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Inertial Navigation Systems for Mobile Robots

Billur Barshan and Hugh F. Durrant-Whyte, Member, IEEE

Abstract— A low-cost solid-state inertial navigation system
(INS) for mobile robotics applications is described. Error models
for the inertial sensors are generated and included in an Extended
Kalman Filter (EKF) for estimating the position and orientation
of a moving robot vehicle. Two different solid-state gyroscopes
have been evaluated for estimating the orientation of the robot.
Performance of the gyroscopes with error models is compared to
the performance when the error models are excluded from the
system. The results demonstrate that without error compensation,
the error in orientation is between 5-15°/min but can be improved
at least by a factor of 5 if an adequate error model is supplied.
Similar error models have been developed for each axis of a
solid-state triaxial accelerometer and for a conducting-bubble tilt
sensor which may also be used as a low-cost accelerometer. Linear
position estimation with information from accelerometers and tilt
sensors is more susceptible to errors due to the double integration
process involved in estimating position. With the system described
here, the position drift rate is 1-8 cm/s, depending on the fre-
quency of acceleration changes. An integrated inertial platform
consisting of three gyroscopes, a triaxial accelerometer and two
tilt sensors is described. Results from tests of this platform on a
large outdoor mobile robot system are described and compared to
the results obtained from the robot’s own radar-based guidance
system. Like all inertial systems, the platform requires additional
information from some absolute position-sensing mechanism to
overcome long-term drift. However, the results show that with
careful and detailed modeling of error sources, low-cost inertial
sensing systems can provide valuable orientation and position
information particularly for outdoor mobile robot applications.

1. INTRODUCTION

NERTIAL navigation systems are self-contained, nonra-

diating, nonjammable, dead-reckoning navigation systems
which provide dynamic information through direct measure-
ments. In most cases an INS must be integrated with other
absolute location-sensing mechanisms to provide useful infor-
mation about vehicle position. Models that describe the outputs
of inertial sensors sufficiently accurately are essential if the in-
formation is to be used effectively. Fundamentally, gyroscopes
provide angular rate information, and accelerometers provide
velocity rate information. Although the rate information is
reliable over long periods of time, it must be integrated to
provide absolute measurements of orientation, position and
velocity. Thus, even very small errors in the rate information
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provided by inertial sensors cause an unbounded growth in the
error of integrated measurements. As a consequence, an INS
by itself is characterized by position errors that grow with
time and distance. One way of overcoming this problem is
to periodically reset inertial sensors with other absolute sens-
ing mechanisms and so eliminate this accumulated error. In
robotics applications, a number of systems have been described
which use some form of absolute sensing mechanisms for
guidance (see [1] or [2] for surveys). Such systems typically
rely on the availability of easy-to-see beacons or landmarks,
using simple encoder information to predict vehicle location
between sensing locations. This works well when the density
of beacons or landmarks is high and the ground over which the
vehicle travels is relatively smooth. In cases where the beacon
density is sparse or the ground is uneven, such systems can
easily lose position track. This is particularly a problem for
vehicles operating in outdoor environments. Inertial naviga-
tion systems can potentially overcome this problem. Inertial
information can be used to generate estimates of position
over significant periods of time independent of landmark
visibility and of the validity of encoder information. Clearly,
positions derived from inertial information must occasionally
be realigned using landmark information, but a system that
combines both inertial and landmark sensing can cope with
substantially lower landmark density and can also deal with
terrain where encoder information has limited value.

Inertial navigation systems have been widely used in
aerospace applications [1], [3], [4] but have yet to be
seriously exploited in robotics applications where they have
considerable potential. In [5], the integration of inertial and
visual information is investigated. Methods of extracting
the motion and orientation of the robotic system from
inertial information are derived theoretically but not directly
implemented in a real system. In [6], inertial sensors are
used to estimate the attitude of a mobile robot. With
the classical three-gyro, two-accelerometer configuration,
experiments are performed to estimate the roll and pitch
of the robot when one wheel climbs onto a plank using a
small inclined plane. One reason that inertial systems are
widely used in aerospace applications but not in robotics
applications is simply that high-quality aerospace inertial
systems are comparatively too expensive for the budgets of
most robotics systems. However, low-cost solid-state inertial
systems, motivated by the needs of the automotive industry,
are increasingly being made commercially available. Although
a considerable improvement on past systems, they clearly
provide substantially less accurate position information than
equivalent aerospace systems. However, as we describe in
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this paper, such systems are at a point that, by developing
reasonably detailed models of the inertial platform, these
sensors can provide valuable information in many robot
positioning tasks.

Another system which is potentially of great value for
vehicle localization is the global positioning system (GPS)
[7]. GPS is a satellite-based radio navigation system that
allows a user with the proper equipment access to useful
and accurate positioning information anywhere on the globe.
The fact that an absolute identification signal, rather than a
direct measurement of range or bearing, is used to compute
location means that measurements are largely independent
of local distortion effects. The position accuracy that can
be achieved with GPS is 5 m in the military band, and 50
m in the civilian band. However using a technique known
as differential GPS, in which a separate base receiver is
employed, civilian accuracy may be improved to 5 m. Al-
though this is not as good as can be achieved using high
frequency radar, it may still be adequate for some applications.
It is also worth noting that the cost of GPS receivers is
remarkably low (about $1000). In [8), integration of GPS
with INS is described for precision navigation in aerospace
applications.

