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Özetçe

Düş̈uk maliyetli kızılberisi algılayıcılardan elde edilen açısal
yeǧinlik sinyalleri kullanarak iç mekanlarda sıkça karşılaşılan
hedeflerin geometrik ve ÿuzeyözelliklerini yapay sinir ăglarıyla
belirleyen bir ÿontem ileri s̈urüyoruz. Ÿontem deneysel olarak
alüminyum, beyaz kumaş ve beyaz köpükten ambalaj malzeme-
siyle kaplı d̈uzlem, 90◦ köşe ve 90◦ kenar hedefleriyle dǒgru-
lanmıştır. T̈um hedefler için geometri ve yüzeyözellikleri orta-
lama %78 dǒgru ayırdedilmiştir. Ayrı olarak d̈uş̈und̈uǧümüzde,
hedeflerin geometrileri ve ÿuzey tipleri %99 ve %78 oranlarıyla
doǧru ayırdedilmişlerdir. Bu durum hedeflerin geometriközel-
liklerinin yüzey özelliklerine g̈ore daha baskın olduǧunu ve
yüzey tipinin sınırlayıcı etken olduǧunu g̈ostermektedir. Uygu-
lanan ÿontem, basit kızılberisi algılayıcıların, uygun sinyal
işlemeyle, bilinen uygulamalarının aksine daha fazla bilgi
çıkarımında kullanılabilecěgini göstermektedir.

1. Giriş

Hedef ayırdetme ve konumlandırma hedeflerin tanınmasının ve
ayırdedilmesinin gerektiǧi akıllı sistemlerde oldukçäonemlidir.
Ayırdetme ayrıca farklı maddelerin ayırdedilmesinin gerektiǧi
end̈ustriyel uygulamalarda däonemlidir. Bu çalışmada,
ayırdetme ve konumlandırma için bir alıcı ve vericiden
oluşan basit bir kızılberisi algılayıcı sistemi kullanıyoruz.
Bu algılayıcılar ucuz, kullanımı ve erişimi kolay aygıtlardır.
Fakat, yěginlik sinyalleri yansıtıcı hedefin geometrisine ve
yüzeyözelliklerine bǎglı olduǧundan, basit yěginlik ölçümleri
kullanılarak g̈uvenilir erim kestiriminde bulunmak m̈umkün
děgildir. Aynı zamanda, hedeflerin̈ozellikleri, hedefin eri-
mi ve açısal konumu bilinmeden basit yeǧinlik ölçümlerinden
çıkarılamamaktadır. Bu bildiride, hedeflerin geometrik ve
yüzeyözelliklerini, açısal yěginlik taramalarını kullanarak ya-
pay sinir ăglarıyla bulan bir ÿontem ileri s̈urüyoruz.

Kızılberisi algılayıcılar robotbilim ve otomasyonda,
süreç kontrol̈unde, uzaktan algılamada ve güvenlik uygula-
malarında kullanılmaktadır. Özellikle, bu tip algılayıcılar,
yakın hedeflerin saptanmasında, sayma işleminde, erim ve
derinlik gözetiminde, zemin algılamada, konum kontrolünde
ve engel saptamada kullanılmaktadır. Kızılberisi algılayıcılar
gezgin robot ÿong̈udümünde kapı aralıklarında kenarların
yerinin belirlenmesinde [1], bina ve araçlarda kapı ve pencere
gözetiminde kullanılmaktadır. [2]’de bilinen bir uzaklıkta
konumlanmış d̈uzlemsel hedeflerin ÿuzey özellikleri Phong

aydınlatma modeli kullanılarak belirlenmiş, böylece kızılberisi
algılayıcılar yakın mesafeler için erim̈olçer olarak kul-
lanılmıştır. Kızılberisi algılayıcıların kullanımına ilişkin
detaylı kaynaklar [3]’̈un giriş kısmında verilmiştir. [4]’de,
farklı geometrik özelliklere ama benzer yüzey özelliklerine
sahip (tahta) hedefler referans sinyallerine dayalı olarak
ayırdedilmiştir. [5]’de ise, aynı d̈uzlem geometriye fakat
farklı yüzey özelliklerine sahip hedefler benzer yöntemle
ayırdedilmiştir. Bu bildiride, [3]’de anlatılan referans sinyal-
lerine dayalı ayırdetme ÿontemine alternatif olarak yapay sinir
ağları hedef ayırdetmede kullanılmıştır.

