image restored by filtering in the fractional Fourier transform domain.
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Fig. 3. (a) Original ‘‘Plane”” image. (b) Corrupted image (SNR = 0.1). (c) Image restored by filtering in the linear canonical transform
domain. (d) Image restored by filtering in the fractional Fourier transform domain.
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mean-square estimate shown in Fig. 1(e) is less than
satisfactory. Note that this result is the best that can be
obtained among all fractional orders, including the first
order which corresponds to the ordinary Fourier transform.
Thus, ordinary Fourier domain filtering would yield even
less satisfactory results.

The analysis presented in this paper for the single
dimension ¢ can be easily generalized to the two dimen-
sions x and y. Fig. 2(a) illustrates the original image used
in our two-dimensional example. In Fig. 2(b), this image
has been corrupted by the presence of two chirp wave-
forms whose amplitudes are comparable to that of the
image (signal-to-noise ratio = 1). The optimally restored
image is displayed in Fig. 2(c) for which p,, =
[-0.090.881.57] and minimum mean-square error is
0.008. For comparison, Fig. 2(d) shows the image restored
in the optimal fractional Fourier domain, which we see is
less satisfactory (mean-square error = 0.04) than restora-
tion in the optimal linear canonical transformation domain.

The same example is repeated with a signal-to-noise
ratio = 0.1. The corresponding images are presented in
Fig. 3. We see that the visual improvement offered by the
linear canonical transform method (mean-square error =
0.03) over the fractional Fourier method (mean-square
error = 0.17) is greater at this lower signal-to-noise ratio.

5. Conclusion

We have presented a novel signal restoration method
which can reduce the minimum mean-square error in
comparison to ordinary or fractional Fourier domain filter-
ing. The time complexity of this method is the same as that
of ordinary Fourier-domain-based filtering. Thus the im-
provement obtained comes at no additional cost. This is
possible because linear canonical transforms include ordi-
nary and fractional Fourier transforms as special cases.

We have seen that images corrupted by several chirp or
chirp-like waveforms whose amplitudes may be much
larger than that of the original image may particularly
benefit from optimal filtering with linear canonical trans-
forms. This suggests that optimal filtering with linear
canonical transforms would find many applications in op-
tics where chirp and chirp-like distortions and noise arise
naturally in optical systems, for instance, in the form of
scattering from point and line defects, and twin images in
holography. Also, two-dimensional linear canonical trans-
formations and filtering are effectively and easily imple-
mented with optical systems. Thus optics is both an appli-
cation area and a means of implementation for the pro-
posed method.

Another application arises in Synthetic Aperture Radar
(SAR) which employs chirps as transmitted pulses, so that
the measurements are related to the terrain reflectivity
function through a chirp convolution. This process results
in chirp-type disturbances caused by moving objects in the
terrain, which should be removed if high resolution imag-
ing is to be achieved [20].
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