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ABSTRACT

A class of biorthogonal systems leading to linear-phase
wavelets is presented. A notable feature of this structure
is that the wavelets are derived from a filter bank where
the lowpass analysis filter is constrained to be a halfband
filter. We derive FIR biorthogonal solutions from a pair of
Lagrange halfband filters. We also consider IIR biorthogo-
nal solutions based on a pair of zero-phase halfband filters
derived from Butterworth halfband filters.

1. INTRODUCTION

Multiresolution signal representation based on wavelets or
filter banks has drawn considerable attention recently [1}-
[Sd] and found applications in areas such as image coding,
edge detection, computer vision, texture discrimination,
radar imaging, etc. Wavelets are functions whose transla-
tions and dilations provide an expansion of functions be-
longing to L?(R), and it is known that wavelet solutions
have a close relationship with filter banks [2]. The per-
fect reconstruction (PR) filter bank, in general, provides
biorthogonal solutions [6]-[8]. In a special case where the
paraunitary condition is satisfied, the system is known to
be orthonormal, and is related to the conjugate mirror fil-
ter bank [2, 9, 10]. When the phase linearity is required,
the only possible paraunitary solution is the Haar solution.

In this paper we present a class of PR systems which
leads to linear-phase wavelet solutions. In section 2 we
consider a recently developed technique [11] for the syn-
thesis of PR filter banks. Within this structure, in sec-
tion 3 we then make a special selection of filter compo-
nent based on a pair of Lagrange interpolation filters [12]
which leads to linear-phase wavelets with the characteris-
tics exhibited in regular wavelets. We also show that filter
component based on Butterworth halfband filters [13] gen-
erates smooth wavelets.

2. FILTER BANKS

Consider the two-channel analysis/synthesis filter bank as
shown in Figure 1. The z - transform of the output can be
expressed as
Y (z) = [Ho(2)Go(2) + Hi(2)G1(2)] X (2) 1)
+[Ho(—2)Go(2) + H1(—2)G1(2)] X (—2).

The perfect reconstruction condition (PRC) is given by the
following two equations:

Ho(2)Go(z) + H1(2)G1(z) = 277, (2)

H (o) j2—=>~ 1260
x() y()

o |2 =D~ = {260

Figure 1: Two-channel analysis/synthesis filter bank.

and

Ho(~2)Go(2) + Hi(—2)G1(2) =0 (3)
where n, € Z, the set of integers. When the PRC is met,
the reconstructed signal is then the exact replica of the
input signal except for a delay, i.e., y(n) = z(n — n,), and
the system is known as a PR system.

2.1. A Class of PR Systems
We note that (3) is satisfied if we choose
Go(z) = Hi(-2),

Gi(2) = — Ho(~2). )
With this choice, the PRC is met if
Ho(2)Go(z) — 32" €T (5)

for some n, € Z,, the set of odd integers. Here 7 is a set
defined as

oo

T ={E(z*): B(z")= Y e(2n)z""}. (6)

n=-—00

The product filter Ho(2)Go(z) in (5) belongs to a special
class of filters known as halfband filters. We say that H(z)
is a halfband filter if there exist k € Z and n, € 2, which
satisfy z*H(z) — 27" € T [14].

Suppose now that Go(z) can be expressed as

Go(z) =GD(Z)+G1(2), (7)
where Gp(z) satisfies
Ho(2)Gp(2) — 32" € T. (8)

Then (2) is satisfied if Ho(2)Gr(z) € 7. It can easily
be seen that Ho(2)G1(z) € T if Gi(z) is in the form of
G1(z) = B(2*)Ho(—z). Thus by choosing Go(z) to be

Go(z) = Gp(=) + B(:*)Ho(—2), (9)
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we can obtain a PR system regardless of the coefficient
values of B(z?) as long as (8) is satisfied. Since the PRC
depends only on Gp(z) and is independent of Gr(z), the
design can be done in such a way that a PR system is first
obtained with mild constraints on the spectral shape of
Gp(z), then the response of Go(2) is further improved by

a proper choice of B(z?).
Halfband Pair Filter Bank (HBPF)