2. Yapay Sinir Ağları

Yapay sinir ăgları hedef ayırdetme ve sınıflandırmada [6],
konuşma işlemede [7], sistem tanımada [8], kontrol
teorisinde [9], medikal uygulamalarda [10] ve karakter
tanımada [11] çokca kullanılmaktadır. Bu çalışmada, yapay
sinir ağları, farklı yüzey özelliklerine sahip hedeflerden elde
edilen kızılberisi yĕginlik taramalarında g̈omülü olan parametre
ilişkilerini tanımlamada ve ç̈ozümlemede kullanılmıştır. İki
adımda bu gerçekleştirilmektedir:̇Ilk önce hedef geometrisi,
sonrasında ise ÿuzey ẗurü belirlenmektedir.

Yapay sinir ăgları daha fazla anlamlı̈oznitelik çıkarmak
için, farklı sayıda n̈oronlardan oluşan giriş katmanı, bir ya
da daha çok saklı katmandan oluşmaktadır. Her nöron
modeli s̈urekli ve dŏgrusal olmayan etkinleştirme fonksiyo-
nuna sahiptir. Yapay sinir ağlarının teorik olarak anali-
zi dăgınık, dŏgrusal olmama durumundan ve yüksek derece-
den băglantılılıktan dolayı zordur. Ĕgitim algoritmaları,
băglantı ăgırlıkları ve yanlılık dĕgerlerini kullanarak karar
verme b̈olgelerinin sınırlarını belirlemekte kullanılmaktadır.
Yapay sinir ăglarının başarımı ăg yapısına, parametre seçimine,
öğrenme algoritmalarına, giriş sinyallerine ve parametre ilk-
lendirmesine băglıdır.

2.1. Yapay Sinir Ağ Parametreleri ve Yapısı

Çalışmada kullanılan yapay sinir ağı, giriş, saklı ve çıkış kat-
manından oluşmaktadır. Katmanlar sırasıyla 160, 10 ve 3
nörondan oluşmaktadır. Hem giriş hem de saklı katmandaki
nöronların sayısı 1 yanlılık değerini içermektedir. Yapay sinir
ağ yapısı Şekil 1’de verilmiştir. T̈um nöronlar için etkinleştirme
fonksiyonu Şekil 2’de verildĭgi gibi teğet hiperbol (ϕ(v) = (1−
e−2v)/(1+ e−2v)) seçilmiştir. Çıkış katmanındaki nöronlar –1
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Şekil 1: Kullanılan yapay sinir ăg yapısı.
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Şekil 2: Etkinleştirme fonksiyonu olarak kullanılan teğet hiper-
bol fonksiyonu.

ile 1 arasında s̈urekli dĕgerler almaktadır ve çıkış katmanında
kararlar kazanan hepsini alır yaklaşımına göre alınmaktadır.

Ağ karmaşıklı̆gı ve dŏgru ayırdetme oranına göre, en
iyi ağ yapısının belirlenmesïonemlidir. Kızılberisi yĕginlik
taramaları ăg karmaşıklı̆gını azaltmak için her 10̈ornekten
biri alınarak örneklenmiştir (giriş ve saklı katman arasındaki
băglantı ăgırlıklarını azaltmak için).Örnekleme oranı̈orüntüler
şeklini koruyacak şekilde ve ayırdedici bilgi kaybolmayacak
şekilde seçilmiştir. Daha az̈ornek alma ayırdetme oranında bir
iyileştirmeye neden olmamaktadır.

Geri yayılım (GY) ve Levenberg-Marquardt (LM) olmak
üzere iki farklı ĕgitim yöntemiyle ăglar ĕgitildi. GY yöntemiyle
istenen sinyal ile çıkıştaki sinyal arasındaki hata bayır inişi yor-
damına g̈ore enk̈uçültülmektedir.İki ayarlama parametresi olan
öğrenme oranı ve devinirlilik sabiti [12] sırasıyla 0.01 ve 0.9
olarak seçilmiştir.