The primary motivation for the work reported in this paper
has been the need to develop a system capable of providing
low-cost, high-precision, short time-duration position informa-
tion for large outdoor automated vehicles. In particular, the
interest has been in obtaining location information for short
periods when the vehicle is not in contact with any beacon or
landmark information. The vehicle has pneumatic tires but no
suspension and runs over a road surface at speeds of up to 6
m/s. Variations in wheel radius, tire slip and body deflection
cause the encoder information to be unreliable for location
estimation except over very short sample intervals. Inertial
sensing offers a potential solution to this type of problem.

To make best use of low-cost inertial sensing systems, it
is important that a detailed understanding of the mechanisms
causing drift error are understood and a model for these
derived. The approach taken in this paper is to incorporate in
the system a priori information about the error characteristics
of the inertial sensors and to use this directly in an extended
Kalman filter (EKF) to estimate position before supplement-
ing the INS with absolute sensing mechanisms. In Section
I, a hardware implementation of a robotic INS employing
three solid-state gyroscopes, a solid-state triaxial accelerom-
eter and two conducting-bubble tilt sensors is described. In
Section III, the error models for each of these sensors is
developed, testing them for adequacy of representation and
implementing them in an EKF for error compensation. The
performance of two different gyroscopes are compared in
Section IV with and without an error model incorporated
in the system. The adequacy of these gyroscopes are as-
sessed for those robotic tasks that rely on accurate angular
localization of a mobile robot. In Section V, the results of
bench tests of the accelerometers when used for position
estimation are discussed. Section VI describes the testing of
the complete INS on a radar-guided land vehicle. Accurate
vehicle position fixes from the radar guidance system in a

dense beacon environment are compared against position and
orientation information predicted by the INS. In conclusion,
the usefulness of low-cost INS in robotics applications, is
discussed for outdoor vehicles and also for indoor guidance
systems.

II. DESCRIPTION OF INS COMPONENTS

A fundamental requirement for an autonomous mobile robot
is the ability to localize itself with respect to the environment.
The INS system described in this paper comprises three
solid-state rate gyroscopes, a triaxial linear accelerometer
manufactured by ENTRAN Devices Ltd., and two Electrolevel
inclinometers (or tilt sensors) by TILT Measurement Ltd., all
pictured in Fig. 1.

Gyroscope

Two different types of gyroscopes have been considered and
evaluated: the Solid STate Angular Rate Transducer (START)
gyroscope manufactured by GEC Avionics and the ENV-05S
Gyrostar manufactured by Murata [9]. The START -gyroscope
is an inertial sensor originally intended for the guided munition
market in the 1980’s but which has also proved to be very
suitable for the vehicle control market [10], [11}. The device
consists of a small cylinder with integral piezoelectric trans-
ducers and an integrated-circuit module [12]. The principle
of operation is to measure the Coriolis acceleration caused
by angular rotation of a vibrating cylinder, chosen for its
symmetry, around the principal axis. The cylinder is open
at one end and supported on a base at the other end. Eight
piezoelectric transducers are attached symmetrically around
the open end of the cylinder for driving, controlling and
measuring the vibrations via the integrated circuit module [13].

The Gyrostar is a small relatively inexpensive piezoelectric
gyro originally developed for the automobile market and active
suspension systems [9]. The main application of the Gyrostar
has been in helping car navigation systems to keep track of
turns for short durations when the vehicle is out of contact
with reference points derived from the additional sensors. The
principle of operation is very similar to that of START but the
geometry is radically different: It consists of a triangular prism
made of a special substance called “Elinvar,” on each vertical
face of which a piezoelectric transducer is placed. Excitation of
one transducer at about 8 kHz, perpendicular to its face, causes
vibrations to be picked up by the other two transducers. If the
sensor remains still, or moves in a straight line, the signals
produced by the pick-up transducers are exactly equal. If the
prism is rotated around its principal axis, Coriolis forces in
proportion to the rate of rotation are created.

Both gyroscopes generate voltage outputs proportional to
the angular velocity of the vehicle around the principal axis of
the device. The maximum rate that can be measured with the
particular START gyro under investigation is £200°/s within
its linear range. The corresponding value is £90°/s for the
Gyrostar. If the input rate goes beyond the maximum limits,
the rate and orientation information become erroneous and
need to be reset.
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(c)
Fig. 1.

@

(a) The START gyro manufactured by GEC Avionics. (b) The ENV-OSS Gyrostar manufactured by Murata. (c) The EGCX3-A linear triaxial

accelerometer by ENTRAN Devices Ltd. (d) The Electrolevel-ELH46 inclinometer manufactured by TILT Measurement Ltd.

Accelerometer

The accelerometer measures the linear acceleration of the
robot along three mutually orthogonal axes on the robot frame.
The measured value naturally incorporates the gravity vector
that needs to be compensated for. The maximum range of
the accelerometer along each axis is +2¢g = 19.62 m/s?. The
output corresponding to each axis is a voltage proportional
to the projection of the total acceleration along its direction.
Each axis of the accelerometer employs a Wheatstone bridge
consisting of semiconductor strain gages bonded to a simple
cantilever beam and endloaded with a seismic mass. Under
acceleration, the bending moment creates a strain resulting in
a bridge imbalance. Consequently, a voltage proportional to
acceleration is generated. The device is centrally mounted on
the vehicle such that its = and y axes are level with the vehicle
platform and the z axis is orthogonal.

Tilt Sensors

Two orthogonally mounted tilt sensors measure small devi-
ations of the vehicle platform up to £10° from the horizontal
r — y plane with a discrimination of 1. The Electrolevel
tilt sensor is a gravity-sensing angle transducer based on the
principle of the spirit level. A suitably curved tube contains
an electrically conducting liquid, three electrodes, and a gas
bubble. Under the influence of gravity, the bubble floats to the
highest point in the tube. As the tube is tilted, the position
of the bubble relative to the electrodes changes, causing a
difference in electrical resistance between electrodes. The
frequency response characteristics of the sensor extends from
zero to a natural frequency of 2.5 Hz.

