
Medical Image Analysis 88 (2023) 102841

A
1

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

BolT: Fused window transformers for fMRI time series analysis
Hasan A. Bedel a,b, Irmak Sivgin a,b, Onat Dalmaz a,b, Salman U.H. Dar a,b, Tolga Çukur a,b,c,∗

a Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey
b National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
c Neuroscience Program, Bilkent University, Ankara 06800, Turkey

A R T I C L E I N F O

Keywords:
Functional MRI
Time series
Deep learning
Transformer
Classification
Connectivity
Explainability

A B S T R A C T

Deep-learning models have enabled performance leaps in analysis of high-dimensional functional MRI (fMRI)
data. Yet, many previous methods are suboptimally sensitive for contextual representations across diverse
time scales. Here, we present BolT, a blood-oxygen-level-dependent transformer model, for analyzing multi-
variate fMRI time series. BolT leverages a cascade of transformer encoders equipped with a novel fused
window attention mechanism. Encoding is performed on temporally-overlapped windows within the time series
to capture local representations. To integrate information temporally, cross-window attention is computed
between base tokens in each window and fringe tokens from neighboring windows. To gradually transition
from local to global representations, the extent of window overlap and thereby number of fringe tokens
are progressively increased across the cascade. Finally, a novel cross-window regularization is employed
to align high-level classification features across the time series. Comprehensive experiments on large-scale
public datasets demonstrate the superior performance of BolT against state-of-the-art methods. Furthermore,
explanatory analyses to identify landmark time points and regions that contribute most significantly to model
decisions corroborate prominent neuroscientific findings in the literature.
1. Introduction

Functional MRI (fMRI) measures blood–oxygen-level-dependent
(BOLD) responses that reflect changes in metabolic demand consequent
to neural activity (Hillman, 2014; Rajapakse et al., 1998). Recording
BOLD responses at a unique combination of spatio-temporal resolution
and coverage, fMRI provides the means to study complex cognitive
processes in the human brain Kubicki et al. (2003), Wang et al. (2005),
Papma et al. (2017), Mensch et al. (2017). On the one hand, task-based
fMRI enables researchers to associate stimulus or task variables with
multi-variate responses across the brain Li et al. (2009), Venkataraman
et al. (2009), Nishimoto et al. (2011). Regions that are co-activated in
the presence of a particular variable are taken to be involved in the
cortical representation of that variable (Simon et al., 2004), and they
are considered to be functionally connected (Rogers et al., 2007). On
the other hand, characteristic multi-variate responses are also eminent
in the absence of external stimuli or task, when the subject is merely
resting (Niu et al., 2021; Yeo et al., 2011; Van Dijk et al., 2010;
Hu and Shi, 2006). In resting-state fMRI, co-activation patterns are
typically used to define networks of brain regions, whose functional
connectivity (FC) has been associated with various normal and disease
states (Greicius, 2008; Lei et al., 2021; Iraji et al., 2015; Zhang et al.,
2017). Many prior studies have linked behavioral traits and prominent
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neurological diseases with FC features of BOLD responses (Kong et al.,
2019; Rajpoot et al., 2015; Müller-Oehring et al., 2018; Anderson et al.,
2013).

Earlier fMRI studies adopted traditional machine learning (ML)
to analyze multi-variate brain responses in order to decode task- or
disease-related information. Since these ML methods use relatively
compact models, feature extraction is typically employed to reduce
dimensionality and factor out nuisance variability (McKeown and Se-
jnowski, 1998; Svensén et al., 2002). A prominent approach first ex-
presses FC features as the temporal correlations of BOLD responses
across separate brain regions, and then uses methods such as sup-
port vector machines or logistic regression to classify external vari-
ables (Pereira et al., 2009; De Martino et al., 2008; Zhang et al.,
2015; Wang et al., 2019). Later studies have instead adopted deep
learning (DL) given its ability to capture complex patterns in high-
dimensional data (Heinsfeld et al., 2018; Li et al., 2020b; Duncan
et al., 2019; Mlynarski et al., 2019; Kam et al., 2019). Various suc-
cessful deep models have been proposed in the literature based on
convolutional (Kawahara et al., 2017), graph (Parisot et al., 2018),
or recurrent architectures (Fan et al., 2020; Wang et al., 2021) that
process FC features. Yet, common FC features primarily reflect first-
order inter-regional interactions, potentially disregarding higher-order
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interactions evident in recorded BOLD responses (Lahaye et al., 2003;
Hu and Shi, 2007). To more directly assess information in fMRI data,
several recent studies have instead built classifiers using recurrent
models or vanilla transformer models (Dvornek et al., 2017; Nguyen
et al., 2020; Malkiel et al., 2021) on BOLD responses. While powerful,
these recent architectures can introduce high computational burden
when processing long time series, and they do not embody explicit
mechanisms to capture contextual representations of multi-variate data
across diverse time scales (Ismail et al., 2019; Liégeois et al., 2019;
Allen et al., 2014).