GY ile eğitilen yapay sinir ăglarının ĕgitim seti üzerindeki
sonuçları iyi sonuç vermediğinden, yapay sinir ăglarının
eğitimi, GY’ye göre daha kısa s̈urede yakınsadığından ve
daha g̈urbüz oldŭgundan, LM ÿontemiyle gerçekleştirilmiştir.
LM yönteminde d̈uzenlileştirme için ăgırlık azalma çarpanı
kullanılmıştır. Bu algoritmanın bir dezavantajı yüksek bellek
gereksinimidir, fakat bizim k̈uçük ĕgitim seti için bu sorun
dĕgildir. Yöntemde, deste modunda, tüm ăg parametrele-
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Şekil 3: (a) Kızılberisi algılayıcı ve (b) deney düzeněgi.

ri bütün giriş verileri işlendikten sonra güncellenmektedir.
Ağırlık azalma çarpanı olarak10−4 seçilmiştir. Bu çarpan
dĕgerini oldukça ufak seçerek genelleştirme hatasını azaltmak
mümkünd̈ur. Eğer bu çarpan çok ufak seçilirse (<10−4), iste-
nen dŏgruluğa ulaşmak daha uzun sürecektir. Dĭger taraftan,
daha b̈uyük çarpan dĕgerleri için, yapay sinir ăgları istenen
doğruluğa yakınsamayabilir. LM ÿontemindeöğrenme oranı
uyarlamalı olarak dĕgişmektedir, bu ÿuzdenöğrenme oranının
ilk değeri sadece ăgın yakınsama hızını değiştirmektedir.

Yapay sinir ăglarının yakınsaması için ortalama karesel
ölçütü kullanıldı ve kabul edilebilir hata seviyesi10−3 olarak
alındı. Öğrenme s̈ureci ya hataölçütü săglandı̆gında ya da
döng̈u sayısına (100,000) ulaştığında bitirilmektedir.̇Ikinci du-
rum oldukça seyrek olmaktadır.

Yapay sinir ăgları ĕgitildikten sonrabudamaadı verilen
yöntemle ăg en k̈uçük sayıda ăgırlıklara sahip olacak şekilde
eğitilmektedir. Budama içinOptimal Brain Surgery(OBS)
tekniği [13] kullanılmıştır. Ăgırlıkların %5’i budandı̆gında, en
büyük döng̈u sayısı 50 olacak şekilde ağ tekrar ĕgitilmektedir.
(Tekrar ĕgitilme bir tane ăgırlığın budanmasıyla da yapılabilir
ama bu daha uzun sürmektedir.) Her yenïoğrenmede, Yapay
sinir ağları test taramalarıyla test edilmektedir ve ilgili hata ve
ağırlıklar kaydedilmektedir. En k̈uçük test hatasıyla sonuçlanan
budanmış yapay sinir ağı en iyi ăg olarak seçilmektedir ve
ağ ağırlık azalma çarpansız en küçük hataya neden olan
ağırlıklarla, tekrardan ĕgitilmektedir. LM ve OBS uygu-
lamasında, yapay sinir ağ tabanlı sistem tanıma programı
kullanılmıştır [14].

2.2. Geometri Tiplerinin Yapay Sinir A ğıyla ile Belirlen-
mesi

Çalışmada kullanılan kızılberisi algılayıcı [15] [Şekil 3(a)]
bir alıcı-verici çiftinden oluşmakta ve hedeften yansıyan
sinyalin yěginliǧiyle orantılı analog gerilim çıktısı saǧlamak-
tadır. Alıcı penceresi ortam aydınlatmasının yeǧinlik ölçümle-
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Şekil 4: Deney d̈uzeněginin üstten g̈orünüş̈u. Tarama açısıα
ve konum açısıθ yatay eksenden saatin dönme ÿonünün tersi
yönündeölçülmektedir.

rine olan etkisini en aza indirgemek için kızılberisi süzgeç ile
kaplıdır.

Kullanılan hedefler 120 cm uzunluǧunda d̈uzlem, 90◦ köşe
ve 90◦ kenardır. Bu hedefler alüminyum, beyaz kumaş ve beyaz
köpükten ambalaj malzemesiyle kaplanmıştır. Yöntemimiz, her
hedefin belli bir açı aralıǧında taranmasına baǧlıdır. Kızılberisi
algılayıcı 15,2 cm yarıçapında döner bir platform [16]üzeri-
ne yerleştirilmiş ve hedeflerden açısal yeǧinlik taramaları elde
edilmiştir. Deney d̈uzeněginin fotoǧrafı ve çizimi sırasıyla
Şekil 3(b) ve 4’de verilmiştir. Referans yeğinlik taramaları her
geometri-ÿuzey kombinasyonu için 2.5 cm aralıklarla, en yakın
gözlenebilir uzaklıktan en b̈uyük gözlenebilme uzaklı̆gındaθ =