The tilt information provided by these sensors is supplied to
the accelerometer to cancel the gravity component projecting
on each axis of the accelerometer. Unfortunately, this infor-
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mation is only useful when the vehicle is stationary since tilt
sensors are inherently sensitive to acceleration as well. When
the sensor is subject to an acceleration a in a direction normal
to its measuring axis in the horizontal plane, the resultant
of this acceleration and the acceleration due to gravity g
determines the position of the bubble. If the sensor is also
tilted from the horizontal by «, the measured effective angle
is

Qe = @ + tan ™} g M

The block diagram for the hardware implementation of the
inertial sensors is shown in Fig. 2. The outputs of the inertial
sensors are multiplexed and fed to a 12-bit A/D converter. The
digitized output is interfaced to an INMOS-T805 transputer.
The total cost of this inertial package is approximately £ 5000
which is substantially less than the typical cost of inertial
systems used in aerospace applications.

III. ERROR MODELLING OF INERTIAL SENSORS

Constructing Error Models

Building error models for inertial sensors is motivated
by an attempt to reduce the effect of unbounded position
and orientation errors. Depending on how successful these
models are, inertial sensors may possibly be used in an
unaided mode or for longer durations on their own. The error
characteristics that dominate the operation of the INS depend
on the type of inertial sensors involved. The gyroscope drift
in its various manifestations is the most important contributor
to navigation system errors, and is mainly dependent upon the
device technology. A detailed treatment of modeling aerospace
INS’s can be found in the first volume by Maybeck [14].
For a robotic INS, the scale, nature and parameters of the
localization problem are different than in aerospace. Hence,
INS’s developed for aerospace applications cannot be directly
implemented on mobile ground vehicles. In addition, systems
developed for aerospace are far too expensive to be used in
robotics applications.

Fig. 3 illustrates the configuration of the INS package. The
accelerometer is mounted centrally on the INS plate, and the
tilt sensors are mounted along the = and y axes of the robot
frame. The location of the gyroscopes are insignificant as
long as they are orthogonal sincethe measured angular rate
is independent of the chosen coordinate frame.

To develop error models for the two types of gyroscopes,
their outputs were recorded over long periods of time when
subjected to zero input, i.e. the gyroscopes were stationary
on the laboratory bench. The result of this experiment over
a period of 12 hours is shown in Figures 4(a) and (b) for
START and Gyrostar, respectively. Ideally, the output for
zero input would be a constant voltage level corresponding
to the digital output of 2 048 for a 12-bit A/D converter as
shown by the thick, solid horizontal line in the figures. The
standard deviation of the output fluctuations is approximately
0.16°/s for the START and 0.24°/s for the Gyrostar. For
both gyroscopes, the real output data is at a lower level
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Fig. 2. Hardware implementation of the INS.

than ideal at start-up, and the mean value gradually increases
with time in an exponential fashion. Repeatability of these
results indicates that an apparently small time-varying bias is
characteristic of these gyros. The time variation of the bias is
attributed to thermal effects based on the observation that the
gyroscope units gradually heat up during operation. The bias
can taper off to a negative or positive value depending on the
ambient temperature. The results indicate that the Gyrostar
reaches its steady state much faster than the START. Drift
in the rate output of Gyrostar is about 30 mV (1.35°/s) 10
min. after switching on and, provided there is no temperature
change, about a further 10 mV (0.45°/s) during the next 24
hours [9].

The same experiment to assess the drift has also been
performed for each axis of the accelerometer and for the two
tilt sensors. The error characteristics of the accelerometer axes
are of similar form but with differing parameters. The z axis
data has been shown in Fig. 5 as an example. The error at
the voltage output of each axis is characterized by a large
negative bias that drifts over time. For the tilt sensors, the



332 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 11, NO. 3, JUNE 1995

INS CONFIGURATION

-

GYRO Y

TILT SENSOR Y
Tu -
»

ACCELEROMETER

L

L TILT SENSOR X
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Fig. 4. Digitized angular rate output of the (a) START (b) Gyrostar when
subjected to zero input. Data was collected over a period of 12 hours by
sampling every minute when no angular rotation was applied around the
principal axis.

output does not exhibit any drift, obviating the need to build
an error model [15]. The dominating source of error for the
tilt sensors is the input-output nonlinearity for angles between
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Fig. 5. Digitized output of the z axis of the ENTRAN accelerometer shown

along with the fitted model of form C; (1 —e™ %) + C-. Data was collected
over a period of 12 hours by sampling every minute when the z axis was
subject to gravity.

+5-10°. The calibration data provided by the manufacturer
is used to model this effect.

In the following, let €(t) be the bias error associated with
measuring the true value of a quantity of interest using
inertial sensors. A nonlinear parametric model of the following
form was fitted to the data from the gyroscopes and the
accelerometer using the Levenberg-Marquardt iterative least-
squares fit method [16]:

€ model (1) =C1(1—e"F) + C, )

where € 1,,4e1(%) is the fitted error model to the gyroscope
output when zero input was applied, with parameters C;, Cs,
and T to be tuned. Starting with reasonable initial guesses for
the parameters, convergence to a local minimum is achieved
within 5-10 iterations. The best fitting parameter values to
the experimental data are tabulated in Table I for the inertial
sensors which comply with this model. Note that the z axis
of the accelerometer is subject to gravity when no other
acceleration is applied to the sensor. Since the tilt sensors
do not exhibit this type of drift error, they are not included
in the table.



