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ABSTRACT

In this paper, a new set of speech feature representations
for robust speech recognition in the presence of car noise are
proposed. These parameters are based on subband analysis
of the speech signal. Line Spectral Frequency (LSF) rep-
resentation of the Linear Prediction (LP) analysis in sub-
bands and cepstral coefficients derived from subband anal-
ysis (SUBCEP) are introduced, and the performances of
the new feature representations are compared to mel scale
cepstral coefficients (MELCEP) in the presence of car noise.
Subband analysis based parameters are observed to be more
robust than the commonly employed MELCEP representa-
tions.

1. INTRODUCTION

Extraction of feature parameters from the speech signal is
the first step in speech recognition. It is desired to have
perceptually meaningful parameterization and yet robust to
variations in environmental noise. The mel scale is accepted
as a transformation of the frequency scale in a perceptually
meaningful scale, and it is widely used in feature extraction
[9]. However the environmental noise may effect the per-
formance of the mel scale derived features. In-this paper,
the performance of the subband analysis based methods are
investigated for robust speech recognition in the presence of
car noise.

Of the two techniques based on subband analysis that
are presented here, the first is the Line Spectral Frequency
(LSF) representation of the Linear Prediction (LP) analysis
in subbands, and the second is the extraction of cepstral
coefficients derived in subband analysis of speech signal.
These representations are described in Sections 2 and 3,
respectively.

The performance evaluation is done with a speaker inde-
pendent. continuous density Hidden Markov Model (HMM)
based isolated word recognition system. The vocabulary
consists of ten Turkish digits (0:sifir, 1:bir, 2:iki, 3:ig, 4:dort,
5:bes, 6:alt1, T:yedi, 8:sekiz, 9:dokuz). The simulation ex-
amples are described in Section 4.

2. SUBBAND ANALYSIS DERIVED LSF
REPRESENTATION

Linear Predictive modeling techniques are widely used in
various speech coding, synthesis and recognition applica-

A. Enis Cetin

_ Kog University,
Istanbul, TURKEY.

Yasemin Yardimc:

Bogazigi University,

Istanbul, TURKEY.

- tions. Line Spectral Frequency (LSF) representation of the
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Linear Prediction (LP) filter is introduced by Itakura [1].
LSFs have some desirable properties which make them at-
tractive to represent the Linear Predictive Coding (LPC)
filter. The quantization properties of the LSF representa-
tion is recently investigated [2, 3, 4].

It is well known that LSF representation and cepstral
coefficient representation of speech signals have compara-
ble performances for a general speech recognition system
[5]. Car noise environments, however, have low-pass char-
acteristics which may degrade the performance of general
full-band LSF or mel scaled cepstral coefficient (MELCEP)
representations [6]. In this section, LSF based representa-
tion of speech signals in subbands is introduced.

Let the m-th order inverse filter Am(z),

m

Am(z)=1+a1z" 4+ -+ amz” (1)
is obtained by the LP analysis of speech. The LSF poly-
nomials of order (m + 1), Pm41{z) and Qm41(2), can be
constructed by setting the (m + 1)-st reflection coefficient
to 1 or -1. In other words, the polynomials, Ppn41(z) and
Qm+1(2), are defined as,

Prt1(2) = Am(2) + 27" A(z7Y), (2)
and

Qm1(2) = Am(2) = 27"V Am(z 7). (3)

The zeros of Pn+1(z) and Qm+1(z) are called the Line
Spectral Frequencies (LSFs), and they uniquely character-
ize the LPC inverse filter Am(2).

Prm41(2) and Qm41(z) are symmetric and anti-symmetric
polynomials, respectively. They have the following proper-
ties:

(i) All of the zeros of the LSF polynomials are on the
unit circle,

the zeros of the symmetric and anti-symmetric LSF
polynomials are interlaced,

(ii)

the reconstructed LPC all-pole filter maintains its
minimum phase property, if the properties (i) and
(ii) are preserved during the quantization procedure,
and

it has been shown that LSFs are related with the
formant frequencies {5].

(i)

(iv)
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In this scheme, the speech signal is filtered by a low-pass
and a high-pass filter and the LP analysis is performed on
the resulting two subsignals. Next the LSFs of the sub-
signals are computed and the feature vector is constructed
from these LSFs.

It is experimentally observed that significant amount
spectral power of car noise’ is localized under 500 Hz. Due
to this reason the LP analysis of speech signal is performed
in two bands, a low-band (0-700 Hz) and a high-band (700-
4000 Hz). In this case the high-band can be assumed to be
noise-free.

This kind of frequency domain decomposition can be
generalized to cases in which the noise is frequency local-
ized.

3. SUBBAND ANALYSIS BASED CEPSTRAL
COEFFICIENT REPRESENTATION

In this section, a new set of cepstral coefficients derived from
subband analysis (SUBCEP) is introduced. The speech sig-
nal is divided into several subbands by using a perfect recon-
struction filter bank [8] via a tree-structure. The selected
filter bank corresponds to a biorthogonal wavelet transform
[8]. The subbands are divided in a manner similar to the
well-known mel scale decomposition [6].
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Figure 1: Basic block of subband decomposition.