0◦’de yerleştirilerek elde edilmiştir. Elde edilen yeğinlik tara-
maları Şekil 5’de verilmiştir. Bu yĕginlik taramaları orjinal
taramalardır, yapay sinir ağlarına girdi olarak kullanılan tara-
malar bunlarınörneklenmiş halidir. Ĕgitim seti 60 d̈uzlem,
49 köşe ve 38 kenar hedef olmak̈uzere 147 referans tara-
masından oluşmaktadır. Her hedef türü için hedef sayısı bir-
birinden farklıdır. Bunun nedeni her hedefin farklı yansıtıcı
özelliklerine sahip olması ve geometri ve yüzey özelliklerinin
belirlediği farklı erim aralıklarında g̈ozlenebilir olmasıdır.

Eğitim LM algoritmasıyla gerçekleştirildi. Giriş ăgırlıkları
rasgele ilklendirildi. Ĕgitim ve test setinde en yüksek ayırdetme
oranına sahip yapay sinir ağı 10 saklı katman n̈oronuna sahiptir.
Burada OBS hen̈uz ăgı budamak için kullanılmamıştır.

Yapay sinir ăgı, hedefleri farklı erimr ve açılardaθ

yerleştirerek elde edilen kızılberisi yeğinlik taramalarıyla test
edildi. 82’si d̈uzlem, 64’̈u köşe ve 48’i kenar olmak̈uzere
toplam 194 test taraması elde edildi. Hedefler−45◦’den45◦’ye
en yakın g̈ozlenebilir aralıktan en uzak gözlenebilir aralı̆ga
kadar rasgele yerleştirildi. (Dikkat edilmesi gereken diğer
hususta, ĕgitim seti eşit aralıklarlaθ = 0◦’de toplanmıştır, test
taramaları ise rasgele pozisyonlarda ve açısal konumlarda elde
edilmiştir.)

Test taraması elde edildiğinde, hedefin açısal konumu
ağırlık merkezi ya da en b̈uyük yeğinlik değeri kullanılarak
elde edilebilir. Test taramaları açısal konum kestirimi kadar
kaydırılmakta, 1’e 10 oranındäorneklenmekte ve elde edilen
tarama girdi olarak yapay sinir ağına sunulmaktadır. Ăgırlık
merkezi durumu için ayırdetme sonuçları Tablo 1’de paran-
tez içinde verilmiştir. Toplamda %94.3 ayırdetme oranı elde
edilmiştir. Köşe hedefleri taramaların ayırdediciözelliğinden

Tablo 1: Geometri ayırdetme dizeyi: açısal konumu ağırlık
merkezine g̈ore kestirildi. Sonuçlar OBS sonrası (öncesi) paran-
tezin dışı (içi) (D: D̈uzlem, KÖ: köşe, K: kenar).

hedef ayırdetme sonuçları toplam

D KÖ K
D 80(76) – 2(6) 82(82)
KÖ – 64(64) – 64(64)
K (5) – 48(43) 48(48)
toplam 80(81) 64(64) 50(49) 194(194)

dolayı dŏgru olarak ayırdedilmişlerdir. D̈uzlemler 82 durum
içerisinde 6 kez kenar hedefleriyle karıştırılmıştır, kenar hedef-
leri ise 48 durumda 5 kez düzlemlerle karıştırılmıştır. Alter-
natif olarak hedeflerin açısal konumu doyuma ulaşmamış tara-
malar için en b̈uyük yeğinlik değeri bulunarak hesaplanmıştır.
Bu durumda %96.4 dŏgru ayırdetme oranı elde edildi. Ağırlık
merkezi durumuna g̈ore daha iyi olmasının nedeni kenar he-
deflerinin dŏgru ayırdedilmesidir. 7 d̈uzlemsel test taramaları
dışında, ẗum yüzeyler dŏgru olarak ayırdedilmişlerdir. 7
yanlış ayırdedilen d̈uzlemsel test hedeflerinden 6 tanesi doyuma
ulaşmış al̈uminyum kaplı ÿuzeylerdir.

