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Overview of Wavelet Course
● Sampling theorem and multirate signal processing
● Wavelets form an orthonormal basis of L2(R)
● Time-frequency properties of wavelets and scaling 

functions
● Perfect reconstruction filterbanks for multirate 

signal processing and wavelets
● Lifting filterbanks
● Adaptive and nonlinear filterbanks in a lifting 

structure
● Frames, Matching Pursuit, Curvelets, EMD, ...
● Applications



Wavelets form an orthonormal 
basis of  L2  :

●  Wavelet (transform) coefficients:

● Countable set of coefficients: k,l are integers
● There are many wavelets satisfying the above equation



Wavelet coefficients

● Mother wavelet             may have a compact 
support, i.e., it may be finite-extent =>
wavelet coefficients have temporal information 

● The basis functions are constructed from the 
mother wavelet by translation and dilation

● Countable basis functions:                                        
            

● Wavelets are orthonormal to each other
● Wavelet is a  “bandpass” function
● In practice, we don't compute the above integral!



Multiresolution Framework
Let w(t) be a mother wavelet:

k= -1

k=0

k=1



Fourier Transform (FT)
● Inverse Fourier Transform

●               does not have a compact support, i.e.,  it is 
of infinite extent : - ∞ < t < ∞ => no temporal info

●            is also a bandpass function => delta at ω
● F(ω) is a continuous function (uncountable) of ω

● Uncountablity => integral in FT instead of 
summation in WT



Example: Haar Wavelet

Corresponding scaling function:

● Haar wavelet is the only orthonormal wavelet with 
an analytic form 

● It is not a good wavelet !



Wavelet and Scaling Function Pairs

● It is possible to have “zillions” of ortogonal 
mother wavelet functions

● It is possible to define a corresponding scaling 
function                 for each wavelet

● Scaling function is a low-pass filter and it is 
orthogonal to the mother wavelet

  
●  Scaling coefficients (low-pass filtered signal 

samples):             



Wavelet and Scaling Function 
Properties-II
● Scaling function φ(t)  is not orthogonal to φ(kt) 
● Wavelet ψ(t) is orthogonal to ψ(kt), for all integer k
● Haar wavelet:

φ(t) = 1φ(2t) + 1φ(2t-1)
ψ(t) = 1φ(2t) - 1φ(2t-1)

● Haar transform  matrix:   1    1
                                             1   -1
  
● Daubechies 4th order wavelet:   
ψ(t) = [(1-√3)φ(2t) -(3-√3)φ(2t-1)+(3+√3)φ(2t-2) -(1+√3)φ(2t-3)]/4√2

φ(t) =[(1+√3)φ(2t)+(3+√3)φ(2t-1)+(3-√3)φ(2t-2)+(1-√3)φ(2t-3)]/4√2



Wavelet family (... ψ(t/2), ψ(t), ψ(2t), 
ψ(4t),..) covers the entire freq. band
● Ideal passband of ψ(t):  [π,2π]
● Ideal passband of ψ(2t): [2π,4π]
● Almost no overlaps in frequency domain: 

● Scaling function is a low-pass function:
● Ideal passband of φ(t):  [0,π]
● Ideal passband of φ(2t): [0,2π]
● Scaling coefficients: low-pass filtered signal samples of x(t):    

    



Daubechies 4 (D4) wavelet and the 
corresponding scaling function
● D4 and D12 plots: 

● Wavelets and scaling functions get smoother as the 
number of filter coefficients increase

● D2 is Haar wavelet



Multiresolution Subspaces of L2(R)

●

●

●

●

●

●

●

● An ordinary analog signal may have components in all of the 
above subspaces:                                              ≠ 0 for all k

●

● A band limited signal will have c
l,k

= 0 for  k > K



Properties of multiresolution 
subspaces V

j



Wavelet subspaces

● Wo  = span{ ψ(t-l), integer l },...

● Wj does not contain Wk,   j>k (but Vj does contain Vk)
● It is desirable to have Vj to be orthogonal to  Wj 



Geometric structure of subspaces

●

●

●

●

●

●

●

●

●

● Wj+1 is the “z-axis”, Vj+2 is the 3-D space ...



Ideal frequency contents of wavelet 
and scaling subspaces:
●

●

●

●

●

●

● Subspace Vo contains signals with freq. content [0,π]
● Subspace Wo contains signals with freq. content [π,2π]
● Subspace V1 contains signals with freq. content [0,2π]
● Subspace W1 contains signals with freq. content [2π,4π]
● Subspace V2 contains signals with freq. content [0,4π]



Structure of subspaces:

●

●

●

●

●

●

●

●

●

● Geometric analogy: each wavelet subspace adds 
another dimension



Projection of a signal onto a 
subspace V0

● Projection  x
o
(t) of a signal x(t) onto a subspace Vo 

means:  1st  compute:

                                                                        for all integer n

          and form  x
o
(t) = ∑

n
 c

n,o
 φ (t-n) which is a smooth 

approximation of the original signal x(t)
● This is equivalent to low-pass filtering x(t) with a 

filter with passband [0,π] and sample output with T=1
● As a result  we don't compute the above integrals in 

practice:              x
o
(t)=∑

n
 x

o
 [n] φ (t-n) 



