ADAPTIVE POLYPHASE SUBBAND DECOMPOSITION STRUCTURES FOR

IMAGE COMPRESSION !

Omer N. Gerek', A. Enis Cetin?
1Signal Processing Laboratory, Swiss Federal Institute of Technology,
CH-1015 Ecublens, Switzerland
2Bilkent University, Dept. of Electrical Engineering,
Bilkent, Ankara TR-06533, Turkey

E-mail: gerek@ee.bilkent.edu.tr

Abstract

Subband decomposition techniques have been extensively used for data coding and analysis. In
most filter banks, the goal is to obtain subsampled signals corresponding to different spectral regions of
the original data. However, this approach leads to various artifacts in images having spatially varying
characteristics, such as images containing text, subtitles, or sharp edges. In this paper, adaptive
filter banks with perfect reconstruction property are presented for such images. The filters of the
decomposition structure which can be either linear or nonlinear vary according to the nature of the

signal. This leads to higher image compression ratios. Simulation examples are presented.

1 Introduction

Subband decomposition is widely used in signal processing applications including speech, image and video
compression. In most practical cases, the goal is to obtain subband signals corresponding to different
spectral regions of the original signal. The frequency content of most audio and visual data are suitable
for this kind of frequency selective coding. However, this approach leads to ringing artifacts in image and
video signals containing text, subtitles or sharp edges. The ringing is mainly due to constant analysis

filter banks which cannot cope with the sudden changes in the input signal.
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In this paper, we present Perfect Reconstruction (PR) polyphase filter bank structures in which the
filters adapt to the changing input conditions. The adaptation of the analysis filter bank leads to higher
compression results for images containing sharp edges, text, and subtitles. Since most of the disturbing
ringing artifacts occur on the boundaries of subtitles, texts and sharp edges, an adaptive filter bank can
update its coefficients accordingly and can eliminate the disturbing overshoots at the edges. Furthermore,
most images and video signals are non-stationary in nature, therefore an adaptive filter bank can achieve
higher efficiency than a fixed filter bank. The polyphase filter bank structures that we introduce allow the
use of both the Least Mean Squares (LMS) type FIR [1][2] and nonlinear order statistics based adaptive
filters to cope with the changes in the input signal.

The concepts of adaptive filtering and subband decomposition [3],[4] have been previously used
together by a number of researchers [5]-[10]. Most of the proposed adaptation algorithms for subband
decomposition filter banks consider the problem of system identification and noise removal [5]-[10]. In
these works, the adaptive filtering problem is considered in the subband domain. The issues of efficient
complex or real valued filter design methods to increase subband domain adaptive filtering performance
is also investigated [5, 6]. In this approach, the design of the filter bank which satisfies the pre-specified
requirements for adaptive filtering in subbands is shown. In another approach, the unknown system
outputs are used for adapting the analysis filter bank coefficients so that the filter bank approximates an
unknown system [11]-[16].

The choice of subband filter banks according to the input signal is also considered by some researcher-
s [11]-[14]. The main goal of these works is to find the best wavelet basis for decomposing the data. For
example, the autocorrelation matrix of the image data is used for determining a good basis for decom-
position in [12]. In [15],[16], optimal coding after decomposition is considered, and optimum quantizers
and optimum entropy coders are studied.

In [11]-[14], fixed filters chosen according to an optimality criterion are used throughout the entire
duration or extent of the signal whereas in this paper the filters vary as the nature of the input changes.

In this paper, we propose an adaptation scheme for updating the filter coefficients of the subband

decomposition filter bank. In this aspect, it is different than the subband adaptive filter structures which



performs adaptive filtering in the subbands [5]- [10]. The adaptation scheme in our method neither
tries to estimate an unknown system nor uses a fixed filter bank throughout the entire duration of the
signal. Since the problem we address here is the coding of the input data, the filter coefficients are
updated to remove the unnecessary information among the neighboring subsignals. The aim is to obtain
decorrelated subsignals. Due to the non-stationary characteristics of most image data, this improves the
coding efficiency. In this aspect, the work in [22] is related with our work. In [22], previously determined
linear and nonlinear filters were used in a switchable manner in different regions of the image. In our
work, there is no need to select a pre-determined filter in different regions of the image because the
proposed adaptive subband decomposition scheme inherently updates the filter banks and finds ideal
filters for each signal sample while preserving the perfect reconstruction property.

