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ABSTRACT 

An affine invariant function for object recognition is constructed from wavelet 

coefficients of the object boundary. In previous works, undecimated wavelet transform 

was used for affine invariant functions. In this paper, an algorithm based on decimated 

wavelet transform is developed to compute the same affine invariant functions. As a 

result computational complexity is reduced without decreasing recognition performance. 

Experimental results are presented. 

1 INTRODUCTION 

Object recognition is an important problem in computer vision and pattern analysis [1-6]. 

In this paper, recognition of objects from their boundaries that are subject to affine 

transformations is considered. The affine transformation includes rotation, scaling, 

skewing and translation. It preserves parallel lines and equispaced points along a line. In 

some cases, the affine transformation can also be used to approximate the perspective 

transformation [1]. 
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     Several features that are linear under an affine transformation were developed in the 

literature. The most commonly used ones are affine arc length [7], affine invariant 

Fourier descriptors [2], and moment invariants [3]. Recently, dyadic wavelet transform 

was also used to develop several affine invariant functions [5,10]. These functions are 

constructed from undecimated wavelet coefficients which are produced after computing 

the wavelet transform of a curve corresponding to the boundary of the object. In this 

paper, an algorithm based on decimated wavelet transform is developed to compute the 

affine invariant functions proposed in [5]. This leads to a computationally efficient object 

recognition scheme.  

         The paper is organized as follows: In Section 2, some background information on 

affine invariant functions is presented. In Section 3, the computationally efficient 

algorithm is presented. In Section 4, experimental results are presented. In addition, a 

new object recognition scheme based on linear combination of affine invariant functions 

constructed from multiple resolution wavelet coefficients is presented. It is observed that 

recognition performance is comparable to other wavelet based schemes.  

2 BACKGROUND 

Consider a parametric curve {  with parameter t on a plane. A point on the curve 

under an affine transformation becomes 

)}(),( tytx

 

)()()(~
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Equations (1) and (2) can be rewritten in matrix form as follows: 
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where the nonsingular matrix  represents the scaling, rotating, and skewing 

transformation and the vector 

A

B  corresponds to the translation. Jacobean, J, of the 

transformation is )221 AbabaJ det(1 =−= . 

        Let  be an affine invariant function and )(tI )(~ tI  be the same invariant function 

calculated using the points that are subject to the affine transformation. The relation 

between the two invariant functions can be formulated as: 

 

ωIJI =~              (4) 

 

The exponent ω  is called the weight of the invariance. If 0=ω , then I  is called an 

absolute invariant, else it is called a relative invariant. 

3 AFFINE INVARIANT FUNCTIONS USING DECIMATED WAVELET 

COEFFICIENTS 

Wavelet transform was used to recognize planar objects under the similarity 

transformation in [8, 9]. Affine invariant functions using the dyadic wavelet transform 

was derived by Tieng and Boles [10] and  Khalil and Bayoumi [5]. The main difference 

between [10] and [5] is that, in [10] two dyadic levels were used, whereas in [5],  a 
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wavelet-based conic equation was introduced. This leads to an affine invariant function 

of six or more dyadic levels. 

       Discrete dyadic wavelet transform (DWT) of a signal is implemented using halfband 

lowpass and highpass filters forming a filterbank together with downsamplers [11]. The 

filterbank produces two sets of coefficients: orthogonal detail (or wavelet) coefficients 

which are the even outputs of the highpass filter, and the approximation coefficients 

which are the even outputs of the lowpass filter. Samples with odd indices are dropped by 

the downsamplers in decimated implementation. Due to downsampling computational 

cost of implementing DWT drops to O(NlogN) (even to O(N) for some wavelets).  

      Let us denote the wavelet transform of the signal at the resolution level  (or 

scale) i  asW , then the wavelet transform of (1) and (2) will be 

)(tx

)(txi

 

)()()(~
21 tyWatxWatxW iii +=            (5) 

 

)()()(~
21 tyWbtxWbtyW iii +=            (6) 

 

Note that W  because of the highpass filter. .000 == bWa ii

      Let the signal pair  and  represent the boundary of an object. An affine 

invariant function for an object using the wavelet coefficients of signals  and for 

two  can be defined as 

)(tx )(ty

)(tx )(ty

)(  , jiji ≠

 

)()()()()( txWtyWtyWtxWtf jijiij −=            (7) 
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It can be easily shown that 

 

)()det()(~)(~)(~)(~)(~ tfAtxWtyWtyWtxWtf ijjijiij =−=           (8) 

 

This invariant function  defined in [5] uses only the detail coefficients calculated at 

two different levels. In [10] another affine invariant function using both the detail and 

approximation coefficients of the same dyadic level is defined. In [5] Equation (7) is also 

used to construct a wavelet-based conic equation leading to an affine invariant function 

based on six dyadic levels. 