Here we propose a novel transformer architecture that directly
operates on BOLD responses, BolT, for fMRI time-series classifica-
tion. To capture local representations, BolT splits the time series into
temporally-overlapping windows and employs a cascade of transformer
blocks to encode window-specific representations of BOLD tokens
(i.e., linear projections of responses measured across the brain at spe-
cific time points). To enhance expressiveness across broad time scales
without elevating computational costs, BolT leverages a novel fused
window attention mechanism that utilizes cross attention and token
fusion among overlapping windows. While cross attention enables
interactions between base BOLD tokens in a given window and fringe
tokens in neighboring windows prior to encoding, token fusion enables
integration of encoded representations across neighboring windows.
To hierarchically transition from local to global representations, the
extent of window overlap in transformer blocks is progressively in-
creased across the cascade. BolT improves task performance by utilizing
classification (𝐶𝐿𝑆) tokens to capture task-oriented high-level features.
Window-specific 𝐶𝐿𝑆 tokens are introduced to maintain local sensitiv-
ity and compatibility with the hierarchical model structure. Meanwhile,
task-relevant information exchange is promoted by a novel cross-
window regularization that aligns these 𝐶𝐿𝑆 tokens across windows.
At the end of the cascade, the encoded 𝐶𝐿𝑆 tokens are averaged across
windows and a linear projection layer is used for classification.

Comprehensive demonstrations are reported for classification tasks
on public datasets: gender detection from resting-state fMRI scans and
cognitive task detection from task-based fMRI scans in the Human
Connectome Project (HCP) dataset (Van Essen et al., 2013), and disease
detection from resting-state fMRI scans in the Autism Brain Imag-
ing Data Exchange (ABIDE) dataset (Di Martino et al., 2014). BolT
achieves higher classification performance than prior traditional and
deep-learning methods, including convolutional, graph, recurrent and
transformer baselines. Ablation studies are presented that demonstrate
the significant contribution of individual design elements to model
performance, including learnable 𝐶𝐿𝑆 tokens, split time windows,
token fusion, cross attention, and cross-window regularization. To in-
terpret the representational information captured by BolT, we devise an
explanatory technique on the fused window attention operators. The
proposed technique extracts gradient-weighted attention maps across
the cascade to construct an importance map for BOLD tokens, and
thereby identify landmark time points. A logistic regression analysis
on the landmark points in then performed to identify brain regions
that contribute most significantly to the model’s decision. Explanatory
analyses reveal task timings and relevant brain regions that corrob-
orate established neuroscientific findings in the literature. Code for
implementing BolT is publicly available at https://github.com/icon-
lab/BolT.

Contributions
• We introduce a novel transformer architecture to efficiently and

sensitively analyze fMRI BOLD responses.
• A novel fused window attention mechanism is proposed with

progressively grown window size to hierarchically capture local-
to-global representations.

• A novel cross-window regularization is proposed on global clas-
sification features to align high-level representations across the
time series.

• An explanatory technique is introduced for BolT that evaluates
the relevance of individual time points and brain regions to the
classification decisions.
2

2. Related work

2.1. Traditional methods

Whole-brain fMRI data carry densely overlaid patterns of multi-
variate responses, which can be difficult to isolate via uni-variate
analysis (Penny et al., 2011; Woolrich et al., 2001). This has sparked in-
terest in adoption of ML for multi-variate fMRI analysis (Norman et al.,
2006; Haxby, 2012). Earlier studies in this domain used traditional
classifiers such as support vectors machines (Song and Chen, 2014;
Wang et al., 2007; Hojjati et al., 2017). Because high-dimensional data
are paired with models of limited complexity, feature selection is key to
improving sensitivity in traditional models (Bullmore et al., 1996; Xie
et al., 2009; Poldrack, 2007). Accordingly, many traditional models are
built on FC features derived from response correlations among brain
regions-of-interest (ROIs), as these features are commonly considered
to capture discriminative information about cognitive state (Zeng et al.,
2012; Shen et al., 2010; Khazaee et al., 2016).