A special case of the above system, where Ho(z) as
well as Ho(z)Go(z) is a halfband filter, is shown below.
This structure turn out to be very attractive in some ap-
plications. We choose Ho(z) to be a halfband filter of the
following form:

Ho(z) = L + 2A(%). (10)

Then Gp(z) which satisfies the PRC is just a pure delay
term z~"°, and Go(z) with n, =1 can be expressed as

(11)

When the frequency responses of zA(2?) and zB(2?) are
real, the phase responses of Ho(z) and Go(z) are linear,
and the wavelets constructed from it have linear phase.
Moreover, proper choices of these components lead to wave-
lets with the characteristics manifested in regular solu-
tions. Some of the salient features of this structure are
that the PRC is always satisfied regardless of the parame-
ter values of A(2%) and B(2%) and that the PR system can
be designed using known prototype filters without solving
a set of linear equations. The HBPF was extended to the
case of 2-D non-rectangular filter banks [15].

Go(z) = 271 [1 +22B(7%) (.17 - zA(z2))] .

3. REGULAR WAVELETS

The condition under which a solution is regular is that
a filter from which wavelets are constructed has enough
number of zeros at z = —1. The sufficient condition for
regularity is described in [2].

We construct linear-phase wavelets based on the HBPF.

Since Go(z) in (11) is dependent of Ho(z) in (10) in, the
multiplicity of zeros of Go(z) clearly depends on the mul-
tiplicities of zeros of Ho(2). The relationship between the
multiplicities of zeros of Ho(z) and Go(z) is given below.
Consider the subfilters 2A(2%) and zB(2?) in (10) and
(11). We constrain the frequency responses of zA(z?) and
2B(2%) to bereal for w € [0, 2x] and —% at w = x. This en-

sures that (i) Ho(z) and Go(z) have linear phase responses,
(i1) Ho(z) = Go(z) =1 at z = 1, and (iii) Ho(z) and Go(2)

have at least one zero at z = —1
Suppose Ho(z) have mpy zeros at z = —1, ie.,
1 h
Ho(z) = ( - ") Fu(2). (12)
Since the frequency response of zB(zz) is constrained to
be —% at z = —1, we can establish the following:
142\™
D(z)=1+2B(z) = (%) Fa(z)  (13)
where mgy is the number of zeros of D(z) at z = —1. Now

assume that the values of F,(z) and Fu(z) at z = —1 are
finite positive real numbers. From (10), (11), (12), and

(13), we can show that the number of zeros of Go(z) at
z = —1 is given by

mg = min[my, m4], (14)
and we can express Go(z) as
1 ™g
Go(2) = (F22) " Fo(a). (15)

The fact that Fa(z) = 1 and Fg(z) = 1 at z = 1 fol-
lows from the constraints imposed on zA(2?) and zB(z?).
When Hoéz) and Go(z) satisfy the underlying assumptions
made in deriving the regularity condition, regularity can
be tested according to the criterion given in [2g]

From (12) and (15), we can make the wavelet corre-
sponding to the analysis section more regular at the ex-
pense of the one corresponding to the synthesis section (or
vice versa), without losing the PR property, by exchanging
the (‘—'F) terms between Ho(z) and Go(z). This is easily
done by choosing a new set of lowpass filters Hp(z) and
Go(z) as

Hi(z) = (42)™" 77 Fa(a),
Gh(z) = (1£2)™*™ Fo(2).

In order for H{(z) and Gp(z) to have at least one zeros
at z = —1, the range of m, should be chosen such that
—-mg < my < mp. Here H‘S(z)l is not a halfband filter
unless m, = 0. The proper choice of m, may depend
on the desirable spectral shapes of lowpass filters and the
degree of regularity.

(16)

4. FIR SOLUTIONS

A special case of linear phase FIR halfband filters can be
obtained by choosing the filter coefficients according to
the Lagrange interpolation formula [12], and the transfer
function of a Lagrange halfband filter can be expressed as

H(z) =% +:C(K,7°) 17)
where
K
C(K,2*) = Y _ oK, n)(z7"" + 22" %) (18)
and
n - 2K .
s el | PGS dd) (19)

(K—a)(K-1+n)(2n—-1)

Here the index K is used to indicate that the filter has
duration 4K — 1. In I[16]Lit was shown that a proper com-
bination of factors of a Lagrange halfband filter could be
chosen to get linear phase filters with simple coefficients.
With imposition of regularity, the partition of a Lagrange
halfband filter also provides solutions to the design pro

lem [8] where a halfband filter with the largest number of
zeros at z = —1 are desired. The difference in our ap-
proach is that we use a pair of Lagrange halfband filters
to derive a set of filters, and no factorization is needed.