In Section 2, we review the PR polyphase structure concept [3],[4] and present a procedure to make it
adaptive. In this section, multichannel extensions of adaptive filter banks are also presented. As pointed
above, either linear or nonlinear filters can be used in the decomposition structure without disturbing
the PR property. In Section 3, we describe another adaptive polyphase structure which contains a fixed
anti-aliasing filter for the upper branch and an adaptive prediction filter for the lower branch. This
structure is especially useful when a multiresolution viewing feature is needed. The coding gain analysis
of the adaptive structure by means of the reduction of the variance and various adaptation schemes are
described in Section 4. Simulation examples and image compression results are given in Section 5 and

conclusions are presented in Section 6.

2 Adaptive Prediction Filters in Polyphase Form

The block diagram of the basic 2-band polyphase subband structure is shown in Fig. 1. In this structure,
the input polyphase components z1 and x5 are multiplied by a 2x2 matrix, P1. For perfect reconstruction,
the only constraint on this matrix is invertability. One can try to optimize the P matrix according to the
application. In fact, this way of utilizing the polyphase components is investigated in the frame of lifting

schemes [18]-[20] and perfect-inversion polyphase networks [21]. The prediction branch of the polyphase



system can be interpreted as the half stage of a lifting scheme, without the update branch.
In the next subsection, we introduce a class of polyphase structures in which the P matrix is not

fixed, and describe how the filters that form P can be chosen.

2.1 The Basic Polyphase Filter Bank Structure

Consider the following choice for the matrix P:

P= ' (1)

This is, indeed, half of a lifting structure [18]. In (1), the filter P, need neither be a fixed nor a linear
operator for perfect reconstruction as P is invertible regardless of the nature of P;. Furthermore, the PR
property is preserved as P is invertible at all time instants. Therefore, both nonlinear filters and time
varying filters can be used in this structure.

The inverse of the P matrix in Eq. (1) is given as:

b |1 PO 2
0 1

In this case, the low-band signal z; is obtained by down-sampling the original signal, x and it is
directly passed to the encoder. Therefore, a good way of obtaining the subsignal, zj(n), is to predict the
samples of the second polyphase component x5 from the first polyphase component x; which is equal
to z;. This approach is suitable for coding applications, in which the goal is to remove the correlated
portion of the original signal as much as possible. In this way, the correlation between the channels is
eliminated.

Usually, the prediction filters are of low pass nature, because the samples of x5 are strongly correlated
to z1 for image data.

A predictor should be adaptive for image and video signals as they are non-stationary in nature.
This reasoning leads to the polyphase structure shown in Fig. 2 in which the prediction filter adapts itself
to minimize the high-band signal x(n). This is especially useful when there are sharp transition regions

in an image such as subtitles, text and graphics.
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Figure 3: Synthesis stage of the adaptive filter bank structure.

2.2 The Adaptive Filter Bank Structure
The adaptive estimator for zp(n) is shown in Fig. 2. This FIR estimator is obtained by predicting z2(n)
from z1(n) in a Linear Minimum Mean Squared Error (LMMS) sense as follows:

N N
Za(n) = Z Wy kT1(n — k) = Z Wy (20 — 2k) (3)
k=—N k=—N

where the filter coefficients wy, 1’s are updated using an LMS-type algorithm [24].

The FIR LMS adaptation is performed in a conventional manner as follows:

W(n+1) = w(n) + ux"f("g (4)
[
where W(n) = [wp — N, -, Wy, n] is the weight vector at time instant n,
%n=[z1(n—N),z1(n = N +1), -,z (n+ N —1),z1(n + N)] 7, (5)
The subsignal zp, is given by
zp(n) = z2(n) — Z2(n) (6)
and
e(n) = ap(n) = z2(n) — X, (n)W(n) (7)



Both £! and £? norms can be used in normalizing the update equations depending on the charac-
teristics of the signal [24]. In our simulations, these norms were successfully used [24].