2.2. Deep learning methods on FC features

In recent years, DL models have been adopted to elevate sensitivity
in fMRI analysis. Some studies have used multi-layer perceptron (MLP)
or convolutional neural network (CNN) models to extract high-level
features of fMRI data (Suk et al., 2016; Koyamada et al., 2015; Huang
et al., 2017) and then to classify external variables (Sarraf and Tofighi,
2016a,b; Zhao et al., 2017). More commonly, classification models
have been built based on FC features among brain ROIs for improved
performance (Meszlényi et al., 2017; Kawahara et al., 2017; Xing et al.,
2019). Given the brain’s intrinsic structure, graph neural networks
(GNN) have gained traction wherein individual ROIs denote nodes and
FC features among ROIs determine edge weights (Li et al., 2021, 2019).
To capture temporal variability in dynamic FC features, recurrent or
transformer architectures have also been integrated to process the
GNN outputs (Kim et al., 2021). However, GNN-based models might
suffer from over smoothing (Chen et al., 2020) or squashing (Alon
and Yahav, 2020) that can lower sensitivity to long-range dependen-
cies. Furthermore, while methods that receive FC features as input
can improve learning efficiency by mitigating nuisance variability, FC
features typically reflect first-order interactions among ROIs, neglecting
potential non-linear effects (Su et al., 2013).

2.3. Deep learning methods on BOLD responses

Recurrent networks: An alternative approach to building models
on pre-extracted FC features is to directly analyze BOLD responses in
fMRI time series. Given the high degree of temporal correlation in
BOLD responses, recurrent neural networks (RNNs) have been proposed
to sequentially process fMRI data across time given CNN-based or
ROI-extracted spatial representations (Li et al., 2020a; Dvornek et al.,
2017; Zhao et al., 2020). Previously reported recurrent architectures
in the fMRI literature include vanilla long short-term memory (LSTM)
models (Dvornek et al., 2017), and hybrid convolutional LSTM mod-
els (Li et al., 2020a; Zhao et al., 2020). While recurrent architectures
are powerful in time series analysis, sequential processing introduces
difficulties in model training on long time series due to vanishing gra-
dients, and hence they may show suboptimal sensitivity to long-range
interactions (Kerg et al., 2020).

Vanilla transformers: Transformer architectures based on self-
attention mechanisms have recently been introduced to address limita-
tions of recurrent networks (Vaswani et al., 2017). Given a sequence
of tokens, self-attention operators filter their inputs based on inter-
token similarity to integrate long-range contextual information. A feed-
forward network block, typically selected as an MLP, then encodes
latent representations of the contextualized tokens. Several recent stud-
ies have employed vanilla transformers that process the entire fMRI
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time series as a single sequence (Nguyen et al., 2020; Zhang et al.,
2022). Vanilla transformers can manifest relatively limited sensitivity
to local representations while emphasizing long-range temporal inter-
actions. Moreover, they introduce quadratic computational complexity
with respect to sequence length as self-attention requires similarity
assessment between all pairs of tokens.

Efficient transformers: To sensitively analyze fMRI data across
diverse time scales while mitigating computational burden, here we
introduce a novel transformer architecture, BolT, based on a fused win-
dow self-attention mechanism (FW-MSA, Section 3.1). Unlike previous
methods that receive as input pre-extracted FC features (Abraham et al.,
2017; Parisot et al., 2017; Gadgil et al., 2020; Li et al., 2021; Kim et al.,
2021), BolT performs learning on BOLD responses to improve sensitiv-
ity. Unlike vanilla transformers that process the time series as a single
sequence to focus on global temporal representations (Nguyen et al.,
2020; Zhang et al., 2022), BolT improves efficiency by splitting the time
series into overlapping windows, and employs a cascaded transformer
encoder that hierarchically extracts local-to-global representations.