The perfect reconstruction filter bank structure is shown
in Figure 1. The low-pass filter, Ho(z), and the high-pass
filter, H1(z), are given by

1
Ho(z) = 31+ zA(2%), (4)

and
Hy(z) = =7 + 3 B(E)(1 + 2A() ©)

where A(z?) and B(z?) are arbitrary polynomials of z°. In
this study we selected Ho(z) as a 7-th order Lagrange filter

Ho(z) = %4— :—;%(z1 +z7h) - 512_(23 +27%) (6)

which is a half-band linear phase FIR filter. Note that (6)
can be easily put into the form of (4) with '

n_ 9 2y _ 1.2 —4
A(z)—16(1+z ) 16(2 +2z7%) . ]
The second polynomial, B(z?) is chosen as

B(z*) = %(1 +27%), (8)

1This noise is recorded inside a Volvo 340 on a rainy asphalt
road by Institute for Perception-TNO, The Netherlands.

This selection of B(z?) produces good low-pass and high-
pass frequency responses for filters, Ho(z) and Hi(z), re-
spectively [8]. This filterbank approximately divides the
frequency domain into two half-bands, [0, /2] and [7/2, x].

By applying the filterbank in a cascaded manner the
frequency domain is divided into L = 22 subbands similar
to the mel scale as shown in Figure 2 (This is equivalent to
a wavelet packet bases decomposition of the input speech
signal [8]).
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Figure 2: The subband decomposition of the speech signal.

The feature vector is constructed from the subsignals as
follows: Let z:(n) be the subsignal at the I-th subband. For
each subsignal the parameters, e(l), is defined by

N
1
e(l) = E;Izz(nﬂ, 1=1,2,..,L (9)

where N; is the number of samples in the I-th band. The
SUBCEP parameters, SC(k), which form the feature vector
are defined similar to MELCEP coefficients as

- k(1 — 0.5)
SC(k) = Zlog(e(l)) cos(—-—-—L—-r), k=1,2,..,12.

=1
(10)

The SUBCEP parameters are obtained in a computa-
tionally efficient manner because at every stage of the sub-
band decomposition tree a downsampling by a factor of two
is performed, and the filter bank structure of [8] can be im-
plemented using integer arithmetic because all of the filters
have rational coefficients.

Commonly used MELCEP. parameters are obtained ei-
ther in time domain with critical band filter banks or in fre-
quency domain with critical band windowing of the speech
spectrum. Since multirate signal processing techniques are
not employed in the design of the so-called critical band
filter bank [9] large filter orders are necessary for narrow
_subbands. This results in a computationally expensive and
‘memory intensive implementation. Critical band window-
ing, on the other hand, requires complex arithmetic.

Apart from computational advantages, the SUBCEP
approach also provides extra flexibility in dividing the fre-
quency domain effectively. For instance, if the noise spec-
trum is localized in the frequency domain (e.g. car noise)
then less emphasis can be given to the corrupted frequency
regions by assigning larger subbands.

Other filter-bank structures and wavelet transforms can
also be used to achieve a similar frequency decomposition
and another set of SUBCEP parameters.

4. SIMULATION STUDIES

In simulation studies a continuous density Hidden Markov
Model (HMM) based speech recognition system is used with
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5 states and 3 mixture densities. The speech signal is sam-
pled at 8 kHz and the so called car noise is down sampled
to 8 kHz. The noisy speech is obtained with the car noise
recording, assuming that the noise is additive. Simulation
studies are performed on the vocabulary of Turkish digits
from the utterances of 51 male and 51 female speakers. The
isolated word recognition system is trained with 25 male
and 25 female speakers, and the performance evaluation is
done with the remaining 26 male and 26 female speakers.

4.1. Performance of LSF Representation in Sub-
bands

A 12-th and 20-th order LP analysis are performed on ev-
ery 10 ms with a window size of 30 ms (using 2 Hamming
window) for low-band (noisy band) and high-band (noise
free band) of the speech signal, respectively. First 5 LSFs
of the low-band and the last 19 LSFs of the high-band are
combined to form the sub-band derived LSF feature vector
(SBLSF).

To compare the performance of LSF representation in
subbands (SBLSFs) with full-band LSF, a 24-th order LP
analysis is performed on full-band speech signal and recog-
nition rate of full-band LSF feature vector is also recorded.
The performance of LSFs with their time derivatives are
also obtained using 12-th order LP analysis. Frequency
domain cepstral analysis is performed to extract 12 mel
scale cepstral coefficients. Mel scale cepstral feature vector
(MELCEP) is obtained from these 12 cepstral coefficients
and their time derivatives. The performances of the all four
feature sets for various SNR values are plotted in Figure 3.
In our simulation studies we observed that the performance
of the subband derived LSF (SBLSF) representation is more
robust in the presence of car noise.
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Figure 3: Performance evaluation of SBLSF, MELCEP and
LSF representations.

4.2. Performance of SUBCEP Representation

The filter bank structure of Figure 1 is applied to the speech
signal in a cascaded form (up to 6 levels) to achieve the sub-
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band decomposition shown in Figure 2. This decomposition
results in 22 subsignals. The window size is chosen as 48 ms
(384 samples) with an overlap of 32 ms so that the subsig-
nal with the smallest subband has 6 samples. The SUBCEP
parameters are derived as in Equation (10) and the feature
vector is constructed from these SUBCEP parameters and
their time derivatives. The performance of the SUBCEP
and MELCEP representations are compared in Figure 4.
The SUBCEP representation exhibits robust performance
in the isolated word recognition application and it outper-
forms the MELCEP representation.
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Figure 4: Performance evalnation of SUBCEP and MEL-
CEP representations.

4.3. Conclusion

In this section, two new sets of speech feature parameters
based on subband analysis, SBLSF’s and SUBCEP’s are
introduced. It is experimentally observed that the SUB-
CEP representation provides the highest recognition rate
for speaker independent isolated word recognition in the
presence of car noise.
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