The scalar u determines the step size of the adaptive algorithm. It is well known that the convergence
speed of adaptation is low when p is small, but the steady state error is smaller. For large values of u,
the opposite happens and the convergence speed increases with a higher steady state error. There are
various methods to change the value of y during adaptation in the LMS algorithm [26],[27]. Usually,
the value of y can be set to a large number between 1 and 2 in the beginning and, it can be gradually
decreased to a smaller value between 0 and 1. In our case, the value of y is determined according to the
range of the input. Since the input data X; is available at the decoder side, the decoder can alter the

parameter of its p value for reconstruction, accordingly. The actual update equation is given by,

Wr(n+ 1) = W(n) + p(Ro) ) ®)
1% |2
where
(04, Ag<10
0.6, 10< Az <30
pE1) = < 08, 30<Ag<80 9)
1.0, 80 < Ag < 200
| 12, 200 < Ag < 256
and

Az = max(x,) — min(X,) (10)

The piecewise constant values of the y parameter are determined by minimizing the experimental error
over a range of artificially generated signals producing the above A values. The dependency of the overall
minimization on the y value can be more precisely determined, but it is out of the scope of this paper.
In order to avoid extreme overshoots in filter tap updates, thresholds are used [28] both in the encoder
and in the decoder. The reason to put such thresholds is to avoid divergence at very low bit rates which
require coarse quantization of the transform data. In our simulation studies, we used a limiting threshold

of —256 and 256 for each filter tap for image coding applications.



The PR property is preserved in this structure as long as the same adaptation algorithm is used at
the encoding and the decoding stage. Since the subsignal x(n) as well as X,, are available both at the
encoder and at the decoder, the synthesis stage can adapt the filter P; with the same filter tap coefficients
w(n). Therefore, no side information needs to be transmitted.

It was observed in [22],[23] that, in coding applications, the Order Statistics (OS) filters and especially
the median filter perform better than the linear FIR filters for the images containing sharp variations like
text [22]. This observation motivates the use of adaptive OS filters in the structures shown in Figures 2
and 3. The rank ordering of the input elements produces better coding results especially for the images
that contain sharp edges.

The implementation of the Order Statistics (OS) type adaptation is similar to the linear FIR filter
coefficient update. For the OS case, the input vector X, is first rank ordered. The largest and the smallest
values of the vector are removed. As a result, another vector with a shorter size is obtained. This vector
is then used as an input to the update Equations (7) and (8) for adapting the filter coefficients. In our

simulation studies, a region of support with 9 elements is used.

2.3 Cascaded Adaptive PR blocks

The structure described in Subsection 2.1 can be generalized by cascading matrices similar to the matrix
in Eq.(1). The analysis and synthesis stages of the cascaded two band decomposition structure can
be generated using Equations (1) and (2). The overall cascaded transformation matrix is obtained by

multiplying triangular matrices which correspond to basic building blocks as follows:

1 P 1 0 1 —P.
P= ¢ X X ¢ X - (11)
0 1 Gi() 1 0 1
where the filters P, Gy, Ps,- -+ can be linear, nonlinear or adaptive. In this way, the upper and lower

branch subsignals can be filtered a number of times. The inverse matrix is given as

b RO N I 16 2

0 1 —G1() 1 0 1

The synthesis filter bank can be easily reconstructed from P~1 as shown in Fig.4.



2.4 Multichannel Extension of the PR structure

The filter bank structures described in Section 2 can be extended to handle decompositions to bands
other than the powers of two. The extension can be performed in various ways. Consider the multiband
decomposition structure shown in Fig.5.