Several recent studies have devised efficient transformer models
with partially similar aims to our proposed approach. A computer
vision study has introduced SwinT that restricts self-attention compu-
tations to non-overlapping local windows in a given sequence, and
performs half-sequence-length shifts in the window position across
alternating transformer blocks (Liu et al., 2021). SwinT implicitly
captures cross-window interactions via the window shifts, and it does
not utilize high-level 𝐶𝐿𝑆 tokens. Instead, BolT explicitly captures
cross-window interactions by using overlapping windows along with
cross attention and token fusion between neighboring windows, and
it utilizes dedicated 𝐶𝐿𝑆 tokens to improve classification. A natu-
ral language processing study has proposed Longformer that restricts
self-attention to a moving local window centered on each token for
encoding the token in a single context, and it uses a global 𝐶𝐿𝑆
oken across the sequence that can degrade sensitivity to local rep-
esentations (Beltagy et al., 2020). In contrast, BolT encodes each
oken appearing in multiple overlapping windows in multiple contexts
nd then fuses these encodings, and it uses window-specific 𝐶𝐿𝑆
okens that are aligned with cross-window regularization for enhanced
ensitivity.

Efficient transformers have also been adopted in medical image
nalysis tasks. A hybrid CNN-transformer model, IFT-Net, has been
roposed that reduces dimensionality of input data with a convolu-
ional module prior to the transformer (Zhao et al., 2022). While
his approach reduces the sequence length for self-attention computa-
ions, it can compromise temporal resolution and sensitivity to local
epresentations in time series analysis. Instead, BolT maintains local
ensitivity by preserving temporal dimensionality across the cascade.
nother study has introduced HATNet as a hybrid CNN-transformer
odel where the transformer module sequentially computes intra- and

nter-window attention on non-overlapping windows (Mehta et al.,
022). This sequential approach can be suboptimal since inter-window
omputations are performed on self-attention outputs that ignore cross-
indow interactions. In contrast, BolT simultaneously computes self-
nd cross-attention in overlapping windows. A recent fMRI study has
ntroduced a cascaded transformer, TFF, that splits the time series into
eparate windows to focus on local temporal representations (Malkiel
t al., 2021). TFF processes tokens in separate windows independently
cross the cascade and naively averages the encoded representations
ver windows, reducing sensitivity to long-range context. Instead, in
ach stage of the cascade, BolT uses FW-MSA modules to capture inter-
ctions that extend over broad time scales via learning-based fusion of
nformation flow across windows.

. Theory

For multi-variate analysis of four-dimensional (4D) fMRI data
ecorded in a subject, regional BOLD responses are first extracted
3

using an external atlas parcellating the brain into 𝑅 ROIs. The time
series for a given ROI is taken as the average response across voxels
within the ROI, z-scored to zero mean and unit variance. Our model
learns to map these regional BOLD responses 𝑥 ∈ R𝑇×𝑅 (where 𝑇
is the number of time samples in the fMRI scan) onto class labels
𝑦 (e.g. subject gender, cognitive task) depending on the task. Note
that transformers expect a sequence of tokens as input. Here, we refer
to a learnable linear projection of BOLD responses measured at a
particular time index as a BOLD token, i.e., 𝑏(𝑡) = 𝑓𝑏(𝑥(𝑡)) ∈ R𝑁 ,
where 𝑡 is the time index, 𝑓𝑏 is the linear projection, 𝑁 is the encoding
imensionality. The collection of BOLD tokens across the fMRI scan is
hen 𝑏 = (𝑏(0),… , 𝑏(𝑇−1)) ∈ R𝑇×𝑁 . Latent representations of BOLD tokens
re computed by a cascade of transformer blocks in BolT (Fig. 1). The
earned latent features ℎ𝑓 are then linearly projected onto individual
lass probabilities. To capture both local and global representations of
OLD tokens, the transformer blocks split the fMRI time series into 𝐹
verlapping windows, and employ a novel fused window self-attention
perator to assess interactions between base tokens in a given time
indow and fringe tokens in neighboring windows. In this section, we
escribe the architectural details of the proposed model and introduce
n explanatory technique devised for BolT.