)(tf ij

      All of the invariant functions defined in [5, 10] are computed using the undecimated 

implementation of the wavelet transform (WT) which does not use downsampling 

operation after filtering. This dramatically increases the computational cost of the wavelet 

transform. If the length of the original signal is N, then for the undecimated wavelet 

transform, length-N signals are filtered at each level. However, in the decimated 

implementation of the wavelet transform, the signal length is halved due to 

downsampling operation performed after each filtering step. In this paper, we develop an 

algorithm to compute the affine invariant function defined in (7) using the orthogonal 

decimated wavelet transform scheme. The wavelet signal W , at resolution scale )(txi 1=i  

can be expressed as  

 

1     ,)()( =−=∑ iktwdtxW ki     (9) 
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where kd

2

 are the wavelet coefficients computed using a decimated filterbank at 

resolution scale i  and  is the so-called mother wavelet. If the length of the data is 

N (N=512 is chosen in this paper) then the limits of summation in (9) go from  to 

 assuming a circular computation of the WT. Similarly, W  can be expressed 

for   as follows 

1= )(tw

0=k

Nk =

=j

)(tyj

 

∑ −= )2/()( ltwetyW lj            (10) 

 

where le   are the wavelet coefficients at resolution scale 2=j . In this case the limits of 

the summation go from to 0=l 2/Nl =  due to downsampling. Let us assume that w  

is the  Haar wavelet, i.e., 

)(t

 

otherwise ,0)(  ,15.0for     1)(  ,5.00for    1)( =<<−=<<= twttwttw        (11) 

 

The first term of (7) can be expressed as  

  

∑∑ ==−−= 2  1,for     )2/()()()(  jiltwktwedtyWtxW lkji                 (12) 

 

Direct computation of (12) and the affine invariant function defined in (7) requires 

 and  multiplications, respectively. However, notice that 

,  

2/NN ×

2/()( twtw

NN ×

)()() tw= ,1for      ,0)2/( >=− kktwtw  since the Haar wavelet has a 

compact support with length 2. Similarly, )2()12/()2( −=−− twtwtw  
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=
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 etc. By taking advantage of these relations the double 

sum in (12) can be reduced to a single summation as follows: 
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Computation of the right hand side of (13) requires only N multiplications. The affine 

invariant function, ,1+= j  can be expressed as  
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where  is the wavelet of the resolution scale i , , and e  are the 

wavelet coefficients of the signals x and y at resolution level i, respectively. An important 

feature of this equation is that it can be computed using the computationally efficient 

orthogonal wavelet transform as the wavelet coefficients , and  can be computed 

using a filterbank having downsamplers. Equations (13) and (14) are developed for the 

specific case of  . However similar equations with O(N) complexity can be 

easily developed to any i, j values because ,..., 

, and 0, otherwise etc due to the fact that  has a 

compact support. Since all the affine invariant functions developed in [5] are based on 

 they can be computed using decimated wavelet transform.  As a result significant 

amount of computational savings can be achieved. In the undecimated WT 

implementation, length-N signals are filtered at each level whereas in decimated 
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implementation  signals are filtered at resolution level i and the final stage 

of constructing  requires only O(N) arithmetic.  

iN 2/-length

)(tf ij

 1, 0,=t

)( wtw

           Although the decimated wavelet coefficients are translation variant Equation (14) 

is translation invariant as the continuous-time function  can be computed for all t 

values using the right hand side of (14). In practice  is computed for uniformly 

spaced  points  in [10] and in this paper.  

)(tf ij

)(tijf

512=N 511 ...,

           Equation (14) is obtained by taking advantage of the fact Haar wavelet has 

compact support. Some computationally efficient signal reconstruction algorithms from 

WT also take advantage of this fact [12]. In fact, all wavelets constructed from FIR filters 

have compact support. Therefore the double summation in (7) can be reduced to a set of  

single summations as in (13) for all compactly supported wavelets and equations similar 

to (14) can be obtained as well. For example, widely used Daubechies-4 wavelet   has a 

compact support of length 6, i.e., .0 and ,6for   ,0)( <>= tttw

.3for  ,0 >

 In the case of    

Daubechies-4 wavelet  )2/( =− kkt  This leads to a slightly higher 

computational cost than Haar wavelet but longer wavelets are more robust to noise 

compared to Haar wavelet.  In general the length of data N (e.g., N=512) is much higher 

than the support length of most wavelets. Therefore computational savings are 

significant. 

4 EXPERIMENTAL RESULTS 

Since a computationally efficient algorithm is developed in the previous section for the 

affine invariant functions developed in [5] it is natural that we get the same simulation 

results. In [5] simulation results are obtained by using a conic equation based affine 

invariant function using six dyadic resolution levels. In addition, we also present a new 
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practical object recognition scheme using multiple resolution wavelet coefficients in this 

section. 

        In this scheme,  invariant functions  for a given test object are calculated by 

using consequitive pairs of resolution levels ( . 

