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Abstract:

Fast Fourier Transform (FFT) algorithm has a wide range of applications in signal and
image processing. In this article we describe the design of equiripple Finite Impulse Response

(FIR) filters by the FFT algorithm.
1. Introduction

The Fast Fourier Transform (FFT) algorithm has been used in a variety of applications in
signal and image processing [1]-[5]. In this article, a simple procedure for designing Finite-extent
Impulse Response (FIR) discrete-time filters using the FFT algorithm is described. The zero-
phase (or linear phase) FIR filter design problem is formulated here to alternately satisfy the
frequency domain constraints on the magnitude response bounds and time domain constraints
on the impulse response support [6]-[8]. The design scheme is iterative in which each iteration
requires two FF'T computations. The resultant filter is an equiripple approximation to the

desired frequency response.

Extension of the design method to higher dimensions is straightforward. In this case two

Multi-Dimensional (M-D) FFT computations are needed in each iteration [8].

The organization of the article is as follows. A short discussion of characteristics of FIR

filters and issues relevant to the design method appears in Section 2. Filter design method



is described in Section 3. One or multidimensional FIR filter design examples illustrating the

method are also presented.
2. Zero Phase FIR Filter Specifications and Design Considerations

In this section, the zero-phase FIR filter design problem is described and the notation of

the article is introduced.

The term FIR filter refers to a linear shift-invariant system whose input-output relation

is represented by a convolution

ylnl = hlklz[n — k], (1)

kel
where z[n| and y[n] are the input and the output sequences, respectively, h[n] is the impulse

response of the filter, and I is the filter support. The FIR filters have only a finite number of
nonzero coefficients so that the support [ is a bounded region. Usually the filter support, I, is
selected as a symmetric region centered at the origin, i.e., I = {-N,-N+1,...,—1,0,1, ..., N}.

The causal FIR filter can be obtained by simply delaying h[n] by N samples.

The problem of designing an FIR filter consists of determining the impulse response
sequence, h[n], or its system function, H(z), so that given requirements on the filter response
are satisfied. The filter requirements are usually specified in the frequency domain, and only
this case is considered here. The frequency response, H(e’“), corresponding to the impulse
response h[n|, with a support, I, is expressed as

H(e™) =" h[n]e " . (2)
nel
Notice that H(e?*) is a periodic function with period 2. This implies that by defining H (e/*)

in the region {—7 < w < 7} the frequency response of the filter for all w € R is determined.

Filter specifications are usually given in terms of the magnitude response, |H(e’“)|. In
most applications a two-level magnitude design, where the desired magnitude levels are either

1.0 (in passbands) or 0.0 (in stopbands) is of interest.

Consider the design of a lowpass filter whose specifications are shown in Figure .



The magnitude of the lowpass filter ideally takes the value 1.0 in the passband region, F, =
[—wp,wp|, and 0.0 in the stopband region, F; = [—7, —w,] U[wp, 7]. As magnitude discontinuity
is not possible with a finite filter support it is necessary to interpose a transition region, Fj,
between F), and F;. Also, magnitude bounds 1 — §, < |H(w)| < 1+ 6, in the passband, F,
and |H(w)| < d, in the stopband, Fj, are specified, where the parameters ¢, and d, are positive
real numbers, typically much less than 1.0. Consequently, the lowpass filter is specified in the
frequency domain by the regions, F},, F§, and the tolerance parameters, d, and d,. Other widely
used filters, bandpass and highpass filters are specified in a similar manner. The FFT based

procedure can easily accommodate arbitrary magnitude specifications as well.

In order to meet given specifications, an adequate filter order (the number of non-zero
impulse response samples) needs to be determined. If the specifications are stringent, with
tight tolerance parameters and small transition regions, then the filter support region, I, must
be large. In other words, there is a trade-off between the filter support region, I, and the
frequency domain specifications. In the general case the filter order is not known a priori and
may be determined through an iterative process. If the filter order is fixed then the tolerance

parameters, d, and d5, must be properly adjusted to meet the design specifications.

Phase linearity or “zero phase” condition is important in many filtering applications
[3, 10] and the discussion here is limited to the case of “zero phase” design, with a purely
real frequency response. The term “zero phase” is somewhat misleading in the sense that the
frequency response may be negative at some frequencies. In frequency domain the zero-phase

or real frequency response condition corresponds to
H(e™) = H*(e™), (3)
where H*(e’“) denotes the complex conjugate of H(e’*). The condition (3) is equivalent to
hln] = W] (4)

in time-domain. Making a common practical assumption that h[n] is real, the above condition



reduces to

hln] = h[=n], (5)
implying a symmetric filter about the origin.
3. Iterative Design Method

We now consider the FFT based design procedure which leads to an equiripple frequency
response. In this method we formulate the zero-phase FIR filter design problem in such a way
that time and frequency domain constraints on the impulse response are alternately satisfied
through an iterative algorithm [6, 7]. The iterative algorithm requires two FFT computations

in each iteration.

The frequency response, H(e’“), of the zero-phase FIR filter is required to be within
prescribed upper and lower bounds in its passbands and stopbands. Let us specify bounds on

the frequency response H (e’*) of the FIR filter, h[n], as follows
Hiy(e) — Ey(w) < H(e) < Hiy(e'*) + Ey(w) w € F,, (6)

where H,4(e’*) is the ideal filter response, F4(w) is a positive function of w which may take
different values in different passbands and stopbands, and F, is the union of passband(s) and
stopband(s) of the filter (note that H(e’) is real for a zero-phase filter). Usually, E;(w) is

chosen constant in a passband or a stopband. For instance,

1, if weF,
Hig(w) = (7)
0, if weF,
and
0y, if weF
Ejw)={ " g (8)
ds, if we F;

for the low-pass filter example of Section 2. Inequality (6) is the frequency domain constraint

of the iterative filter design method.

