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A Bat-Like Sonar System for Obstacle Localization

Billur Barshan, Student Member, IEEE, and Roman Kuc, Senior Member, IEEE

Abstract—An active wide-beam sonar system that mimics the
sensor configuration of echolocating bats is described for appli-
cations in sensor-based robotics. Obstacles in a two-dimensional
(2-D) environment are detected and localized using time-of-flight
(TOF) measurements of their echoes. The standard threshold
detector produces a biased TOF estimate. An unbiased TOF
estimate is derived by a parametric fit to the echo waveform, mo-
tivated by our experimental observations of actual sonar signals.
This novel method forms a trade-off between the complexity of
the optimum estimator and the biased threshold detector. Using
the TOF information from both methods, the range and azimuth
of an obstacle are estimated. Localization is most accurate if the
obstacle is located along the system line-of-sight and improves
with decreasing range. Standard deviations of the range and
azimuth estimators are compared to the Cramér—Rao lower
bounds. The parabolic fit method has large variance but zero bias
at large deviations from the line-of-sight. The system operation
is generalized from isolated obstacles to extended obstacles.

I. INTRODUCTION

COUSTIC SENSORS provide a convenient and inex-

pensive means for determining the proximity of objects,
and have been useful for implementing sonar systems for
robot navigation [1]—[4], registration [5], obstacle avoidance
[6] and sonar map building [7], [8]. The main problem with
sonar systems is that they produce measurements that require
interpretation to obtain reliable results.

This paper focuses on the two-dimensional (2-D) obstacle
localization problem in sensor-based robotics. Reliable obsta-
cle localization requires complete examination of the region
of interest with sonar scans [9]. Single transducer systems are
limited to their angular resolution that typically equals one
beam-width. For high spatial resolution, a narrow beam is
desired, necessitating dense scanning of the environment to
cover a particular region in space. In [10] and [11], a mobile
robot, equipped with only a single rotating sonar sensor, was
able to navigate from a source point to a destination through an
unstructured environment. Exploiting the physical principles
of the transducer and reflection processes from surfaces and
edges, a navigation strategy was presented by indicating the
necessary scanning pattern and the maximum step size that
guarantee no collision will occur [12].

An equivalent approach is to process the data from a
large number of sensors implemented as a ring array [13].
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A ring of transducers brings an improvement in time, since
it eliminates the need for rotations, but at the expense of an
increase in the number of sensors. Possible crosstalk between
the sensors must also be avoided. With either a single rotating
or multiple transducer system, the slow speed of sound! is
the fundamental limitation to completing a given robotic task
in real-time. In this paper, a wide-beam sonar is employed to
cover a large region in space in the time required for one pulse
transmission. The signals from an array of three sensors are
processed to determine the location of an obstacle. Despite the
wide beam, this system still provides high-spatial resolution
by exploiting the multitransducer configuration to produce an
angular estimate of the object.

Our approach has been motivated by the biosonar systems
of nature. Animals living in the dark are faced with the
problem that vision is only of limited use. To cope with
this situation, some animals have well developed auditory
systems [15]. For example, most bat species are known to
be capable of orientation, altitude monitoring and feeding
by emitting a series of ultrasound pulses [16]. The acoustic
parameters of the echoes are analyzed to obtain information
on the surrounding targets such as range, angular direction and
orientation, relative velocity, oscillations, target size, shape,
and surface characteristics [17], [18]. Despite the relatively
high attenuation of sound in air and the potential confusion
of echoes from previous or subsequent pulses, those of other
bats, or from other surfaces, bats do echolocate VEry Success-
fully [19].

Bat echolocation was analyzed by Altes [20]-[22] who
applied optimum correlation detection for binaural estimation
of travel time and prey location. The problem with this
technique is that it is time consuming, not only in the template
matching, which may be argued is performed with minimal
delay with special neural structures in the bat, but also in the
observation that the correlation technique does not produce an
output until the entire echo waveform is observed. We argue
that bats actually do perform optimal detection, but only for
distant prey for which the echo strength is small (poor signal-
to-noise ratio (SNR)) and the long echo travel time allows
the processing delay to be negligible. For nearby prey, on the
verge of capture, time delay must be minimized to maximize
bat maneuverability. In this high SNR case, the ranging must
be done by faster methods that may be suboptimal, such as
threshold detection, that provide a range measurement from
the first time the signal exceeds a preset threshold level.