Sampling ≈ Projection onto V 
subspaces

●

●

●

●

●

●

●

●

●

 Regular sampling: f
lp
(t) = ∑ f

lp 
[n] sinc(t-n)



Sampling-II

f
1
(t)=∑

n
 f

1
 [n] φ (2t-n) is a better approximation than f

o
(t)



Projection onto the subspace Vj (freq. 
content: [0, 2jπ])

●

●

●

●

●

●

●

●

●

●

This is almost equivalent to Shannon sampling with T=1/2j



Wavelet Equation (Mallat)

● Wo Ϲ V1   =>
                     ψ(t)=√2 ∑

k
  d[k]φ(2t-k)

● d[k]=√2  < ψ(t), φ(2t-k) >,  ψ(t)=2∑
k
  g[k]φ(2t-k) 

● g[k]=  √2 d[k] is a discrete-time half-band high-pass 
filter

● Example: Haar wavelet
     ψ(t) = φ(2t) – φ(2t-1) => d[0]=√2/2 , d[1]= -√2/2
●  g and d are simple discrete-time high-pass filters 



Scaling Equation

● Subspace Vo is a subset of  V1   =>
                           φ(t)=2 ∑

k
  h[k]φ(2t-k)

       where h[k]=√2  < φ(t), φ(2t-k) >
● h[k]=   √2 c[k] is a half-band discrete-time low-

pass filter with passband: [0,π/2]
● In wavelet equation g[k] is a high-pass filtre with 

passband  [π/2,π]



Fourier transforms of wavelet and 
scaling equations

Orthogonality
Condition:

H(eiw), G(eiw) are the discrete-time Fourier transforms of h[k] & g[k], 
respectively.



Two-channel subband 
decomposition filter banks 

(Esteban&Galant 1975)
●

●

Filterbanks in multirate signal processing: low-pass and high-pass filter the input 
discrete signal                                                                                    low resolution
x[n] and downsample                                                                  subsignal                
outputs by a factor                                                                            
of 2:   

It is possible to reconstruct the original signal from subsignals using the synthesis filterbank     
                                                                                   

detail subsignal



Wavelet construction for 
Multiresolution analysis

● Start with a perfect reconstruction filter bank:
●

●

●

●

●

● But we don't compute inner products with Ψ(t) and 
φ(t) in practice!

● We only use the discrete-time filterbanks!



Filter Bank Design (Daubechies in 1988 
but earliest examples in 1975)

●

●

●

●

●

●

●

●

●

● Example half-band filters: Lagrange filters p[n]: 
● p[n]= [ ½ 1 ½] ,  p[n] = 2*[-1/32 0 9/32 1 9/32 0 -1/32],...



Mallat's Algorithm (≡ Signal analysis 
with perfect reconstruction filter banks )

You can obtain lower order approximation and wavelet 
coefficients from higher order approximation coefficients:

Reconstruction:

c[k]=h[k]/√2 and d[k]= g[k]/√2 are discrete-time low-pass and 
high-pass filters, respectively



Mallat's Algorithm (≡ Signal analysis 
with perfect reconstruction filter banks )

You can obtain lower order approximation and wavelet coefficients from 
higher order approximation coefficients:

xj[k] =∑
ℓ  

c[ℓ-2k] xj+1[ℓ]                                                            xj[k]

bj[k] =∑
ℓ  

d[ℓ-2k] xj+1[ℓ]

                                                                                                bj[k]

Reconstruction using the synthesis filterbank:

c[k]=h[k]/√2 and d[k]= g[k]/√2 are discrete-time low-pass and high-pass 
filters, respectively

c[-k]

d[-k]d[-k]



Mallat's algorithm (tree structure)

● Obtain xj-1[n] and wavelet coefficients bj-1[n] from xj[n]
● Obtain xj-2[n] & wavelet coefficients bj-2[n] from xj-1[n]
● Obtain xj-3[n] & wavelet coefficients bj-3[n] from xj-2[n]

:

● Wavelet tree representation of xj[n]:
xj[n] ≡ { bj-1[n], bj-1[n],...,bj-N[n]; xj-N[n] }
where bj-1[n], bj-1[n],...,bj-N[n] are the wavelet   
coefficients at lower resolution levels

● Use a filterbank (e.g. Daubechies-4) to obtain the 
wavelet coefficients



Discrete-time Wavelet Transform

● Discrete-time filter-bank implementation:
H is the low-pass and G is the high-pass filter of the wavelet transform 

                                                      xj-3[n] freq. band: [0,π/8]

                                                      bj-3[n] freq. band: [π/8,π/4]

                                    bj-2[n], freq. band: [π/4,π/2]

                     bj-1[n]    freq. band: [π/2,π]