BARSHAN AND DURRANT-WHYTE: INERTIAL NAVIGATION SYSTEMS FOR MOBILE ROBOTS 333

TABLE 1
DRIFT MODEL PARAMETERS FOR VARIOUS INERTIAL SENSORS

inertial sensor: C

Cs T

START gyro

23 A/D (0.225°/s)

2045.5 A/D (—0.244°/s) 63.7 min

Murata gyro-x

0.702 A/D (0.0788 °/s)

2039.4 A/D (—0.964°/s) 4.85 min

Murata gyro-y

3.980 A/D (0.4469 °/s)

2027.7 A/D (—2.285°/s) 4.15 min

Murata gyro-z

1.895 A/D (0.2128 °/s)

2022.0 A/D (—2.924°/s) 3.06 min

accelerometer-x axis

48 A/D (4.8 cm/s?)

1885.3 A/D (—163.0 cm/s?) || 21.3 min

accelerometer-y axis

1.7 A/D (1.7 cm/s?)

1950.1 A/D (—98.4 cm/s?) | 0.046 min

accelerometer-z axis

23.2 A/D (22.3 cm/s?)

220.7 min

2949.6 A/D (—117.6 cm/s?)

Testing Adequacy of Error Models

In general, a model fitted to experimental data is regarded as
being adequate if the residuals from the fitted model constitute
a white, zero-mean process. Hence, one can start with any
reasonable model based on inspecting the original data and
test its residuals for whiteness. If the test fails, the model can
be further developed until the residuals pass the whiteness
test. This implies that the test for the validity of any model is
basically reduced to a test for whiteness.

Following this route, the sufficiency of the above model in
(2) is determined for each sensor by applying a whiteness test
to the residuals in the autocorrelation domain. For a discrete
system with sampling interval T, the residual w(k) at time
kT is computed as follows:

w(k) = e(k) — € model(k)- 3)

Since the trend in the data has been subtracted out, the
process w(k) is assumed to be stationary, in which case the
autocovariance R, becomes only a function of the lag A
between two data samples. When only a finite set of NV data
samples is available for estimation, the expressions for the
sample biased autocovariance estimate is given by [17]:

N—]A|-1
1 1A

¥ > wk)w(k + A). @)

k=0

Ruw(D) =

Ideally, the autocorrelation function of a zero-mean white
process is a spike for zero lag (A = 0), corresponding to
the process variance, and zero otherwise. With a finite and
fixed number of data points, the sample autocorrelation will
have some fluctuations around the ideal that need to be tested
for statistical significance. If N is sufficiently large (N >16),
it can be shown that [18] the distribution of the sample
autocovariance estimate for nonzero A is well approximated
by a Gaussian distribution with zero mean and standard error
given by:

G, (8)= for A#0. 5)

1 =
\/_Wwa(O)

0.8 1
0.6 1
04 1

0.2 1

00 s A (s)
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Fig. 6. Biased sample autocorrelation estimate of the residuals. The result
was obtained by an ensemble average over the autocotrelauons of 10 data

sequences, each of 10 s duration. The dotted lines indicate TA—WJL
M R (0)
+25 5

Ry 3
N/ ) bounds for the autocorrelation estimate.

In Fig. 6, the sample autocorrelation estimate, i.e. sam-
ple autocovariance estimate scaled by the estimated process
variance R, (0), is shown for the START gyroscope. An
ensemble average over the autocorrelation estimates of M =
10 data sequences (each of 10 s duration) was taken, reducing
the standard error bounds by \/_ The dotted lines corre-

255

spond to the ﬂ:m and + NiTT ) bounds for the
autocorrelation estimate. These bounds determine the standard
error for estimating the autocorrelation of a white process,
given the finite and fixed amount of data [19]. Since the
sample autocorrelation error distribution of a white process
is Gaussian, the autocorrelation estimate is bound to lie
thhm:tﬁw(— 95.5% of the time. In compliance, the
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results indicate that the estimate is within :k:\/:—d—"};fm about
96% of the time.

The positive outcome of the whiteness test on the model
residuals demonstrates that the model in (2) adequately repre-
sents the slowly varying bias error on the rate output of the
START gyroscope. The same whiteness test has been applied
to the residuals of the model for the Gyrostar and each axis of
the accelerometer. The results have proven to be positive but
are not included here for brevity. In the next section, the error
models developed are exploited in an EKF to compensate for
the errors.

Implementation of the Error Models

The parametrized model of (2) for the bias error can be
represented by the following differential equation:

, Cy+Cs 1
)= ——= — = 6
with initial conditions ¢(0) = C» and é(0) = S. After
discretization, (6) becomes
T T
ek+1)= T+TSE(k)+ T+T. (C1 4+ Cy)
with
6(0) = Cg. (7)

Due to its recursive nature, this difference equation is inde-
pendent of start-up time but relies on a good estimate of the
initial bias.