In this paper, a bat-like sonar system is achieved by mim-
icking the sensor configuration of bats and implementing some
of their techniques for interpreting sonar signals. In Section II,

!The speed of sound in air is ¢ = 343.5 m/s at 20°C [14].
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the sonar system is described that consists of one transmitter
flanked by two receivers. The useful information is extracted
directly from the initial portion of the received echo envelope
rather than the high-frequency base-band signal. In Section III,
a valid signal model is provided and the parameters of interest
are described. Section IV investigates three methods of TOF
estimation. After considering the optimal TOF estimation
procedure, two suboptimal methods are developed, that are
simpler to implement, much faster and adequate for obstacle
localization. In Section V, estimators for object range and
azimuth are derived using the TOF information. Experimental
methods for verification of the analysis are presented and the
results are interpreted in Section VI. Applications of the sonar
system are discussed in Section VIL. Standard deviations of
the estimators are compared to the Cramér—Rao lower bounds
derived in the Appendix.

II. DESCRIPTION OF THE SONAR SYSTEM

A good sensor model provides the framework within which
one can interpret sonar signal correctly. The transducer com-
ponent of our sonar system, Panasonic ultrasonic ceramic
microphone (EFR-OSB40K2?) that can be employed both for
transmitting and receiving ultrasound signals is constructed
using a piezoelectric ceramic with radius ¢ = 5.2 mm,
resonant at f, = 40 kHz. In our application, it is excited
by six cycles of a 30 V, 40 kHz square wave, causing an
acoustic pulse to be emitted into space within a wide beam
that contains the propagating pulse.

Motivated by previous experimental results {24], a valid ap-
proximation for the pressure amplitude pattern of the propa-
gating pulse is given by

y.}
p(r,0) = PoTo .~ 27

for r > 7, (1)

where r is the radial distance from the transducer, 6 is the
azimuth, and p, is the propagating pressure amplitude at range
7, along the line-of-sight (§ = 0°). For our sensor, 7, = 10 cm
and the beam-width parameter o1 equals 30°. This amplitude
pattern is similar to the beam of a flashlight: the cross-section
forms a circular pattern that is strongest in the center and
decreases with angular deviation |f| from the center. Since
the diameter of the beam cross-section increases with range,
conservation of energy requires that the pressure amplitude
varies inversely with range.

Equation (1) also describes, by the reciprocity principle
[25], the receiving sensitivity of the transducer. The config-
uration for a pair of identical transducers, one acting as a
transmitter 7, and the other as a receiver R, is shown in
Fig. 1(a). For obstacle localization in two-dimension, a vertical
pole-like obstacle is convenient to work with since it is an
omnidirectional reflector in the horizontal dimension. After
being reflected, the cylindrical echo from a pole-like obstacle
attenuates as v~ !/2 and has the following form [26]

432 (i)
A(ry,72,01,00) =2 ¢ 2= for 71. o (2
(r1.7m2, 01, 2) €T1\/;‘§T T or T1.72 > 7o (2)

2Panasonic Corp. Ultrasonic Ceramic Microphones, 12 Blanchard Road,
Burlington, MA 01803, 1989.
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where r; and ro are the distances, and 6, and 6, are the
angular deviations of the reflector from the transmitter and
the receiver respectively. A, is the echo amplitude observed
when T and R are coincident, for which r; = r, = r, and
6, = 85 = 0°. The ¢ is the reflection coefficient of the reflector.
Note that the maximum of (2) occurs at §; = 2. In three
dimensions, for a small point-like target with cross-section e,
the spherical echo produces the denominator term 7172 and (2)
becomes equivalent to the well-known radar equation {27],
[28].

In our bat-like sonar, the middle transducer T (mouth and/or
nose or the bat) transmits an echolocation pulse, and the two
receivers R1 and R2 (ears of the bat) capture the echoes
reflected back by obstacles illustrated in Fig. 1(b). The range r
and azimuth 0 of an obstacle are measured from the transmitter,
and the azimuth # is measured with respect to the transmitter
line-of-sight, taking positive values in the clockwise direction.

Two regions of sensitivity can be distinguished as shown
in Fig. 2. An obstacle is detectable by both receivers if it lies
in the active region of the sonar system. The active region is
defined by the intersection of the echo-amplitude patterns of T'-
R1 pair and T-R2 pair, each given by (2). The contours shown
in this figure correspond to the points where the detected
amplitude is —40 dB relative to the maximum. In the lefr
(right) receiver region, only R1 (or R2) can detect echoes
from objects. This paper focuses on obstacle localization in
the active region only.

