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Abstract:

This paper studies a continuous to discrete-time conversion method based on a shift-invariant subspace in the
signal space. Given an inner function, the corresponding shift-invariant subspace yvields a decomposition of the
signal space, which in turn induces a continuous to discrete-time conversion of linear time-invariant systems. The
method can be extended to linear stochastic systems driven by a Wiener process. This transformation technique
is useful in studying the H° control problem, system approximation, and and system identification.

More specifically, let L*(jR) be the space of square integrable functions of frequency jw € jRB with the inner
product

. 1~ —
{u,v) = / vl jw)ul(jw) duw.
ar J_ .
The spaces H? and H? can be seen as subspaces of L?(jR) consisting of functions analytic in the open right-half
and left-half planes, respectively. The space of bounded functions on the open right-half plane is denoted as H™.
A function ¢ € H* is called inner if |[¢(jw)| = 1 for almost all w. If ¢ is not a constant inner function, then the
space ¢H? is a proper subspace of H?. Hence its orthogonal complement § = H? & ¢H? is a nonzero subspace
in H%. Furthermore, the signal spaces L*(jE&), H?, and Hi admit the following decompositions:

LA(jR) = 2 _ ¢S, H?=@2,0"S, HI =al _¢*S (1)
Thus a signal u € L*(jR) is written as
u= Z Fup. up €S (2)
k=—oc

Moreover, ||H,||2 = E?__T |r:.5.||2_ In this sense, we can identify f,z{jf‘ﬁ} and 1"2[:5}_



Consider the transfer function h(s) = D+C (sI — A)~' B, where A does not have eigenvalues on the imaginary
axis. Then h(s) is a bounded operator on L2(jB). Let u, y € L2(jR) be the input and the output of the transfer
function h(s). Then the isomorphism between L?(jR) and ¢2(S) induces a bounded map hp by the commutative
diagram:

L2(jR) —— L2(jR)
I o
£(8) — 2(8)
Because of the structure (1), the map hp has a time-invariant discrete-time state equation:
‘EH'I = A.fg + B'!.Ig, I = C{';t + D'l!f.t, ({1.)
where the operators A :R" - R*, B: 5 —=R", C:E" — 5, and D : § — § satisfy

AL = o7 (A)E, (5)
Bu = 2—1ﬂ f_x (¢~{A) (jwl + A) " B — ¢(jw) (Gul + A) " B)ulfju}du, (6)
(C&) (5) = (C(sT = A) ™ = 4(5)C (T = A) " 67™(4)) &, (7)
(Du) () = his)u(s) — o(s)C (sI — A)"" Bu. (8)

For example, if ¢(s) = e *T, T' = 0, then the orthogonal complement S of the shift invariant subspace ¢ H? is
equal to the image of L?(0, T') by the Fourier transform. Then the transformed system (4) is nothing but the lifted
system studied in the context of sampled-data control [1, 2]. In [3, 4], the transformation when @(s) is rational
and fi(s) is stable is studied using an appropriate basis introduced to 5. In particular, if &(s) = (p — s)/(p + s},
p > 0, then the space S is one dimensional spanned by {1/(p + )}, and the system (4) is given by the linear
fractional transtormation. The transformation formula (5)-(8) is a generalization in the sense that it does not
assume that S is finite dimensional and that the system matrix A mat have unstable eigenvalues. Note that [5]
considered a similar formula for a restricted class of systems. A detailed derivation of (5)-(8) is discussed in [6].

Applications of the transformation are seen in the area of the H™ control problem, system approximation,
and system identification. In [5], Schmidt pairs of the Hankel operator for a class of infinite dimensional systems
are characterized, and then the H™ sensitivity minimization problem and the balanced and truncation method
are investigated. In [7], the transformation for stochastic systems is applied to the continuous-time subspace
identification problem. Furthermore, a recursive identification method is proposed in [8], and a closed loop
identification method is studied in [9]. In this paper, we deseribe various techniques for system identification
using the transformation method.