The quantities observed by the INS incorporate the bias
errors described by (7). The observations are the rate outputs
of the gyros, acceleration components on the robot frame and
the two tilt measurements, leading to the nonlinear observation
equations shown at the bottom of this page. Here, a., a, and g
are the accelerations of the robot in the world coordinate frame,
related to the measured accelerations by a rotational transfor-
mation through the Euler angles [20] 6, ¢, ® around z,y and 2
axes, respectively. The observations zg, (k), 2, (k), za, (k)
za,(k), za,(k) and z4,(k), are, respectively, of the Euler

angle rates 8(k), v(k), ®(k), and the accelerations a.(k),
ay(k), a,(k) along the z, y, and z axes. Each observation
is taken in additive drift e;(k), €, (k), €5(k), €a, (k). €, (k),
€¢(k), each independently modeled by (7), and additive white
noise vy (k), va(k), vs(k), va(k), vs(k), ve(k), respectively.
Note that the tilt sensor outputs are not directly supplied as
observations to the filter. Since the tilt sensors provide more
accurate angular information than the gyroscopes when the
robot is not accelerating, the gyros are reset by the outputs of
these sensors whenever the absolute value of all the accelera-
tion components are less than a prefixed threshold whose value
is determined by the noise level of the accelerometer output.
The tilt sensors do not directly measure the Euler angles but
the inclination with respect to the horizontal plane, whereas the
integrated output of the gyroscopes correspond to the actual
rotations around each axis on the robot frame. Suppose o, and
«, are the angles with the horizontal plane measured by the tilt
sensors lying along x and y axes, respectively. From simple
geometry, these are related to the Euler angles as follows:

0 =a, 9
=2 (10)
COS Oty

Equations (7) can be rewritten in matrix notation as

z(k) = hix(k)] + v(k) (11)

where x(k) is the state vector as described below and v(k) is
a white measurement noise process vector.

Given the observations, the states that need to be estimated
are the true values of orientation, angular rate, linear accelera-
tion, velocity, position and the errors associated with them.
Hence, the states of interest are augmented by (7) for the
sensors involved, to estimate and compensate for the time-
varying bias errors. The resulting state equations of the EKF

(k) + cos (k). sin @(k).ay (k)

—siny(k).g(k) + €q, (k) + va(k) 3)

26, (k) = 0(k) + ¢(k) + vi(k)
6, (k) = P(k) + € (k) + va(k)
G. (k) = ®(k) + €g (k) + v3(k)
zAm(k) = cos Y(k). cos ®(k).a,
za, (k) = [sin 8(k). sin (k). cos ®(k) — cos §(k).sin ®(k)]a,

(k)

+ [sin 8(k). sin 9 (k). sin @(k) + cos (k). cos @(k)]ay (k)
+ sin (k). cos ¢(k).g(k) + €q, (k) + vs(k)

24, (k)

= [cos B(k). sin (k). cos ®(k) + sin (k). sin @(k)]a. (k)
+ [cos O(k). sin ¥(k). sin ®(k) — sin 8(k). cos ®(k)]a, (k)
+ cos (k). cos¥(k).g(k) + €4(k) + v (k).
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in block matrix form are as follows:

[XG, (k + 1)
Xa, (k +1)
xe (k+1) | _
XA, (k + 1)
XAy (’G + 1)
x4,(k+1)
—FG,, 0 0
0 Fg, 0
0 0 Fg.
0 0 0
L 0 0 0
0 0 0
rug,
ugy
ug,
A + w(k)
uAy
LUy,
with
1
0
Fo. 2 |
0
_0
1
Fu, 2 8
L0
xg, (k)
x4, (k)
ug,
and
A
Uy, =

cor™N cococor

=
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Fig. 7. Angular rate (top) and orientation (bottom) for the zero-input case of
the START gyro when the bias error is negative. The true values (thin, solid
line) and the erroneous observations (dotted line) are illustrated along with
the EKF output (heavy, solid line) which compensates for the error.

The remaining block matrices Fg,,Fe,, Fa,, Fa,, and block
state Vectors Xg,,» XG,» XA,» XA, in (12) have very similar
definitions to those in (13) and (14) but with the corresponding
error model parameters substituted in. The overall state vector
comprises 30 states. More compactly, (12) can be rewritten as

x(k +1) = Fx(k) + u+ w(k). (15)
Note that the state transition is linear unlike the nonlinear
measurements described by (11). The first four states are the
true values of the orientation and its derivatives, and the next
two states constitute the error model for the gyroscope. This
part of the filter has a constant & (k) structure augmented by
the error model. Lower-order filters have been implemented
but shown to have a delay and much ringing in their unit-
step response. With this higher-order model, the filter is able
to track abrupt changes in angular velocity very closely as
will be shown in the next section. The remaining states of
the filter correspond to the true values of position, velocity
and acceleration in the world frame, plus the error states for
measuring acceleration. One interesting point to note is that
for each different sensor, the error states are coupled to their
relevant true states only through the observation equations and
not by the structure of the state transition matrix F'.

In setting the process noise covariance matrix Q for the
EKF, a continuous-time white-noise model is assumed as
described in [21]. With this assumption for each independent
sensor block, the following process noise covariance matrix
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30 s and applied to the gyro. The true values (thin, solid lines) and the erroneous observations (dotted lines) are displayed along with the EKF results
(thick, solid lines) which compensate for the error. (c) Error in the angular rate and (d) error in orientation. Both the true (thin, solid lines) and the
estimated values (heavy, solid lines) are shown.
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where o; = 0.05°/s%, 05 = 0.2°/s, 03 = 3 cm/s?, and 04 =
0.01 cm/s?, with o3, 04 being the experimentally determined
standard deviations of the residuals from the fitted models.

The state vector estimated by the filter is given by the
standard recursive estimator

%(k + 1|k + 1) = Fx(klk) + u + W(k + )v(k +1) (18)

where %(k + 1|k + 1) is the estimate made of the state vector
at time (k + 1)7 based on all observations up to this time,
%(k|k) is the estimate at the previous time-step, W (k + 1)
is the filter gain, and v(k + 1) = z(k + 1) — h[X(k + 1]k)]
is the innovations vector provided by the new observations at
time (k + 1)T;. A detailed treatment of EKF prediction and
update equations can be found in [21]. An important point to
note is that all states, including drift parameters, are estimated
at every sample time.