III. SIGNAL OBSERVATION MODEL

If the transmitter is excited at ¢t = 0, the shape of the echo
detected by the receiver, shown in Fig. 3, can be approximated
by

y(t) = 2(t — trp)cos2m f,(t — tF)] + w(t) (3a)
where x(t — tr) is the envelope of the pulse, given by
x(t—tF) = age rt—tE) (¢ tp)Qu(t —tr) (3b)

where w(t — tg) is a unit-step function delayed by ¢r, and
o, a1 are shape and amplitude parameters of the signal. The
time-of-flight # = corresponds to the starting point of the pulse.
The signal w(¢) is white Gaussian noise having zero mean
and variance 0,2,,. In our system, the sources of noise include
thermal noise in the electronics, acoustic noise from the sound
sources in the environment, and amplitude quantization error
due to sampling the signal with a finite number of bits. The
noisy echoes are processed to extract the signal envelope by
rectification and lowpass filtering. After envelope detection,
(3a) becomes

s(t) = x(t — tp) + n(t). 4)

The form of z(t — tr), given by (3b) and shown in Fig. 4(a),
is capable of modeling observed echo envelopes for a wide
variety of obstacle types located at different locations within
the active region. The maximum amplitude of x(t —tr) is
equal to 4da,(are)™ and occurs at t = tg + (2)/(a1). This
maximum value is equal to the value of A(rq,72,61,62) in (2).
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obstacle

obstacle

Fig. 1. (a) Pair of identical transducers, one acting as a transmitter (7°),
and the other as a receiver (R). (b) Sonar system configuration for obstacle
localization.

When there are no obstacles present in the active region,
only the noise w(t) is rectified and lowpass filtered. The
resulting process n(t) has a small mean value & = \/gaw and
variance o2 determined by the amount of lowpass filtering.

When the signal amplitude is significantly larger than the

left receiver region right receiver region

//

R1TR2

Fig. 2. Active region of the sonar system for a cylindrical reflector.
For the transducer pairs T-R1 and T-R2, the equal amplitude contours of

A(ri.r2.61,62) corresponding to —40 dB below the maximum amplitude
are drawn to scale.
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Fig. 3. Typical echo (radio frequency f,) received from an isolated object
(solid line) is simulated. Some systems determine the TOF from the envelope
of the echo, shown by the dashed line. The time at which the pulse was
transmitted is indicated by ¢ = 0.

noise amplitude, the noise remains zero-mean after envelope
detection since it is superimposed on the signal. For both
cases, it can be shown by the central limit theorem [29] that
n(t) can be approximated by a Gaussian random process due
to lowpass filtering, in which a large number of independent
random variables (the thermal noise) are averaged.

The exponential term in (3b) can be neglected at the start
of the envelope where ¢t > ¢r and t — ¢ is small. A parabola
is a good approximation for the onset of z(¢ — ) in the time
interval [tg,tF + (1)/(2a1)]. Then, the signal observation
model becomes

2 . 1
s(t) Zao(t—tp)” +n(t) forte {tp,tp + E} )

The parabolic model fit to the envelope is shown in Fig. 4(b).
Uniform sampling in time produces the sequence

1
Sk = ay(ty — tp>2 +ng  for iy € [tp.tp + g] (6)
1



BILLUR AND KUC: BAT-LIKE SONAR SYSTEM FOR OBSTACLE LOCALIZATION

oA g o= —T B P

i

oA E e ——T B

(b)

Fig. 4. (a) Envelope of typical echo received from an isolated object is
simulated. The noiseless envelope exceeds the threshold 7 at time 7. The
true value of the TOF is denoted by . (b) Parabolic fit to signal envelope
in the time interval [tp.tp + (1)/(2a1)}

where {t} are the sample times, and s and nj are the
corresponding signal and noise samples that can be processed
by a digital computer.

IV. TIME-OF-FLIGHT ESTIMATION

Analyzing the noisy echoes detected by the two receivers,
the range r and azimuth 6 of an obstacle in the active region of
the sonar system need to be estimated from the value of TOF
at each receiver. In the next section, three different methods
of TOF estimation are discussed: optimal correlation detection,
simple thresholding method and the parabolic fit method.

A. The Optimal Correlation Detector

The optimum method for estimating TOF from the enve-
lope employs a matched filter that contains a replica of the
echo to determine its most probable location in the observed
signal [29]. This unbiased estimator maximizes the SNR.
Since the echo shape varies with the location of the object
within the active region, a large number of different templates
are required for the correlation operation. This procedure
is time-consuming, although parallel processing allows the
computation time to be reduced at increased cost. There
is evidence that the bat brain contains an array of parallel
detectors [19], [30].

A fundamental problem with this method is the inherent
time delay involved since classical correlation detection cannot
be performed before the entire echo is observed. Hence, this
method is only suitable for distant objects when the echo
duration is negligible compared to the travel time. For nearby
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objects, it is beneficial for the estimate to be made at the
beginning of the observed echo. This can be done with the
simpler suboptimal methods described next.