● Subband decomposition filterbank acts like a “butterfly” in FFT
● Perfect reconstruction of xj from subsignals, xj-3[n],..,bj-1[n] is possible
● Both time and freq. information is available but Heisenberg's principle 

applies 

H

Full band
[0,π]

j



Wavelet Packet Transform

Length of x[n] is N => Lengths of vo, v1,v2, and v3 are N/4

Sampling 
period T



Two-dimensional filterbanks for 
image processing



Example
● Cont. time signal x(t) = 1 for t<5 and 2 for t >5
● Sample this signal with T=1 ≡ Project it onto Vo of 

Haar multiresolution decomposition using h={½   ½}, g={½   -½}: 
● x[n] = (... 1 1 1 1 1  2 2 2 2 2 2 2 ....)
● Perform single level Haar wavelet transform:

Lowpass filtered  signal:       (... 1 1 1 1 1.5 2 2 2 2...)
Low-resolution subsignal:    (... 1    1     1.5   2    2...)
Highpass filtered signal:       (... 0 0 0  0 0.5 0 0 0 0...)     
1st scale wavelet subsignal     (... 0   0     0.5    0    0...)

● We can estimate the location of the jump from the 
nonzero value of the wavelet signal

● Haar is not a good wavelet transfrom because the 
wavelet signal of x[n-1] would be (...0 0 0 0 0...) 

downsample by 2

downsample by 2



Toy Example: signal data 
compression
● Original x[n] = (1 1 1 1  2 2 2 2) 
● 8 bits/sample => 8x8=64 bits
● Single level Haar wavelet transform:

Low-resolution subsignal:    (1    1     1.5   2    2)
                                  5*8 bits/pel =40 bits
1st scale wavelet signal:         (0   0    0.5    0    0)
Only store the nonzero value (9 bits) and its location (3 bits)
Total # of bits to store the wavelet signals= 52 bits

● Since 52bits < 64bits it is better to store the 
wavelet subsignals instead of the original signal



Denoising Example
● Original: x[n] = (... 1 1 1 1  2 2 2 2 2 2 2 ....)
● Corrupted: x

c
[n] = (...  1 1.2 1 1  2 2 2 2 2 2 2 ....)

● Single level Haar wavelet transform of x
c
[n]

 using h={√2/2   √2/2 }, g={√2/2    -√2/2}:
Low-resolution subsignal xl= (...1.49 1.59    1.51   2.828    2.828...)
1st scale wavelet signal:           (... -.15   -.06   0.354      0        0...)
Soft-thresholded wavelet signal: xs=(...  0    0    0.354    0       0...)

● Restored signal from xl and xs:
  x

r
[n] = (...  1.1 1.13 1.04 0.98  2 2 2 2 2 2 2 ....)

● Better denoising results can be obtained with higher order 
wavelets using longer filters which provide better smoothing 
of the low-resolution signal



2-D image processing using a 1-D 
filterbank (separable filtering)



2-D image processing using a 1-D filter

Seperable processing in each channel of the 2-D filterbank:



2-D wavelet transform of an image
● Single scale decomposition:
●

●

●

●

●

●

●

●

●

● “low-low” subimage can be further decomposed to 
subimages



Image Compression

● JPEG-2000 (J2K) is based on wavelet transform
● Energy of the high-pass filtered subimages are 

much lower than the low-low subimage
● Most of the wavelet coefficients are close to zero 

except those corresponding to edges and texture
● Threshold low-valued wavelet coefficients to zero
● Take advantage of the correlation between wavelet 

coefficients at different resolutions
● JPEG and MPEG are still prefered because of 

local nature of DCT and Intellectual Property 
issues of J2K



Lifting (Sweldens)

● Filtering after downsampling:

● It reduces computational complexity
● It allows the use of nonlinear  (Pesquet), binary and adaptive filters 

(Cetin) as well
●



Adaptive Lifting-II

● Reconstruction filterbank structure from Gerek 
and Cetin, 2000



Lifting

● The basic idea of lifting: If a pair of filters (h,g) is 
complementary, that is it allows for perfect reconstruction, 
then for every filter s the pair (h',g) with  allows for 
perfect reconstruction, too. 

● H'(z)=H(z)+s(z2)G(z) or
● G'(z)=G(z)+s(z2)H(z)
● Of course, this is also true for every pair (h,g') of the form 

. 
● The converse is also true: If the filterbanks (h,g) and (h',g) 

allow for perfect reconstruction, then there is a unique 
filter s with .

http://pagesperso-
orange.fr/polyvalens/clemens/lifting/lifting.html



Equations

● x ~~ \sum _{n=-\infty}^{\infty} |H(e^{iw})|^2 + |
H(e^{i(w+\pi)})|^2 =1 ~~ or ~~|H(e^{iw})|^2 + |
G(e^{iw})|^2 =1\\

● \phi(t) = 2\sum h[k] \phi(2t-k)~ => ~\hat\phi(w) = 
H(e^{iw/2})\hat\phi(w/2)\\

● \hat\phi(w)=\int_{-\infty}^{\infty} \phi(t) e^{-iwt} 
dt, ~~~W(w)=\int_{-\infty}^{\infty} \psi(t) e^{-
iwt} dt
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