The EKF structure in (11) and (16) has been implemented
in real time on an INMOS-T805 transputer network where a
minimum sampling interval of T, = 30 ms is achieved. Each
gyroscope has been mounted on a rotating platform whose
angular velocity and orientation can be accurately controlled
and measured. An HCTL-1100 chip was used to control the
motor in the integral velocity mode. The motor position from
the encoder is accurate to 1/2000 of a revolution. A 500-line
optical encoder was used to measure motor position, driving
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the platform through a low backlash 20:1 gearbox. The most
significant positioning error is in gearbox backlash. This is
very good, however, and better than 1/10 of a degree. For
comparison purposes, the platform velocity and orientation
are taken to be the “true” values of these quantities in the next
section. Initial estimates of the bias errors are made to initialize
the filter by averaging the output of each inertial sensor over a
large number of samples when the robot is not in motion. Since
the start time of the experiment can correspond to any point
on the curves in Figs. 4 and 5, it is important to have good
estimates of the initial biases. For an initial estimate with over
1 000 samples from each sensor, data collection and estimation
take only 1-2 s on an INMOS-T805 transputer network hosted
by an IBM-80486 PC. As data is collected by the inertial
sensors, the parallel-running EKF filters the measurements and
provides estimates of the quantities of interest for the mobile
robot.

IV. COMPARISON OF TWO SOLID-STATE GYROSCOPES

To determine the adequacy of the error models, the system
performance with no assumed error model is compared to the
performance when the error models summarized in Table I are
incorporated in the EKF for each gyroscope.

Performance of START

The results when zero input was applied to the START
gyroscope are shown in Fig. 7 over a duration of five minutes.
The true values and the erroneous observations are illustrated
along with the EKF output which compensates for the error.
In this experiment, the system was close to start-up, and the
bias error had negative values. At the end of the experiment,
the integrated gyroscope rate output exhibited an error of
—70.8°/s, whereas the compensated and filtered output was
+8.6°, having had an overall maximum deviation of +12.0°
from the true value. Similar experiments indicate that the
typical improvement factor is approximately 6.

Fig. 8 illustrates the angular rate and position of the START
gyroscope when nonzero input was applied for a total duration
of five minutes. A new angular rate —25 < d < 25°/s was
randomly generated every 30 s and applied to the gyro. The
true values and the erroneous observations are displayed along
with the filter results. Note that the drift in the orientation is
more significant than in the angular rate since even very small
errors quickly accumulate when integrated. To make this more
visible, the true and estimated errors in rate and orientation
are shown separately in Fig. 8(c) and (d) for the same data.
At the end of the experiment, the integrated rate output was
erroneous by —84.7° (the worst case) whereas the filtered
estimate had an error of +3.4°, indicating that the filter slightly
overcompensated for the bias in this particular case. During
the course of the experiment, however, the compensation was
not always as good, the worst-case error being 36.0°, due to
the large spiky errors in the measured angular rate at those
points when a new rate was suddenly applied to the gyro.
These errors can be seen in Fig. 8(d) more clearly. Both the
gyroscope rate output and the filtered rate output were accurate
within $2.5°/s at the end of the experiment.

1.0 T T T

0 1 2 3 4 5

40 b \ ]
N
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Fig. 9. Angular rate (top) and orientation (bottom) for the zero-input case of
the Murata gyro when the bias error is negative. The true values (thin, solid
line) and the erroneous observations (dotted line) are illustrated along with
the EKF output (heavy, solid line) which compensates for the error.

Performance of Gyrostar

The results when zero-input was applied to the Gyrostar
are shown in Fig. 9 over a duration of five minutes. At the
beginning, the system was close to start-up and the bias
error had negative values. At the end of the experiment,
the integrated gyroscope rate output exhibited an error of
—95.9°/s, whereas the compensated and filtered output was
—0.21°, having had an overall maximum deviation of —3.8°
from the true value. The typical improvement factor was
approximately 8.

Fig. 10 illustrates the angular rate and position of the
Gyrostar when nonzero input was applied for a total duration
of five minutes. As before, a new angular rate —25 < ® <
25°/s is randomly generated every 30 s and applied to the gyro.
The true values and the erroneous observations are displayed
along with the filter results. The true and estimated errors in
rate and orientation are shown separately in Fig. 10(c) and
(d) for the same data. At the end of the experiment, the
integrated rate output exhibited an error of —42.5° whereas the
filtered estimate was +10.7°, indicating that the filter slightly
overcompensated for the bias in this particular case. As shown
in Fig. 10(d), there is a much better agreement between the
estimated position error and its true value than with the START
gyro. This is due to Gyrostar being more shock tolerant than
the START. Both the gyroscope rate output and the filtered
rate output were accurate within +1.5°/s at the end of the
experiment.

As a result of these evaluation experiments, the Gyrostar
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put was applied. A new angular rate was randomly generated every 30 s and

applied to the gyro. The true values and the erroneous observations are displayed along with the EKF results which compensate for the error. (c) Error in
the angular rate and (d) error in orientation. Both the true and the estimated values are shown.

was selected for the robotic INS since it proved to perform
better than the START in addition to being more compact,
light and inexpensive.

V. EVALUATION OF THE ACCELEROMETER

To determine the adequacy of the error models for each axis,
the system performance with no assumed error model is com-
pared to the performance when the error models summarized
in Table I are incorporated in the EKF for each axis of the
accelerometer. Experiments similar to those in the previous
section have been performed both for zero-input and nonzero-
input case [15]. For the zero-input case, when the error model
was included, the maximum error in velocity was 38 cmy/s

in absolute value and 30 m in position after about 3 min.
Even with error compensation, this example indicates how
quickly small errors in the rate outputs accumulate when the
rate information is integrated to obtain velocity and/or position
information.