B. Simple Thresholding Method

The method most frequently used by sonar ranging systems
for extracting the TOF information is simple threshold detec-
tion [32]. A threshold level, denoted by 7, is set according to
the noise level o, to suppress spurious readings. When the
signal envelope amplitude first exceeds 7, a clock measuring
the time from pulse transmission is stopped, providing the
travel time. Neglecting noise, the time at which the noiseless
signal envelope first crosses the threshold 7 is denoted by ¢}
and shown in Fig. 4(a). Equating the noiseless s(t) in (5) to

7 we find
t* ~ r + T
£ TF ay

However, the time t,, when the signal plus noise exceeds the
threshold for the first time, need not equal ¢%. Further, the
observed TOF is also affected by the clock resolution. If the
clock resolution equal the sampling interval T then the TOF
estimate is equal to

0

tr = krTe =t + A. ®)
where A is a random delay due to the asynchronous nature of
the echo arrival, uniformly distributed in the interval [0, T%).
Since i can take on values that are only discrete multiples of
the clock rtesolution T, the variable A can be thought of as
the time delay added to the continuous-valued ¢, to produce
the clock reading kT, from threshold detection.

The statistics for this estimator need to be derived to
evaluate its bias and variance defined by

Blir]
Var[f]

A

Bli] ~tr

ir (9a)
E[fF] - E*[tF]

(9b)

where E[] denotes the expectation operator. Suppose that the
shape parameters of the envelope, a, and tp are known. Given
the model of the additive noise in (6), when tx < tr, si is @
Gaussian random variable with mean ¢ and variance o2. When
ty > tr, the time-varying mean is equal to a,(tx — tp)z. The
conditional probability density function p(sk|ao,tr) is given
by

plsk|ao. tF) =

for tp < tp

G 2
2ro, 207

L_ exp [— (s =67 —6)2]

S —a [ — ‘2 2
(_‘%ZUJ))] for tp > tp.

1
anon exp [—

These are shown in Figs. 5(a) and (b). Since tr takes on values
that are discrete multiples of Tk, the event {fF = ti} is the
noisy signal exceeding the threshold first at time sample tg.
The probability mass function p;, (1) can be expressed as

pi - (th) = Prob{sg <7 fort <ty

and sp >7 fort=tr}.

(10)
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Fig. 5. (a) Probability density function of noisy signal amplitude s for
t < tp. (b) Probability density function of noisy signal amplitude ;. for
t; > tr. Note that the mean a, (¢ — t7)? is time-varying.

To find the probability mass function, let us assume that the
samples are uncorrelated. Then
o0

k-1 7 :
H / ds;p(s;lae, tr) /d.sk])(sk]ao,tp)
i=0 :

TV—oc T

p{p (tk) = Co

k-1
=0C, Herf*(.rj) (1 — erfo(zy)] (11
j=0

where erf, (z;) = #ffx dy e=*F
70_75 for t; < tp
xr; = _ 2
i %[l—gjg__tti));] f()I‘ti>tF

and C, is a normalization constant.

The mass function p;_(t) evaluated for values of 7/0, =
3,6.9 is shown in Fig. 6. As /0, increases by reducing
oy and keeping 7 constant, p;_(tx) approaches a Kronecker
delta function located at ¢} + A. Therefore, for a particular
obstacle, as o, — 0, the mean crossover time approaches
t; + A and the variance decreases. When considering the
set of all obstacles, A becomes a random variable that is
independent of ¢. Taking expectations over A, the variance
of £ asymptotically approaches (72)/(12) as 7/o,, increases.
Since E[fr] approaches t% +(7%)/2 for high 7/, the bias is

Blir] = [~ + L

o 5 (12)

P (t) o =3
..TI b .
0 tr i; i
i, (k) é =6
Til Py
0 tr 1 te
\ 7
| |
[ i, (te) ‘ i =9
o ol
0 tp 1 th

Fig. 6. Probability mass function of exceeding the threshold.

This illustrates the problem inherent to thresholding: for 7 > 0,
this estimator is biased since the actual echo arrival time occurs
before the time ¢, where the echo exceeds the threshold. The
bias varies with the location of the object in the active region,
since changes in amplitude and a, cause the threshold to be
exceeded at different parts of the envelope. Where the signal
amplitude is large, a, (equal to one half the curvature of the
parabola) takes larger values, yielding a smaller bias in (12).
A second estimator, proposed in the next section, eliminates
this bias.

C. Parabolic Fit to the Signal Envelope

As an alternative to simple thresholding, this novel estimator
provides a parabolic fit to the leading edge of the echo
envelope to produce the TOF estimate £r. The parabolic fit
was motivated by the empirical observations of actual sonar
signals, and forms a trade-off between the complexity of
the optimum correlation estimator and the biased threshold
detector. One advantage of the parabolic method is that, like
the thresholding method, it uses only the leading part of the
echo, making it robust to temporal masking by the later-
arriving echoes that tend to distort the envelope. Another
advantage is that, even though the echo envelope changes as
a function of obstacle location within the beam, the leading
edge still retains its parabolic form, although with location-
dependent parameter values.