.1. BolT

BolT embodies a cascade of transformer blocks and a final linear
ayer to perform classification. Unlike vanilla transformers (Vaswani
t al., 2017), BolT comprises a novel FW-MSA module to enhance
ensitivity to the diverse time scales of dynamic interactions in the
rain, while maintaining linear scalability with the duration of fMRI
cans (Fig. 2). A regular MSA layer uses global attention across tokens
esulting in quadratic complexity. In contrast, FW-MSA computes local
ttention within compact time windows extracted from the fMRI scan.
emporal windowing restricts token-to-token interactions to a focal
eighborhood surrounding each window. The resultant local precision
erves to improve the capture of subtle changes in brain activation
ynamics (Hutchison et al., 2013). To capture a window-level latent
epresentation, a 𝐶𝐿𝑆 token is also employed for use in downstream
etection tasks (Dosovitskiy et al., 2020). Input 𝐶𝐿𝑆 tokens are ini-
ialized as tied vectors across separate time windows. The 𝐶𝐿𝑆 token
or each window is concatenated to the query, value and key tokens in
W-MSA. The final layer uses output 𝐶𝐿𝑆 tokens to linearly map their
ggregate features onto class logits.
Fused window attention: FW-MSA enables cross-window interac-

ions by attention calculation between base tokens in a given win-
ow and fringe tokens in neighboring windows. To do this, FW-MSA
irst splits the entire collection of BOLD tokens 𝑏 ∈ R𝑇×𝑁 into 𝐹 =
𝑇 −𝑊 )∕𝑠 + 1 windows of size 𝑊 and stride 𝑠. The receptive field
f a given window contains 𝑊 base tokens centrally, and 𝐿 fringe
okens on either side of the base. While processing the 𝑖th window,
W-MSA receives as input a collection of 𝐶𝐿𝑆 (𝐶𝐿𝑆𝑖 ∈ R𝑁 ) and BOLD
𝑏𝑖 ∈ R(𝑊 +2𝐿)×𝑁 ) tokens. Let 𝑄𝑖 ∈ R(1+𝑊 )×𝑁 denote queries for base
okens, and 𝐾𝑖 ∈ R(1+𝑊 +2𝐿)×𝑁 and 𝑉𝑖 ∈ R(1+𝑊 +2𝐿)×𝑁 denote keys and

values for the union of base and fringe tokens. Assuming 𝑓𝑞 , 𝑓𝑘 and 𝑓𝑣
are learnable linear projections, the query, key and value for the 𝑖-th
window are:

𝑄𝑖 = 𝑓𝑞({𝐶𝐿𝑆𝑖, 𝑏
(𝑖×𝑠),… , 𝑏(𝑖×𝑠+𝑊 −1)}),

𝐾𝑖 = 𝑓𝑘({𝐶𝐿𝑆𝑖, 𝑏
(𝑖×𝑠−𝐿),… , 𝑏(𝑖×𝑠+𝑊 +𝐿−1)}),

𝑉𝑖 = 𝑓𝑣({𝐶𝐿𝑆𝑖, 𝑏
(𝑖×𝑠−𝐿),… , 𝑏(𝑖×𝑠+𝑊 +𝐿−1)}). (1)

To leverage information in the temporal ordering of BOLD tokens, we
incorporate a relative position bias in attention calculations (Liu et al.,
2021; Yang et al., 2021):

Attention(𝑄𝑖, 𝐾𝑖, 𝑉𝑖) = Sof tmax(
𝑄𝑖𝐾𝑇

𝑖
√

+ 𝐵)𝑉𝑖, (2)