To evaluate the accelerometer for position estimation when
in motion (nonzero-input case), a simple experiment was
designed: The robot platform was accelerated and decelerated
over a distance of 30 cm along its x axis in the forward
and backward directions. The results from the accelerometer
are illustrated in Fig. 11. In Fig. 11(a), real data from the
accelerometer is shown in dotted line, EKF estimate is in
solid line. The dashed line corresponds to the output of the
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Fig. 11. In (a), real data from the = axis of the accelerometer is shown in

dotted line, EKF estimate is in solid line. The dashed line corresponds to the
output of the tilt sensor z functioning as an accelerometer. In (b) and (c),
solid lines indicate EKF estimates of velocity and position along the x axis.
The dashed lines correspond to the numerical integration of tilt sensor output.

tilt sensor x functioning as an accelerometer for comparison
purposes. In Figures 11(b) and (c), solid lines indicate EKF
estimates of velocity and position along the z axis. The dashed
lines correspond to the numerical integration of the tilt sensor
output. At the end of the experiment, position estimation using
the accelerometer was erroneous by —15.3 cm. Vibrations of
the platform were kept at a minimum by performing the
experiment on a very smooth surface. This caused .the drift
on the accelerometer to be relatively small. In more realistic
situations, the position estimation error can easily exceed
60-80 cm over a duration of 10 s.

Linear position estimation with information from ac-
celerometers and tilt sensors is more susceptible to errors due
to the double integration process. With the described system,
the position drift rate is between 1-8 cm/s, necessitating
the fusion of information from absolute position-sensing

o4

EVERGREEN

Fig. 12. FRAIT 80 vehicle at the Firefly Ltd. test site.

mechanisms.

VI. TESTING OF THE INS ON A LAND VEHICLE

The INS has undergone tests on an automated land vehicle
provided by Firefly Ltd. and pictured in Fig. 12. The vehicle
weighs 19 tonnes and is designed to carry ISO standard cargo
containers up to a capacity of 80 tonnes. It is powered by
diesel hydraulic drives and can achieve speeds up to 6 m/s. It
has a dual-Ackerman steer configuration with both front and
rear wheels steering independently to allow crabbing motions.
Tires are conventional pneumatic tires with no suspension.
The main vehicle guidance system consists of two frequency-
modulated continuous wave millimeter-wave radar systems
operating at 94 GHz with a swept bandwidth of 500 MHz.
These provide range and bearing information to a set of 12
special radar reflectors placed around the test area. The range
resolution is 10 cm, the bearing resolution approximately 1°
and the maximum range about 200 m. Beacon bearing and
range measurements are used to compute location and velocity
estimates of the vehicle with respect to a fixed beacon map.
The absolute accuracy of the guidance system is approximately
3 cm over the test area. Since the information provided by the
radar is very accurate and does not drift with time, this is
used as an “absolute” reference to compare the accuracy of
the position and orientation data provided by inertial sensors.

Ultimately, the aim of the inertial system is to aid the radar-
based navigation system in areas where beacon observations
are infrequent, and for new vehicles travelling at substantially
higher speeds where increased short-term accuracy is required.
In such situations, the INS state estimator is used to provide
improved short-term predictions between beacon observations
which are then integrated in a subsequent navigation filter
which incorporates a model of vehicle kinematics. This is
known as a feedback filter configuration. This should be
contrasted with a feedforward filter configuration in which
the INS filter incorporates the vehicle model, and beacon
observations are used to correct the estimates produced by this
filter [14]. Consequently, the experimental results described
here concentrate on describing the stand-alone prediction
performance of the INS platform.
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Fig. 13. On the left are x — y position of the FRAIT 80 vehicle as estimated

by the radar for two different runs. On the right, corresponding z position of
the FRAIT 80 vehicle versus time as estimated by the radar.

On the left-hand column of Fig. 13, the trajectory of the
vehicle for two different runs is shown in the x —y coordinate
frame (note the nonequal scaling of z — y axes). In both runs,
the vehicle starts off at (x,y) = (0,20), moves along the y
axis and comes backward to its starting point to continue along
different trajectories. The duration of each run is different. To
make the trajectories more clear, the z coordinate is illustrated
on the right-hand side of the same figure as a function of time.

In Fig. 14, raw angular rate data from the z gyroscope
is shown for the two runs. By filtering the Gyrostar rate
output with error compensation, a vehicle orientation estimate
is obtained as illustrated on the right-hand side of the figure
in dotted line. This result is compared to the ® estimate from
the radar shown in solid line. Since the radar data is very
accurate, it is taken to be the true value of the orientation
for purposes of evaluation. It can be seen that the orientation
estimate produced from the INS compares very well with the
orientation estimate produced by the radar system. Over a run
time of approximately 10 min., the maximum orientation error
is of the order of 5°. This is actually substantially better than
predicted from the bench tests conducted on the INS. It is
conjectured that this is because the turning motions of the
vehicle are not as abrupt as those generated during bench
testing, and orientation estimates are generally good following
these turning motions. These results indicate that the INS can
be used to provide reliable vehicle orientation information over
relatively long periods of time of the order of 10 min. and
possibly longer.