Bir sonraki adımda, yapay sinir ağı OBS teknĭgiyle bu-
danmaktadır. Ĕgitim ve test hatalarının, ağ budandıktan sonra
ağırlıkların sayısına g̈ore çizimi Şekil 6’da verilmiştir. Bu
şekilde, hatalar săgdan sola dŏgru ilerlemektedir. En k̈uçük
hata 263 tane ăgırlık kullanıldığında elde edilmektedir. Elenen
ağırlıklar sıfır dĕgerini almaktadır. Ăgırlıkların sayısı 263’ten
öteye azaldı̆gında, ĕgitim ve test hataları çok fazla ağırlığın
elenmesinden dolayı hızlıca artmaktadır. 263 tane ağırlık tu-
tulduğunda, saklı katman nöronları hala 10 olmaktadır.

En küçük test hatasına neden olan ağırlıklar kullanılarak ăg
LM algoritması kullanılarak ama sıfır ağırlık azalma çarpanıyla
tekrardan ĕgitilmektedir. Yapay sinir ăgı 7 yinelemede 0.00033
hatasına yakınsamaktadır. En iyilenen ağa g̈ore sonuçlar paran-
tez dışında Tablo 1’de ve Şekil 7’de verilmiştir. Ortalama %99.0
doğru ayırdetme oranı elde edildi. Bu yüzden ăg yapısını opti-
mize etmek dışında geometri ayırdetmede daha iyi sonuç elde
edilmiştir.

2.3. Yapay Sinir Ağlarıyla Yüzey Tipi Ayırdetme

İkinci adımda, hedef geometrilerinin doğru ayırdedildĭgi
varsayılarak, ÿuzey özellikleri yapay sinir ăglarıyla
ayırdedilmektedir. Geometri ayırdetmedeki aynı ağ yapısı
ve yöntem kullanılmıştır. Ĕgitim setindeki her ÿuzey dŏgru
olarak ayırdedilmiştir. 3 geometri ve yüzey için ayırdetme
dizeyi Tablo 2’de verilmiştir. D̈uzlem hedefleri ortalama
%80.5 dŏgru olarak ayırdedilmiştir. Al̈uminyum kaplı
yüzeyler %100 dŏgru ayırdedilmiştir. K̈oşe hedeflerinin ÿuzey
özellikleri %85.9 oranında dŏgru ayırdedilmektedir. Ayırdedici
özelliklerinden dolayı al̈uminyum kaplı k̈oşe hedefleri dŏgru
olarak ayırdedilmişlerdir. En k̈otü ayırdetme sonuçları (%64.6)
kenar hedefleri için elde edildi. Beyaz kumaş kaplı kenar
hedefleri k̈opük ambalaj malzemesiyle karıştırılmamaktadır.
Öte taraftan, %72.2 oranında köpük malzeme kaplı kenar
hedefleri beyaz kumaş kaplı olarak yanlış ayırdedilmişlerdir.
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Şekil 5: Farklı uzaklıklarda konumlanmış yüzeylerle kaplı (ilk s̈utun, al̈uminyum; ikinci s̈utun, beyaz kumaş;̈uçünc̈u s̈utun, beyaz
köpük ambalaj malzemesi) hedefler için yeğinlik taramaları (ilk sıra, d̈uzlem; ikinci sıra, k̈oşe;üçünc̈u sıra, kenar).

Tüm yüzeyler için ortalama dŏgru ayırdetme oranı %78.4’tür.

3. Sonuçlar

Bu çalışmada kızılberisi algılayıcılarla daha iyi hedef
ayırdetmek için en iyi yapay sinir ağ yapısı ileri s̈urüldü. Giriş
sinyalleri farklı hedeflerden d̈oner bir noktasal algılayıcıyla
elde edilmiştir. Yĕginlik sinyalleri ăgın işlevsel karmaşıklığını
azaltmak için örneklenmiştir. Ĕgitim algoritmaları olarak
GY ve LM yöntemleri kullanıldı. LM ile ĕgitilen ağ, en iyi
ağ yapısı için OBS tekniğiyle budanmıştır. Budama işlemi
ayırdetme sonuçlarında iyileştirmeye neden olmuştur.İlk önce
geometri sonra ÿuzey tipi belirlenerek mod̈uler bir yaklaşım
sergilenmiştir. Hedeflerin geometrileri %99 doğru olarak
ayırdedilmiştir. Sadece 2 düzlem hedefi kenar olarak yanlış
ayırdedilmiştir. Ÿuzey ayırdetmede, tüm yüzeyler için %78.4
doğru ayırdetme oranı elde edildi.