Since the signal model (6) is nonlinear in tr, an iterative
algorithm proposed by Marquardt [33] is employed to estimate
the values of a, and ¢r. Suppose that N samples of the signal
envelope fall within the time interval [tp,tF + 1/2a;] where
the parabolic model in (6) is valid. The algorithm starts with

the initial guesses for a, and ¢, denoted by &S,O) and fﬁro),
where tA}O) is set equal to i from threshold detection, and a5

is equal to one half the derivative of the signal at i, obtained
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TABLE I
COMPARISON OF TWO METHODS OF TOF ESTIMATION
Method E[tr]  Bltr] T Elz] Blz] o:
Thresholding ~ 4.14 ms 62 us 150 gs 14221 mm 213 mm 5.2 mm
Parabolic Fit 4.08 ms 0 us 148 ys 1401.5mm 0.0 mm 5.1 mm
True value: t =4.08 ms; z =1401.5 mm
by computing a discrete approximation from the time-samples.
With these initial values, the squared error objective function "a::i‘;cer
at the nth iteration is computed:
9 T R1R2
N2
@%ngj&fw%m—#ﬁ] 3
k
1 transmitter! receiver
for t) € l:tF‘tF + E:‘ 13) circuit circuit
A variable step gradient method is employed to generate trial
values ™ = a0 4 Al and £ = /D 4 AfE Y
by Marquardt’s algorithm. The objective function is evaluated A/D
using these trial values. The estimate for tr is then updated converter
as follows: f.=50 kHz

(n—1)

fr "+ ady

. (n) (n—-1)
o ) if 2] < [£2) "
t(n—l)
F

‘P { if [52}01) > [52] (n—1)

The estimate for a, is updated in a similar fashion. Depending
on the success of the trial parameters, the step size is varied
and new trial values are generated. The algorithm terminates
when AR s less than 10747, which is usually

within 5 to 10 iterations. Then tr = tfgf) and &, = a5V

With the parabolic fit method, N data points contribute
information to the estimation process, whereas with simple
thresholding, the TOF estimate is made as soon as the thresh-
old is exceeded. The estimate {r does not depend on the shape
nor the steepness of the envelope as in the simple threshold-
ing method, but only on its starting point. The accuracy is
also improved because there is no random shift A due to sam-
pling the envelope, since {r need not correspond to a sample
point .

Since an analytic expression for f¢ is not available, E[tr]
and Var [ip] cannot be determined analytically. We will
determine the mean and variance by performing repeated
experiments.

(14)

achieved

D. Experimental Verification of TOF Estimation

1) Methods: The block diagram of the system is shown
in Fig. 7. Data acquisition is performed by the Ariel DSP-
16 Signal Processing Board with two input channels having
16 bits of resolution. Echo envelopes are digitized by an
A/D converter, operating at 50 kHz sampling rate per channel
(T, = 20 ps). The detected echo signal consists of 600 sample
points yielding a total time duration of 12 ms corresponding
to 2.1 m range interval. The DSP board communicates with
an IBM PC/XT-286 for the processing the signals.

To compare the two suboptimal methods of estimating TOF
in terms of their expected values and variances, a cylinder of
diameter 16 cm and height 1 m was placed at # = 0° and
7 = 700 mm. The transducer separation d was 60 mm. The

Ariel DSP-16

T board with

TI-TMS320C25
chip

trigger sensor data

IBM PC/XT-286

Fig. 7. Block diagram of system configuration for obstacle localization.

true TOF is tp = (r + Vr2 +d2)/(c) = 4.08 ms. The value
for o, was determined by performing repeated experiments
with no object present and computing the root mean square
deviation of the signal amplitude. The system threshold 7
was set equal to 6o,. The amplifier gain was set so that
the maximum amplitude over the active region is within the
linear range the A/D converter. A pulse was transmitted and
tr was estimated by both methods of TOF estimation. One
thousand trials were repeated to compute the mean values and
the standard deviations.

2) Results: The results are tabulated in Table I. With the
thresholding method, E[EF] was observed to be 4.14 ms.
The bias is then B[fr] = 62 ps, equivalent to 3.1 sampling
intervals. In this case, the round-trip distance measurement is
biased by 21.3 mm. The standard deviation of the threshold
crossover point was observed to equal 15 ps, or 5.2 mm. The
analytical value predicted by (3.5) is 6.0 mm, corresponding to
the second case in Fig. 6. The standard deviation component
V/(T2)/(12) due to sampling is 5.8 ys or 2.0 mm.

With the parabolic fit method, E[tr] was observed to be
4.08 ms, supporting the claim that the estimator is unbiased.
Hence, we have an unbiased estimate of TOF having a



642 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 4, JULY/AUGUST 1992

ellipse with foci at R1 and T

Fig. 8. Geometry of obstacle localization with a three-transducer array.

standard deviation comparable to thresholding. The trade-off
of eliminating the bias is increased computation.