In this figure, an M band decomposition with two cascaded PR building blocks is illustrated. The

PR property of this structure can be proved easily. In the analysis stage,

vy = T

vi = x— P 1(vi1), 1=2,3,.. M
yi = vi+Gi(vipr), i=1,2,...M—1
Ym = UM

The corresponding P matrix for this case is given by :

1 —P 0 0 1 0 0 O
0 1 -P 0 Gy 1 0 0

P- X (13)
0 0 1 —P3 0 Gy 1 0

Since the matrix P is formed by multiplying upper and a lower triangular matrices, it can be inverted
regardless of the filters P;’s and G;’s. Therefore, PR can be achieved with any choice of the nonlinear

operators. This leads to the following synthesis equations:

/! _ ! _ .
v; = yi—Gi(viy) = v, i=M-1,..1
! — —
v, = v = 1
! ! ! .
r; = vi+Poa(viy) = vitPo(vii) =5, i=2,.,M

The outputs, z;, of the synthesis filters are the same as the polyphase components, z;, of the analysis
filter bank.
Another multichannel extension structure is shown in Fig. 6. In the previous structure only the

samples of x; was considered to estimate zx41, kK = 2,3, .., M. On the other hand, the structure in Fig. 6



uses all of the previous polyphase components for prediction as the index of the subsignals increase in

Fig. 6. The analysis equations for this structure are given as follows:

v, = I
vi = =z — Pi1(vi,ve,...,v 1)

Ymw = UM

vi = v+ Gi(ym,e-¥it1), 1=1,2,.., M —1

The synthesis equations are given by:

’ .
v; = Yi— GZ(yMa "'ayi+1) = U, 1= 1a27 aM -1
vy = Ym = um

1 _
Al = V1 = I
:L‘; = v+ P 1(v1,v9,..yv5-1) = x, 1=2,3,.... M

This later structure also yields analysis matrices which can be decomposed to upper and lower
triangular matrices with elements containing P;’s and G;’s only. In this structure, for predicting v;’s,
the number of data used increases with increasing index i. Conversely, more v; samples are used for
predicting y;’s when the index ¢ is small. The computational complexity of this structure is high as

compared to the structure in Fig. 5.

3 Adaptive PR Structure with an Anti-Aliasing Filter

In many applications, multiresolution display of an image is a desirable property. Since z(n) is simply
down-sampled in the upper branch of Fig. 2, the visual quality of the subsignal z;(n) is poor due to
aliasing.

In order to remove the aliasing, a two stage cascaded P matrix can be used. The matrix P should
be designed in such a way that the first stage should reduce the aliasing and the second stage should
produce a good “high-band” signal.

In a typical QMF structure, the input signal is low pass filtered before down-sampling to eliminate

aliasing. If the low pass filter is a half-band filter [3],[30], i.e, H(2) = 3[1 4+ 271 A(2?)], then the so called
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“noble identity” [3] can be used and the filtering operations can be carried out after down-sampling as
shown in Fig. 7.

The second stage of the analysis structure consists of adaptive prediction of subsignal z;(n). In this
case, the samples of the low pass filtered subsignal x;(n) are used to predict z;(n). The overall analysis
structure is shown in Fig. 8. Perfect reconstruction can be achieved using the synthesis block shown in
Fig. 9.

The analysis polyphase structure has the following matrix:

1 0 05 0 1 —P(.)
P = X X (14)
A(z) 1 0 1 0 1
and the synthesis matrix is simply:
) 1 Pi() 2 0 1 0
P = X X (]‘5)
0 1 0 1 —A(z) 1

10



In our simulation studies, we use the half-band Lagrange family for low pass filtering [30]. As an

example, the A(z) polynomials of the first two Lagrange filters with sizes 3 and 7 are:

1 1
A(z) = = + =2
2
and
1 9 9 1
Alg) = —— -ty 2 21 L 2
&) =-1%" T1%6 1% 16
respectively.