Yüzey ayırdetme yĕginlik taramaları benzer̈ozelliklere
sahip oldŭgundan geometri ayırdetmeye göre daha az
başarılıdır. Sonuçlar hedeflerin geometrik̈ozelliklerinin
daha ayırdedici oldŭgunu ve ÿuzey ayırdetmenin kısıtlayıcı
olduğunu g̈ostermektedir.

Referans sinyallerine dayalı ayırdetmede [3], geometri ve
yüzey için %80 dŏgru ayırdetme oranı elde edildi. Ayrı olarak
ele alındı̆gında geometri ve ÿuzey ẗurleri %99 ve %81 oran-
larında dŏgru olarak ayırdedilmişlerdir. Sonuçlar, bu çalışmada
elde edilen sonuçlara yakındır. Diğer taraftan, yapay sinir
ağları dışındaki ÿontemlerle elde ettiğimiz sonuçlara g̈ore bu-
rada elde ettĭgimiz sonuçlar beklenilenin altındadır. Bunu
bir nedeni ăgın ĕgitim setini ezberledĭgi genelleştirmeduru-
mudur. Ăg karmaşıklı̆gı arttıkça, ăgın ĕgitim setini ezber-
leme ĕgilimi artmaktadır. Karmaşık ăglar g̈urültüyü öğrenmeye
çalıştı̆gı için, aşırı ĕgitilme durumu ortaya çıkmaktadır. Diğer
taraftan, basit ăg modelleri ilgili görevleri yerine getirmekte
yetersiz kalmaktadır. Ayrıca en iyi ayırdetme oranlarının her
zaman ĕgitim setinde en iyi sonucu veren ağla elde edilmedĭgi
gözlendi. Bunun ana nedeni küçük ölçekli olan ĕgitim setidir.
Eğitim setini iki küçük sete b̈olerek, ĕgitim setinin temsil etme
yetenĕgi azaltılmış oluyor. Bu ÿuzden, ĕgitim setindeki orji-
nal taramalara g̈urültü ekleyerek taramaların sayısını arttırmaya
çalıştık. G̈urültü iki türlü eklendi: İlk önce herörnĕge beyaz
Gauss g̈urültü eklendi. Alternatif olarak, k̈uçük açısal sarsımlar
(tüm taramalar için sabit) taramalara eklenmiş, böylece açısal
kestirimden sonraθ = 0◦’den sapmalı taramaların doğru olarak
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Şekil 6: OBS teknĭgiyle budanmış yapay sinir ağı test ve ĕgitim
sonuçları.

Tablo 2: Üç geometri ve ÿuzey için ayırdetme dizeyi. (AL:
alüminyum, BK: beyaz kumaş, BK̈O: beyaz k̈opük, B: belirle-
nemeyen.)

ayırdedilen

D B
AL BK BK Ö

AL 24 – – –
g D BK – 23 6 –
e BKÖ – 9 19 1
r KÖ
ç AL BK BK Ö
e AL 22 – – –
k KÖ BK – 14 8 –

BKÖ – 1 19 –
K

AL BK BK Ö
AL 8 – – 2

K BK – 19 – 1
BKÖ – 13 4 1

ayırdedilmesi d̈uş̈unülmüşẗur. Diğer bir girişimde giriş tarama
sinyallerininörneklenme oranını d̈uş̈urmekti. Sonuçta, tüm bu
denemeler dŏgru ayırdetme oranında iyileştirmeye neden ol-
madı.

Bu çalışma basit kızılberisi algılayıcıların, uygun işleme
ve algılama teknikleriyle, bilinen uygulamalarının aksine daha
fazla bilgi çıkarımında kullanılabileceǧini göstermektedir.
Bu sayede nesnelerin farkına varma, yakınsak algılama,
sayma, erim ve derinlik g̈ozetimi, pozisyon ölçümü ve
çarpmalardan sakınma gibi basit görevlerinötesinde kızılberisi
algılayıcıların kullanılabilecĕgi görülmüşẗur. Böylece,
ayırdetme, sınıflandırma, tanıma, pozisyon kestirimi, harita
çıkarma, çevrenin algılanması, otonom yöng̈udüm ve hedef
takibi uygulamalarında kızılberisi algılayıcılardan faydalanmak
mümkün olacaktır.
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(a) d̈uzlem
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(b) köşe
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(c) kenar

Şekil 7: En iyi ăg için yapay sinir ăgı ayırdetme sonuçları:
(a) d̈uzlem, (b) k̈oşe ve (c) kenar.
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