Having derived an unbiased estimate for ¢t r, we now employ
it for estimating range and azimuth in the next section.

V. RANGE AND AZIMUTH ESTIMATION

When an obstacle is located at r and # in the active
region, two TOF measurements tp1 and fpo are acquired
from R1 and R2, which correspond to the round-trip distances
3, = ctpy and 3o = cf o from the transmitter to each receiver.
Measurement 2; restricts the possible locations for the obstacle
to lie on an ellipse whose foci are at T and R1. Similarly, given
%29, the possible obstacle locations lie on an ellipse with foci
at T and R2, as shown in Fig. 8. Both measurements are valid
only where the two ellipses intersect. Of the two intersection
points, the one in the active region corresponds to the obstacle
position.

From Fig. 8, the estimates of round-trip distances are given
by

Z1=Vr2+d?+2drsinf +r+ e (r,6)
Zo = Vr2+d? —2drsinf +r + es(r.6) (15)

where d is the transducer separation, e1(r, ) and eq(r, ) are
the zero-mean errors associated with the distance measure-
ments, and are equal to the error in the TOF estimate multiplied
by the sonic speed c¢. With the following vector definition:

P 2 Fr0) 2 Vr2+d?+2drsinf +r
R T VT 2 = 2drsinf 4
.6)
0y & [ald)] 1
e(r, ) |:62(T‘9) ( 6)
Equation (16) can be written more compactly as
z=f(r.0) +e(r.0). 17y

When the thermal noise dominates the acoustic noise,
error components e1(r,6) and eq(r,f) can be considered
uncorrelated. Therefore, e(r,#) is white Gaussian error with

covariance matrix C' = o2(r,#)I, and the conditional proba-
bility density function of z is

p(z|r,0) = —QWTC| exp
Ao s - s} a9

Since the maximum likelihood estimate commutes over non-
linear operations, maximum likelihood estimates [34] of r and
6 are the values that maximize (18) and are given by the
implicit equation:

f(f.é) _ (19)
Solving (19) for # and 9 yields
22 52 2
L Atz -2
== 20
"T 00 + ) (20)
s | (BB d?) (51— 22)
= 20b
b=sin | T e (200)

VI. EXPERIMENTAL VERIFICATION OF LOCALIZATION

A. Methods

To determine the performance characteristics, the same
experimental setup and parameter values in Section IV-D-1)
were used. A pulse was transmitted and by processing the two
echo envelopes, TOF information was obtained. Using (20a)
and b, the range and azimuth of the obstacle were estimated
employing both methods of TOF estimation, 7 and # from
tr1, tro and 7 and @ from fr1, {po. For a given obstacle
location, the effects of noise were determined by conducting
one thousand trials (M = 1000) and computing the means and
the standard deviations of the estimators. The experiment was
repeated for a collection of » and # values within the active
region of the transducer system to determine the sensitivity of
the system.

B. Results and Interpretation

The results are shown in Fig. 9, where the mean value of
each estimator is shown along with the three standard deviation
interval, indicating 99.7% confidence for a Gaussian random
variable [29].

In Fig. 9(a), the curves in dotted line correspond to the
simple thresholding method, whereas the curves in dashed line
to the parabolic fit method. The thresholding result indicates
that 7 is biased and that the bias increases with |6]|. This result
is expected from (12) because, for obstacles located at large |6],
the signal amplitude decreases and the echo waveform expands
in time, corresponding to smaller a, values. The parabolic fit
estimator is essentially unbiased since its mean value shows
small, statistically insignificant fluctuations around the true
value. :

In Fig. 9b, 6 is shown to be biased because at large |6,
its mean value deviates from the true value by more three
standard errors of the mean, given by 3(c;)/(vV'M) [35]. For
example, at § = 30°, é equals 54.1°. The deviation from the
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Fig. 9. (a) Comparison of the range estimators (r = 700 mm and
d = 60 mm). Family of curves in dotted line shows E[f] + 305 versus
6 from simple thresholding method, and the curves in dashed line correspond
to E[f] & 30, versus 6 from the parabolic fit method. (b) Comparison of
the azimuth estimators (r = 700 mm and d = 60 mm). Family of curves
in dotted line corresponds to the threshold detection estimator E[6] £ 30;
versus 6, whereas the curves in dashed line are the results E[6] + 305 versus
# from the parabolic fit estimator.

true value (24.1°) is much larger than B(Ué)/(\/ﬁ) value of
0.3°. This bias is due to the bias in TOF estimates ¢ty and tra.

The 6 is also slightly biased at large |0| although less than
. At 0 = 30°, § equals 32.5°. The deviation from the true
value is larger than the 3(o5)/(V/M) value of 0.8°. When
TOF measurements are unbiased, f need not be unbiased since
the azimuth estimator is a nonlinear function of ¢F; and tr2
measurements.