Vhen A(z?) and B(z?) are chosen as

A(2?) = C(Ka4,7%)

B(:?) = C(K,, ), (20)
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Ho(z) and Go(z) have multiple zeros at z = —1 with the
multiplicities of mp = 2K, and m, = min[2K,, 2Ks)], re-
spectively. For any K, > 1, Ho(z) satisfies the regularity
condition. In the case of the synthesis filter Gogz), various
examples that we tried showed that the iterated piecewise
constant function as defined in [2] converged to a contin-
nous function for K,, Ky > 2. In Figure 2 we plot the
scaling functions @5 (2), ¢4(2) and the wavelets ¥p(t), ¥qo(t

constructed with K, = I(g;, = 4. Here the subscripts & an

g are used to indicate that they correspond to the analy-
sis section and the synthesis section, respectively. Fourier
transforms of these scaling functions and wavelets are also
shown in Figure 2.

5. IIR SOLUTIONS

An efficient sampling rate alteration scheme based on all-
pass sections was proposed in [13]. Our interest here is one
particular form of this structure, namely, the Butterworth
halfband filter. A Butterworth halfband filter of order N,
where N is an odd integer, has N zeros at z = —1. This
fact makes a Butterworth halfband filter a good choice for
constructing smooth scaling functions and wavelets. Phase
linearity, however, can not be achieved, as is the case with
all causal IIR filters with rational transfer functions. When
non-causal filtering is allowed, a zero-phase response can
be obtained by cascading a causal filter with its anti-causal
version.

Define H'(z) to be H(2)H(z~') where H(z) is a But-
terworth halfband filter of order N = 2K + 1. The new
filter H'(z) is also a halfband filter and has a linear phase

response. The transfer function of H'(z) can be expressed

as
H'(z) =} + zU(K, 2%) (21)
where
U(K,2%) =L (W(K, %) + 2 W(K,27%)) (22)
and X
2 2 _nm
1 z° cot +1
W(K,2?) = = K41
(K2 =3 H 7 F cot? 7, (23)
With the choice of
A(2%) = U(Ka, 7%) (24)

B(2?) = U(Ks, 7%),

we have mp = 4K, + 2 and my = min[4Ka, + 2,4Kp + 2].
The scaling functions and the wavelets constructed wit
K, = Ky = 1 and corresponding Fourier transforms are
shown in Figure 3.

6. CONCLUSIONS

In the paper we showed that linear-phase regular wavelets
could be constructed using the HBPF with suitably chosen
components. The HBPF always satisfies the PR property.
The filter components which lead to regular solutions are
obtained from a pair of Lagrange halfband filters for the
non-recursive case. For the non-causal recursive case, we
showed that the HBPF derived from Butterworth halfband
filters resulted in smooth wavelets with linear-phase. The
hybrid structure where one of the components zA(z?) and

2B(2?) is derived from Lagrange halfband filters and the
other from Butterworth halfband filters can also be used
for the same application. In the non-recursive case the
filter coefficients are simple and can be implemented with
shift and add operations. Some of the examples of wavelets
were shown.
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Figure 2: Examples of an FIR solution with K,, K; =
4 é‘,l) scaling functions: ¢4(t) - solid; ¢,4(¢) - dotted,
(b) wavelets: 14(t) - solid; 1, (¢) - dotted, (c) modulus
of Fourier transforms ¢4(w) and t4(w), (d) modulus
of Fourier transforms qu(w) and P, (w).
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Figure 3: Examples of an IIR solution with K,, Kj =
1 E:) scaling functions: ¢4 (t) - solid; ¢,(2) - dotted,
(b) wavelets: 5 (2) - solid; ¥,4(¢) -dotted, (c) modulus
of Fourier transforms ¢s(w) and 94 (w), (d) modulus
of Fourier transforms ¢,(w) and t,(w).
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