4 Coding Gain Analysis

The structure in Fig. 2 can be considered as a transformation of the input signals z; and z3. For
stationary signals and with an orthogonal transformation, it was shown in [31] that the ratio of the error
variance of the original quantized signal U?DC u to the error variance of the transform domain quantized
signal 0% 5 gives the orthogonal transform coding gain of a stationary signal as:

0.2

GSBC = W (16)

In general, the coding performance is related with the reduced variance of the transform domain
signals. In our case, the polyphase components z1(n) and z2(n) has the same variance as the input
signal, each having half the signal size. Using the adaptive decomposition scheme, one of the polyphase
components is kept to have the same variance, and the variance of the other component is approximately

minimized by a gradient method. The variance of the original sequence is (with zero mean assumption):

N/2—1 N/2—1 N-1
2
Ot = D #i(n)+ Y w3(n) =} 2°(n)
n=0 n=0 n=0
and the variance of the transform domain signal is:
N/2—1 N/2-1
2 2
0t2rans = Z ] (n) + Z xh(n)

Since ijﬁ)_l 77 (n) is reduced by the gradient algorithm, E,]:Z%_l T3 (n) < Zﬁﬁ)_l 73(n), 50 02 s < OLy-

11



The minimization of the variance of zj can be explained by the very nature of the LMS type adap-
tation. The adaptive subband decomposition scheme in Fig. 2 tries to predict the values of x5 using
an LMS type adaptive filter. The LMS filter is a gradient estimator which tries to minimize the mean

squared error J:

J = E(@an) — w"%)(w2(n) — %y w)] (17)

= o2 —wip-p'w+wlRw (18)

where o2, is the variance of the subsignal z9, p is the cross correlation vector between input vector
X, and signal z9, R is the correlation matrix of the input vector X,, and the vector w represents the

instantaneous filter coefficients at the time instant n. The high-band signal is given by
zn(n) = z2(n) —w(n)Xy, (19)

where X, = [z(n — N),z(n — N +1),---,z(n+ N — 1),z(n + N)].
When the input signal is stationary, the LMS filter converges to the optimum vector wy which gives

the minimum mean-squared error

Jmin = 03 = 029 — wl RTwy (20)

Therefore, the variance o3 is minimized, and the overall variance of the transform domain signal is

reduced.

In a typical image, there is high correlation between the neighboring samples. The redundancy
between the subbands is eliminated by the adaptive prediction. In general, signals may have parts
that are LMS predictable in different frequency bands. Therefore, the adaptive scheme is different from
the regular QMF filter banks where the decomposition is only in terms of spectral separation. Our
adaptive decomposition method is also different from the eigen decomposition based methods which
require transformation matrices or correlation matrices both at the encoder and decoder [32] which
makes compression very difficult and impractical.

For the filter bank with the anti-aliasing stage described in Sec. 3, the coding gain is obtained by

multiplying coding gains of the anti-aliasing filter block and the adaptive filter block. The anti-aliasing

12



filter bank is a subband filter bank that applies a low pass filter to the upper branch of the subband
signals. In this case, some of the high pass information content of the upper branch z; is eliminated
from the signal by this filtering operation. This information loss appears as a slightly lower prediction
performance at the adaptation stage. Yet, the decrease in compression ratio due to the lower prediction
performance is very small because most of the information to predict z2 from z; is in the low pass portion
of the signals for most images. The slight decrease in compression can be acceptable at the expense of a

multiresolution previewing feature.

5 Two Dimensional Filter Bank Structures

The extension of the adaptive structure to the two dimensional case is needed for image coding purposes.
A straightforward two dimensional generalization can be achieved by applying one dimensional filters to
the image data in a separable manner. In this way, first the columns of the image are filtered, then this
data is row-wise processed. This is a conventional method to implement multi-dimensional filters with
one dimensional modules.

However, better prediction performance can be achieved than consecutive one dimensional row-wise
and column-wise processing. Consider the region of support shown in Fig. 10 for horizontal processing.
The gray pixel can be predicted from the black pixels using an LMS adaptive algorithm. Since more
samples are used in the support region, better prediction performance is achieved. Once the row-wise
processing is finished, the column-wise adaptive filtering is carried out. In our simulation studies, the
region of support in Fig. 10 is used. It is also experimentally observed that this produces better coding
results.