Note that the standard deviation of each estimator is mini-
mum at § = 0° and increases with |#|. The standard deviation
for the range estimate was also observed to increase with
range. These results can be explained in terms of the echo
amplitude pattern given in (1), which indicates that the echo
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amplitude decreases with range and with increasing deviation
|f] from the transducer line-of-sight. Since the processed
echoes have smaller SNRs at larger deviations from the line-
of-sight, the estimator variances are larger.

C. Comparison to Cramér—Rao Lower Bounds

To compare the performance of the estimators, Cramér—Rao
lower bounds [34] for unbiased estimator variance are derived
in the Appendix and evaluated as functions of range, azimuth
and transducer separation. The optimum correlation detection
method satisfies these lower bounds asymptotically. Although
this bound is for unbiased estimators, for comparison, we
have combined experimental standard deviations with the
corresponding biases to compare to the lower bound. The
results are shown in Figs. 10(a) and (b).

The lower bound is not achieved by the experimental results
for both range estimators. However, the result from the para-
bolic fit method follows the lower bound very closely. Since
the bias in the thresholding range estimator is significantly
high, the bias-variance combination \/c? + B for this esti-
mator is approximately six times larger than the lower bound.

For || < 20°, both azimuth estimators are comparable in
variance. For |f] > 20°, the parabolic fit method provides
a better estimate of 6 than the simple threshold detector,
indicating that it is a more robust estimator when the SNR
is low.

The optimum correlation detection method satisfies these
lower bounds that do not consider multiple echo interference
[31]. However, since the envelope of the detected signal,
parametrized a, and a; values, varies with range and azimuth,
the optimal method requires that a large number of refer-
ence signals be stored. The simpler, suboptimal methods pro-
vide an attractive compromise between accuracy and system
complexity.

VIL. DISCUSSION

A. Implication to Bat Localization

The similarity in design of our sonar system and that of
the bat provides some insights on animal sonar systems. For
successful capture of prey, it is crucial that the accuracy is best
along the line-of-sight, which is usually the direction of flight.
Furthermore, whereas high range accuracy is not necessary for
remote prey, it becomes increasingly important as the range
decreases to the capture point. At such close ranges where
SNR is high and speed is crucial, suboptimal methods work
well. This is exactly the type of behavior our system exhibits.

B. Generalization to Extended Objects

Above, we have only considered the localization of the
closest isolated obstacle within the active region of the sonar
system. What happens if an extended specular or rough surface
occupies this region? Specular reflectors allow us to view the
transmitter and the two receivers as a transmitter and two
virtual receivers R1’ and R2' as shown in Fig. 11. By tracing
rays as in mirror reflectors [23], we find that the round trip
distance z;, measured by the first receiver, corresponds to the
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Fig. 10. (a) Comparison of the standard deviations of the range estimators
to the Cramér-Rao lower bound (r = 700 mm and d = 60 mm). The lower

bound is shown in solid line. The dotted line indicates o; versus |6] from
simple threshold detection, and the dashed line corresponds to o versus |6]
from the parabolic fit method. (b) Comparison of the standard deviations of
the azimuth estimators to the Cramér—Rao lower bound (r = 700 mm and
d = 60 mm). The lower bound is shown in solid line. The dotted line indicates
o versus |6] from simple threshold detection, and the dashed line corresponds
to o versus |8] from the parabolic fit method.

distance between 7 and R1’. Similarly, the distance zy is
the same as the direct path length between 7" and R2'. From
the geometry, we get

2= /(2 + dsinB)’ + (deost)’

dsinf  d?
= 1 _— —_—
2rif14 = 4 (21a)
z2 = \/(27" — dsin8)” + (dcosh)®
dsinf  d?
= 2ry/1— —_. 21b
" r 4r? (210)
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Fig. 11. Virtual transducer configuration for an extended specular reflector.

Expected value of the obstacle location is at the intersection of the plane with
the normal from the transmitter T .

Substituting these expressions in (20a) and (20b)

(22)

. 2r
T = .
dsin 6 d? dsiné d?
¢1+—¥—+1;+¢1—4¥—+3§

After making a Taylor series expansion of (21a) and (21b) and
neglecting the terms beyond second order since d < r:

A r
F=———
d? cos? 8
- 82
=r for d<r. (23)
A similar approximation for 9 yields
- 2 d?sin%6
inf =sinf/14+ — — —>—- 7
sin sin + 272 2
~sinf for d<r. (24)

Therefore, for a specular reflector, the estimates of » and 6,
computed from (20a) and (20b), correspond to the location
where the perpendicular path from transmitter 7" intersects
the plane reflector. Our experiments with extended specular
surfaces verify this result. For a specular reflector, the detected
echo is large since the denominator in (2) becomes r; + 72
and € = 1.