Corresponding  invariant functions for each model object are kept in a database. The 

correlations between the   invariant functions of the test object and each model object 

are calculated to get  correlation values , which are defined as  

k )(tf ij

R ..., , 2

),( ..., ),,(  ),, 1122111 +++ kk iiiiii

k

k

kRR  ,1
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where  and  represent the invariant functions. The final decision function 

between the test object and any model object is found by linearly combining the  

correlation values as follows:   

)(1 tI )(2 tI

k

 

kkfinal RRRR ννν +++= ...2211          (16) 

 

where  1...21 =+++ kννν .  As a rule of thumb more weight should be given to 

resolution levels containing more signal energy to obtain robustness against noise. This 

approach gives us also the flexibility of sampling   in a nonuniform manner, i.e., at 

the resolution level pair ( ,  f

)(tf ij

()12,2( ii +

)1+, 11 ii )()11,1( tf ii +

,( 22 ii

(i1,i1+1) (t) can be computed at N=512 points 

but at the next resolution level pair ,  can be computed at N=256 )1+ )tf
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points etc. to achieve computational savings in computing the correlation functions 

defined in (15). 

            The experiments to test the effectiveness of the proposed object recognition 

method are carried out with airplane images that were also used in [5]. The same type of 

wavelet used in [5] are used in the experiments. There are 20 model images in the 

database. 10 test images are constructed by applying random affine transformations to 

randomly chosen 10 of the model images. The boundary signals of all the objects are 

normalized to length 512. The correlation values between the test image and the model 

images are calculated and the result is determined according to the model producing the 

highest correlation value. The experiments are carried out with two different levels of 

uniformly distributed random noise which is added to the boundaries of the test images. 

The signal to noise ratio (SNR) is defined as in [5]. In the first set of experiments the 

SNR is about 50 dB, and in the second set of experiments the SNR is about 20 dB. Table 

1 gives the highest five correlation values for each test image with SNR 50 dB, and Table 

2 gives the highest five correlation values for each test image with SNR 20 dB. In all 

experiments, correct recognition results are obtained as in [5]. In both cases of high and 

low noise power, the highest correlation value is produced with the model image from 

which the test image is constructed by applying a random affine transformation. 

In all experiments summarized in Tables 1 and 2, resolution level pairs (4,5),  (5,6) and 

(6,7) are used to calculate the invariant functions  and the corresponding weights 

are chosen as 

)(tf ij

3.0 ,3.0 ,4.0 321 === ννν , respectively. In these experiments, low and high 

noise levels are used, and the recognition success rate is 100%. In another set of 

experiments the correlations of affine invariant functions of resolution level pairs (2,3), 
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(3,4), (4,5),  (5,6) and (6,7) are linearly combined with weights 0.2, 0.3, 0.3, 0.1, and 0.1, 

respectively. Perfect recognition results are achieved at low noise case. However at high 

noise power, it turns out that the wavelet coefficients of levels 2 and 3 are very noisy and 

objects are not recognized correctly.  

5 CONCLUSION 

The problem of 2D object recognition using affine invariant functions is considered. In 

previous works, undecimated wavelet transform was used for constructing affine 

invariant functions. In this paper, an algorithm based on decimated wavelet transform is 

developed to compute the same affine invariant functions. As a result computational 

complexity is reduced without decreasing recognition performance. It is experimentally   

shown that the invariant function detects the affine transformed objects with high 

accuracy. 
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Table 1 
The Best Five Matches Between the Test Images and the Model Images 

for Small Noise Level 
 

Test 
Image 

1. 2. 3. 4. 5. 

1 0.9997     0.9225     0.8837     0.7937        0.6210   

2 0.9986     0.6248     0.5005     0.4521     0.4304     

3 0.9996     0.7174     0.6474     0.5942     0.3490     

4 0.9998     0.9185     0.8219     0.6925     0.6255     

5 0.9996 0.6564 0.5654 0.5276 0.4760 

6 0.9995     0.6432     0.4841     0.4209     0.3631     

7 0.9992     0.6437     0.5695     0.5087     0.4406     

8 0.9994     0.7603     0.6855     0.6197     0.5014     

9 0.9976     0.5770     0.4906     0.3837     0.3126     

10 0.9985 
 

0.6445 0.5886 0.5655 0.4765 
 

 
Table 2 

The Best Five Matches Between the Test Images and the Model Images 
for High Noise Level 

Test 
Image 

1. 2. 3. 4. 5. 

1 0.9617 0.8870 0.8407 0.7635 0.5971 

2 0.8602 0.5658 0.4822 0.4378 0.3891 

3 0.9534 0.6801 0.6109 0.5557 0.3504 

4 0.9750 0.8935 0.8010 0.6790 0.6034 

5 0.9512 0.6459 0.5484 0.5107 0.4628 

6 0.9376 0.6265 0.4883 0.4008 0.3642 

7 0.9089 0.6144 0.5457 0.4818 0.3965 

8 0.9148 0.6858 0.6280 0.5524 0.4859 

9 0.7869 0.5612 0.4625 0.4074 0.3401 

10 0.8552 0.6181 0.5478 0.4986 0.4324 
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