A frequently used non-separable downsampling method for images is the “quincunx” downsampling.
The region of support of the prediction filter can readily be extended to the quincunx downsampling

method as shown in Fig. 11.
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6 Simulation Studies

In this section, image compression examples using the adaptive subband filter banks are presented. In
high quality image coding applications, the adaptive filter bank produces images with higher PSNR
compared to fixed filter banks. This improvement is also visible due to the elimination of the ringing
effects. For images containing text and sharp variations, the PSNR improvement is higher. Specifically,
it was demonstrated in [33] that the nonlinear adaptive scheme is suitable for compressing fingerprint
images which usually have sharp variations.

In the following simulation studies, we used the Embedded ZeroTree (EZT) coder to encode the
transform coefficients [34]. Due to the characteristics of EZT, the best coding results were obtained by
the tree-structured two-band decompositions.

The coding results for the image shown in Fig. 12 at 1 bits/pixel bit-rate is given in Table 1. The first
column of the table shows the results without using the anti-aliasing filter stage, and the second column
shows the results with the anti-aliasing filter stage. The Embedded Zerotree Wavelet (EZW) coder [34]
with fixed filter banks biorthogonal Barlaud filter [35], and 9-tap orthogonal Coiflet filter [14] produces
PSNRs of 36.10dB and 36.12dB, respectively. The public domain EZW programs use mostly this Coiflet
filter bank, and experimentally, it gives the best overall coding results. These PSNRs are 0.86dB less
than the PSNR obtained using the adaptive decomposition method. In addition to the improved PSNR,
the adaptive filter bank eliminates the ringing effects which are apparent in the EZW coder as shown
in Fig. 13. Fig. 13(a) shows the enlarged detail of our encoder output, and Fig. 13(b) shows the EZW
output of the same place.

In some of the test images, the adaptive filter bank still produces slightly lower PSNRs. The reason
of this is due to the texture characteristics these particular images. When the image contains a texture
which is difficult to follow with a gradient type adaptive algorithm, the error sequence stays large. In
these situations, a filter bank optimized for the signal can be used. On the other hand, if the image
contains a number of portions with different textures, then it is difficult to obtain a single filter bank

suitable for all the portions of the image. In those situations, another adaptation which selects the
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appropriate filter bank in a specific region, should be applied.

The 672x560 “barbara” image was compressed to 1 bits/pixel at a PSNR of 35.91dB with the
adaptive OS type prediction filter. This PSNR is better than the conventional EZW compression scheme
which produces 35.90dB PSNR. Counsider the detail images shown in Fig. 15. In this case, both of
the images are compressed at 0.4bpp (CR=20) to emphasize the ringing effects of the fixed filter bank.
Although the PSNR of the image at left corresponding to EZW (18.42dB) is almost the same as that of
the image at right (18.43dB), the details show that EZW with a fixed filter bank produces visually more
disturbing ringing effects at the edges.

A set of 16 images is compressed using the adaptive subband coding scheme and the EZW with a
fixed filter bank. In all cases, the adaptive method achieves a higher PSNR at 1 bpp. The coding results
for these images are presented in Table 2. The thumbnailed test images are shown in Fig. 16. To give a
better idea of the obtained image quality, a 512 x 512 test image is shown in Fig. 17(a). Fig. 17(b) shows
the LMS adaptive coding result at 1bpp, and Fig. 17(c) shows the EZW result at 1bpp. The detail parts
of the original, LMS adaptive, and EZW coded images are shown in Fig.s 18(a), (b), and (c), respectively.

In a filter bank structure, the perfect reconstruction depends on the lossless transmission of the
subsignals to the synthesis side. In adaptive filter banks, the high-band signal is also used for adapting
the synthesis filter. Therefore at very low bit rates the performance of the adaptive filter bank coder
deteriorates. Consider the PSNR vs. CR plots shown in Fig. 14 for the image of Figure 12 . Above
CR=20 level, fixed filter banks start producing better results than the adaptive filter bank. However, at
these CR levels, the coding is not visually transparent, and disturbing coding artifacts become visible
at the encoded images. For the low bit rate coding, a modified adaptive scheme is proposed in Sec. 7.
In the modified scheme, the quantization effects are incorporated in the adaptation algorithm, and the
divergence cases for the synthesis stage are eliminated.