A very rough surface is much more complicated to analyze.
As a first order approximation, it can be considered as a
collection of many different targets as shown in Fig. 12.
Some cancellation may occur between the baseband echoes
from each target, reducing the resultant amplitude. For small
thresholds, the leading edge of the resultant echo corresponds
to the closest target with a favorable orientation with respect to
the transducer line-of-sight [31]. This target can be anywhere
within the active region of the sonar system. The intersection
of the ellipses defined by the two targets may correspond to a
“phantom target.” Therefore, depending on orientation, 7 and
6 can be anywhere between the two individual targets and
the phantom target in the active region. Experimentally, we
observe that the expected values E[7], E[§] correspond to the
intermediate point between the two targets.

VIII. CONCLUSION

A multitransducer sonar system that demonstrates a signif-
icant improvement in object localization over the standard
single transducer system was described. Simple threshold
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s‘.'\.very rough surface
target 1@ V

ellipse with foci at R1 and T

Fig. 12. Obstacle localization for a very rough surface. The phantom target
at the intersection of the ellipses is shown by an empty circle. The solid dots
indicate the facets of the rough surface.

detection produces a bias in the TOF measurement. An al-
ternative parabolic fit method that eliminates the bias was
described. With both methods, TOF information was extracted
from the leading edge of the echo, eliminating the need for
the whole pulse to be processed. This is especially important
for fast response time or when there are overlapping echoes.
For a measure of estimator accuracy, standard deviations
of the estimates were computed as functions of range and
azimuth and compared to the Cramér-Rao bounds for the
optimal estimator. The operation was generalized from isolated
obstacles to extended obstacles.

APPENDIX
DERIVATION OF CRAMER-RAO LOWER BOUNDS

In (17), our observation model is given by

3= f(r.0) +e(r.0) (25)

where e(r, ) is white Gaussian error with covariance matrix
C = o?(r,0)I.

2
C = [oe(r. ) 0 } and its inverse

0 o2(r.0)
S 0
cl=| 7" . (26)
0 Zow

The vector f(r,8) is refined as

[0 _ [VETE s 4
T = {b(rﬂ)} B [ﬁw—_@—u] @7

For unbiased estimates of r and #, Cramér—-Rao lower
bounds for estimator variances are given by the following
expressions:

o2 = var[f(3) —r] > J

7

ag = var [9(2) - 9} > J%

(28)
(29)
where J! and J?? are the diagonal elements of the inverse of

Fisher’s information matrix that will be derived in this section.
Equality in (28) and (29) is usually asymptotically attained for
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a large number of observations, i.e., the maximum likelihood
estimate is asymptotically efficient [34].
Fisher’s information matrix J is given by

Jui Ji2
J =
{Jm Jzz}
82 Inp(Z|r.8 & Inp(2|r.6
_E[ a£2 )} —E{ 5Pr<ae )]
- & Inp(2|r.6) 9% Inp(2|r.,6) (30)
np T, n T,
_E[ 5607 } ‘E[ 867 ]

where E|[] is the expectation operator and the probability
density function p(2|r,0) is given in (18). Computing the
derivatives in (30), the elements of J are

Ty = OfTo(:.())C_lz‘)fé: 0) _ 2(—:1;; 1)
o afTa<ér, 8) C_lafg(-).e) _ 222 (:103)2 32)

Jip= Ju= %
afTa(:« b) o1 3fg; o) . ‘O’fTa(:~ b) o Ofg;, f)
i

where

A= aflfg:(}) Ve i;r?dji;;r e
Bzagsmzwﬂi;?ﬁ2m9+l 33)
R e o

The previous expressions are evaluated at the true values of
r and 6. Expressing the information matrix in terms of A, B,
C and D:

J =

1 {2(/42 +B?) )

AC + BD
202(r,8) | AC + BD :

2(C? + D?)

Inverting J, we get the matrix J~! whose diagonal elements
provide the lower bounds for the variances

_ Jll J12
J= [.]21 J22] (39
_ 202(r.0)
T 3(A20? + B2D?) + 4(A?D? + B2C?) - 2ABCD
2(C?*+D?* —(AC+ BD) (40)
~(AC+BD) 2(A*+B?) |
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Substituting the expressions for A, B, C' and D:

4(C? + D?)g2(r,0)
3(A%C? + B2D?) 4 4(A2D? + B2C?) —2ABCD
(41)

JH =

4(A% + B2)o2(r.9)
3(A’C? + B2D?) + 4(A2D? 1+ B20?) —24BCD’
(42)

J22 —

Note that the lower bounds J! and J22 are functions of r,
0, and d, and are proportional to the error variance o2(r,0)
associated with the round-trip distance measurement. The
values of 02(r, §) for different range and azimuth values have
been experimentally determined and used for evaluating these
bounds.
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