In time domain the filter must have a finite-extent support, I which is symmetric region

around the origin in order to have a zero phase response (or to achieve phase linearity). The
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time domain constraint requires that the filter coefficients must be equal to zero outside the
region,

I={n=-N,-N+1,..,—1,0,1,... N}. (9)

The iterative method begins with an arbitrary finite-extent, real sequence hoy[n] that is
symmetric ( hg[n] = ho[—n]) around the origin. Each iteration consists of making successive
imposition of spatial and frequency domain constraints onto the current iterate. The k-th

iteration consists of the following steps:

e Compute the Fourier Transform of the k-th iterate hy[n] on a suitable grid of frequencies

by using an FFT algorithm,

e Impose the frequency domain constraint as follows
Hig(e’) + Eg(w) if Hy(e™) > Hig(e™) + Eq(w),
Gr(€’) =3 Hig(e?) — Eg(w) if Hy(e’) < Hig(e®) — By(w), (10)
Hy(e?) otherwise.

e compute the inverse Fourier Transform of Gy (e’), and

e zero out gi[n| outside the region I to obtain Ay ;.

The flow diagram of this method is shown in Figure . It can be proven that the iterative FIR
filter design algorithm is globally convergent, if there exists a solution satisfying both of the

conditions (6) and (9).

This method requires the specification of the bounds or equivalently, E4(w), and the filter
support, I. If the specifications are too tight then the algorithm does not converge. In such a
case one can either progressively enlarge the filter support region, or relax the bounds on the

ideal frequency response.

The size of the FFT algorithm must be chosen sufficiently large. The passband and
stopband edges are very important for the convergence of the algorithm. These edges must be

represented accurately on the frequency grid of the FFT algorithm.



Let us now consider an example. We use this example to compare the FTT based design

method with the well-known Parks-McClellan algorithm [9].

Ezxample 1: A zero phase half-band filter whose passband and stopband are odd-symmetric

around w = /2 is to be designed. The desired frequency response of the filter is given as follows

. 1, we{0<w<0.4r}
Hid(ej‘”) = (11)
0, we{0.6r <w< 7}

The tolerance parameters are chosen as ¢, = d; = 0.05. In this case a filter of order 11 satisfies
the above requirements. The values of the filter coefficients which are obtained after 20 itera-
tions are shown in Table 1-a. Notice that the coefficients, h[2n],n # 0 are negligible compared
to h[0]. Theoretically these coefficients must be equal to zero due to the odd-symmetric fre-
quency response of the filter. The frequency response of this filter is depicted in Figure . It is

an equiripple approximation to the desired frequency response.

The same filter is designed using the Parks-McClellan algorithm. The filter coefficients

are listed in Table 1-b and they are very close to the coefficients of the FF'T based method.
4. Multidimensional FIR Filter Design

Extension of the design method to higher dimensions is straightforward. The design of
a Multi-Dimensional M-D filter with desired frequency response, H (e/“1, /%2, ... e/“m) can be
carried out by defining a multidimensional constraint function F(w;, ws, ...,wy,) as in 1-D case.
Every iteration of the design method requires two Multi-Dimensional (M-D) FFT computations
[8]. Since there are efficient FFT routines, M-D FIR filters with large orders can be designed

by using this procedure.

Example 2: Let us consider the design of a circularly symmetric lowpass filter. Maximum
allowable deviation is 6, = d; = 0.05 in both passband and stopband. The passband and
stopband cut-off boundaries have radius of 0.437 and 0.637, respectively. This means that the
2-D tolerance functions, E4(w1, ws) = 0.05, in the passband and the stopband. In the transition

band the frequency response is conveniently bounded by the lower bound of the stopband and
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the upper bound of the passband. The filter support is a square shaped 17 x 17 region. The

frequency response of this filter is shown in Figure .

The shape of the filter support is very important in any M-D filter design method (see
e.g. [8], [11]). The support should be chosen to exploit the symmetries in the desired frequency
response. For example, diamond-shaped supports show a clear advantage over the commonly

assumed rectangular regions in designing 2-D 90° fan filters [12].

Ezxample 3: Let us now consider an example in which we observe the importance of filter
support. We design a fan filter whose specifications are shown in Figure . Maximum allowable
deviation is 6, = 6; = 0.1 in both passband and stopband. If one uses a 7x7 square-shaped
support with 49 points then the design specifications cannot be met. However a diamond
shaped support,

Ij={-5<mni+ny <5} -5 <ni —ny <5}, (12)

together with the restriction that
Ije = Iy[Y{m1 + no = 0dd or ny = ny = 0} (13)

produces a filter satisfying the bounds. The filter support region, I4, contains 37 points. The

resultant frequency response is shown in Figure .
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Figure Captions

Figure 1: Frequency response specifications for the lowpass filter (1—46, < |H(w)| < 144,
for w € F, and |H(w)| < 6, for w € F).

Figure 2: Flow diagram of the iterative filter design algorithm.
Figure 3: Magnitude response of the half-band filter of Example 1.
Figure 4: (a) Frequency response and (b) contour plot of the lowpass filter of Example 2.

Figure 5:(a) Specifications and (b) frequency response of the fan filter designed in Example
3.

Table Caption

Table 1: Linear phase filter coefficients obtained by (a) the FFT based method; (b)
Parks-McClellan algorithm.
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