Fig. 15 illustrates raw data from the z axis of the ac-
celerometer on the left-hand side. This data needs to be double
integrated and error compensated to obtain linear position
information. Using the previously described EKF structure, the
corresponding result shown on the right-hand side of the same

Fig. 14. On the left, Gyrostar rate output data for two different runs. On
the right, corresponding orientation estimate using the Gyrostar rate output
and radar data for two different runs. The @ estimate using the radar data is
shown in solid line, and the ¢ estimate obtained by filtering the gyro data
is shown in dotted line.

figure is obtained. There are large discrepancies between the
very accurate radar position data and the results obtained from
the accelerometer over the duration of the test runs. This is due
to the sensitivity of the accelerometer to very small vibrations
and errors which quickly grow as a result of the double
integration process. As described in the previous section, under
idealized laboratory conditions, position information from the
accelerometer is useful only over a duration of about 5 s.
Fig. 16 shows the error between radar position estimates and
INS position estimates for a series of short segments of both
test runs for a period of up to 25 s (the error being reset to
zero at the beginning of each segment). This shows that for
short durations the maximum drift rate in position estimates
given by the INS is approximately 28 cm/s. Thus, although
the position information derived from the INS platform has
substantially higher drift rates than the orientation estimates
for long durations, the position information is still valuable
over short time durations and can be used to improve position
prediction information in a filter configuration.

The nature of beacon-based navigation using some absolute
sensing mechanism (like radar) requires that a good prediction
of vehicle location is made at each time step so that the process
of matching observed beacons to a map of beacon locations
(data-association) can be done accurately and efficiently. The
INS described in this paper provides a good means of provid-
ing such predictions particularly in situations when only sparse
beacon layouts are available or when the vehicle is running at
high speeds over rough terrain. Error in predicted vehicle ori-
entation is a notable source of difficulties in beacon matching,
because of instabilities arising from nonlinearities involved
in using the observation model to predict beacon location.
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Fig. 15. On the left, raw data obtained from the « axis of the accelerometer
for the two runs. On the right, corresponding = position estimate (dotted line)
compared to the z position estimate from the radar (solid line) for the same
two runs.

The low-drift rates associated with INS orientation estimates
provides a direct means of minimizing such problems. Linear
error in beacon matching is less of a problem because of the
linear relationship between vehicle and beacon location errors.
Thus, although the linear position predictions produced by
the INS are substantially worse than the orientation estimates,
they are still of considerable value in beacon-based navigation.
Practically, the FRAIT-80 vehicle described observes a beacon
approximately 3 times a second to provide an accuracy of 5 cm
at 6 m/s. The addition of INS information will allow the same
accuracy to be achieved with a reduction in beacon observation
frequency to once every 2-3 s, or a speed increase to 12-15
m/s.

VII. DISCUSSION AND CONCLUSION

The purpose of the research described in this paper was to
develop a low-cost INS system of general use in mobile robot
guidance problems and specifically to aid in the navigation of
high-speed outdoor vehicles. An INS comprising three solid-
state gyroscopes, a triaxial accelerometer and two Electrolevel
tilt sensors has been described. A detailed model of the
navigation information available from these sensors has been
validated. One of the most important results in this paper is
that by developing a careful and accurate model of the INS
sensors, substantial improvements in performance can be made
which make the application of low-cost INS’s to mobile robot
applications a viable proposition.

We have described a simple extended Kalman filter which
takes as input the measurements made by the INS sensors
and produces estimates for the platform position, orientation,
their derivatives, and corresponding drift rates. This filter
was used to test the INS under laboratory conditions, first

time(s)
¥(m)

S0 5 10 15 20 2
time(s)

Fig. 16. y position estimate derived from the y axis of the accelerometer
(in dotted line) compared to the radar data over short durations (in solid line)
for the two runs.

under zero-input conditions, and subsequently when subject to
known input motions. These were used to provide preliminary
estimates of position and orientation estimate errors. A number
of conclusions from these tests were made, in particular,
the orientation estimates obtained were reliable and useful
over quite long periods of time (with the Gyrostar sensor
performing best), while the position estimates obtained were
reliable over shorter periods. In both cases, the drift models
developed for these sensors substantially increased estimate
accuracy.

The INS was tested on a radar-equipped land vehicle for
evaluation and comparison purposes. The orientation estimates
produced were found to be reliable over periods of at least
10 min., however, under field conditions where the vibrations
can be large, the position estimates produced were reliable only
over periods of 5-10 s. In feedforward configuration, this level
of accuracy can be used to provide much improved vehicle
location predictions which in turn permit either a reduction in
beacon density or an increase in vehicle speed.

Objectively, the orientation information available from the
INS is far better than position information. Although both
are useful in outdoor applications like those described, only
the gyroscope information would appear to have any value
in indoor mobile robot applications. The low orientation drift
rates associated with the gyroscope provide a low-cost means
of obtaining good orientation information for a mobile vehicle.
However it is unlikely that the accelerometer information
would be any better at providing position estimates than the
simple use of wheel encoders on indoor vehicles. This, though,
has significant implications as it is most often the turning
motions of indoor vehicles that introduce substantial position
uncertainty due to the geometric magnification of orientation
error into position error. Thus the use of a solid-state gyro-
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scope on indoor vehicles could yield substantially improved
navigation performance, while the use of accelerometers is
likely to be of only marginal value.

Our current work is focused on three main applications of
this type of sensing technology. The first is the integration
of an INS unit like that described above with both radar (in
terrain-aiding mode) and GPS navstar data in high-speed (60
mph) navigation systems. The second is the use of a twin-
gyroscope system on indoor vehicles to estimate orientation
and heading derived from the vehicle steer geometry. This has
practical significance because the rate of orientation change
(as measured by the gyroscope) is directly proportional to the
effective steer angle of the vehicle wheels, which can con-
sequently be measured without drift. Finally, we are looking
at the application of this INS to low-cost underwater vehicles
where only sparse navigation information is available.
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