The Adaptive Morphological Subband Decomposition described in [22] uses an alternating coding
strategy for different regions in the image. Specifically, it chooses linear filters for textured regions and
morphological filters otherwise. In the “baboon” image this algorithm achieves a PSNR of 25.858dB at

0.49bpp, whereas our adaptive algorithm gives a PSNR of 26.91dB at the same bit rate. Furthermore, the
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filter selection method used in [22] can also be used in our algorithm to switch between adaptive FIR and
adaptive OS filter banks, as well. The adaptive nonlinear filter banks are successful in coding images with
regions separated by sharp edges. On the other hand, the adaptive FIR filter bank is useful for regions
with uniform textures like images of grass or forest. The texture detection algorithm described in [22]
can be used for separating such regions and using alternating adaptive filter banks. The PR property is
preserved since the texture detection is based on the low-low component of the decomposed signal which

are available to both the encoder and the decoder side.

7 Low bit rate analysis

The adaptation block in the analysis stage produces an error signal which is used in the synthesis stage
to reconstruct the signal. During coding, both the input signal z; and the error signal z; are subject to
quantization. The reconstruction algorithm in the synthesis stage tolerates the quantization effects up
to the compression level of approximately 0.5 bpp. Below this bit rate, the change in the signal due to
quantization affects the reconstruction algorithm to diverge. In other words, the analysis and synthesis
adaptive blocks converge to completely different signals because the input signal to the synthesis block
is very different from the input signals to the analysis block.

In order to avoid the divergence situation, we propose a new method which incorporates the quantiza-
tion effects before the adaptation block in the analysis stage. In Fig. 19, the upper polyphase component
is quantized before being fed to the adaptive block. Furthermore, the error signal used for determining
the gradient vector in the LMS algorithm is also quantized. In this way, we obtain an adaptation scheme
which uses quantized coefficients which are exactly transmitted to the synthesis side without any further
loss.

Apparently, the Zerotree coder cannot be used in this structure because it quantizes the coefficients
in an unpredictable manner depending on the chosen bit rate. In our simulations, we used a scalar
quantizer in this structure to obtain bit rates lower than 1bpp. In order to make a comparison, a fixed

prediction filter and an LMS adaptive filter is used, and the outputs are encoded using an arithmetic
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Figure 19: Analysis stage of the adaptive filter bank structure.

coder. The fixed filters used in our experiments are the 5-tap Lagrange low-pass filter, which gives
reasonable prediction values, and a 5-tap median filter. The coding results are presented in Table 3.
Since it is difficult to control the output rate in this system, the PSNRs are fixed, and the compression

ratios are calculated.

8 Conclusions

Adaptive subband decomposition schemes for image coding is introduced in this paper. The adaptive
filters are embedded into a polyphase structure. In the two channel structure, the high-band subsignal is
estimated from the low-band subsignal using an LMS type adaptation algorithm. The perfect reconstruc-
tion property is retained as long as the same adaptation algorithm is used at the analysis and synthesis
stages.

We also introduced an adaptive filter bank with anti-aliasing filtering for the low-band signal. In
this structure, the low-band signal is obtained from the input using half-band low pass filters followed by
downsampling. The high-band subsignal is then estimated from the low-band subsignal using adaptive
prediction. In this structure, a high quality multiresolution viewing capability is possible due to the
anti-aliasing filter.

The structure is also extended to two dimensional image decomposition in various ways. It is shown
that separable and quincunx downsampling extensions are possible.

In order to obtain low bit rates, a method that incorporates the quantization effects inside and before

the adaptation is developed. Experimental results with this scenario indicate that the adaptive method
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gives better results than a fixed filter.

The overall structure is observed to be efficient for compressing images. Specifically, for the images
that contain sharp variations such as text, subtitles and graphics, our algorithm significantly outperforms
other methods in experimental studies. The adaptive subband decomposition method produces visually

better results by eliminating ringing artifacts.
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