𝑑
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Fig. 1. (a) Overview of BolT. First, ROI-level BOLD responses are extracted from four-dimensional fMRI data. These responses are then projected by a learnable linear layer to
obtain 𝑇 BOLD tokens. Each BOLD token encodes ROI responses across the brain recorded at a specific time instant as an 𝑁-dimensional vector. A cascade of transformer blocks
processes BOLD tokens across a collection of 𝐹 temporally-overlapping windows within the time series. For each time window, a separate learnable classification (𝐶𝐿𝑆) token
is employed within the transformer blocks. The 𝐶𝐿𝑆 tokens input to the first block are initialized as tied vectors across 𝐹 windows, but they become window-specific following
encoding through transformer blocks. The blocks compute latent representations of BOLD and 𝐶𝐿𝑆 tokens; yet only the CLS tokens are used for the classification task at the
output layer. (b) Inner architecture of the transformer block. Unlike vanilla transformers, BolT is equipped with a novel fused window multi-head self-attention (FW-MSA) layer
to efficiently capture both local and global context within the fMRI time series.
Fig. 2. (a) Schematic of the fused window multi-head self-attention (FW-MSA) module. Input BOLD tokens are separated into an overlapping set of time windows of size W and
stride s. A CLS token is assigned to each window. A given window possesses a bilateral fringe region of size L to permit interactions with neighboring windows. Within-window
interactions are captured via attention among base tokens, whereas cross-window interactions are captured via attention between base and fringe tokens. For each BOLD token,
attention-derived latent representations are then fused across the separate time windows in which it appears. (b) Attention calculations within a window. Query to the FW-MSA
is a BOLD token from the window base, whereas key and value are BOLD tokens from the broader receptive field including the fringe region.
where 𝐵 ∈ R(1+𝑊 )×(1+𝑊 +2𝐿) is a learnable positional bias matrix and 𝑑
is the feature dimensionality of the attention head. FW-MSA includes
multiple attention heads, albeit expressions are given for a single head
for simplicity. 𝐵 expresses the positioning of base and 𝐶𝐿𝑆 tokens
with respect to all tokens in the receptive field including base, fringe
and 𝐶𝐿𝑆 tokens. For BOLD tokens, 𝐵 parametrizes the potential range
[−𝑊 −𝐿+1,𝑊 +𝐿−1] of relative distances among tokens in different
positions of the receptive field. For the 𝐶𝐿𝑆 token, it instead serves to
distinguish the 𝐶𝐿𝑆 token from BOLD tokens.
4

Token fusion: FW-MSA calculates latent representations of each
BOLD token given surrounding local context. Because each token ap-
pears in multiple windows, a token fuser is used to aggregate the
resultant representations:

𝑏(𝑖)[𝑚] = 1
𝑃

𝑃−1
∑

𝑝=0
𝑏(𝑖)𝑝 [𝑚 − 1], (3)

where 𝑚 ∈ {0, 1,… ,𝑀 − 1} is the index of the transformer block, 𝑝
is the index of the time window among 𝑃 windows that contain a
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particular token, 𝑏(𝑖)𝑝 [𝑚 − 1] is the 𝑖th input BOLD token, and 𝑏(𝑖)[𝑚] is
the fused token. Token fusion facilitates exchange of information across
windows, while maintaining a fixed number of BOLD tokens across
transformer blocks. Following fusion, all tokens are forwarded to the
MLP module.

Cross-window regularization: The first transformer block in BolT
receives as input a single 𝐶𝐿𝑆 token shared across the time windows.
The transformer encoders then compute a unique 𝐶𝐿𝑆 token for each
window based on the BOLD tokens within its receptive field. If the la-
tent space of window-level representations captured by the 𝐶𝐿𝑆 tokens
are largely incompatible, model performance in downstream classi-
fication tasks might be compromised. Thus, to encourage high-level
representations that are consistent across time windows, we introduce
a novel cross-window regularization as an additional loss term:

𝐿𝐶𝑊𝑅 = 1
𝑁𝐹

𝐹−1
∑

𝑖=0
‖𝐶𝐿𝑆 𝑖[𝑀 − 1] − 1

𝐹
(
𝐹−1
∑

𝑗=0
𝐶𝐿𝑆𝑗 [𝑀 − 1])‖22, (4)

where 𝐶𝐿𝑆𝑖[𝑀 − 1] is the encoded 𝐶𝐿𝑆 token for the 𝑖th window at
the output of the last transformer block (𝑀th). The regularization term
in Eq. (4) penalizes the deviation of individual 𝐶𝐿𝑆 tokens from their
mean over windows.

3.2. Explanatory technique

We introduce an explanatory technique for BolT that generates
importance weights for BOLD tokens to assess their contribution to a
given decision. To do this, we first derive gradient-weighted attention
maps as inspired by recent computer vision studies (Chefer et al., 2021).
Yet, we propose an adapted procedure for map calculation in FW-MSA
to cope with the overlap and fusion operations across time windows
(Alg. 1). In the proposed procedure, gradient-weighted attention maps
are calculated separately for each transformer block and each time
window:

�̄�𝑚𝑖 = 𝐸ℎ((∇𝐴𝑚𝑖 ⊙ 𝐴𝑚𝑖)+). (5)

In Eq. (5), 𝐴𝑚𝑖 ∈ R(1+𝑊 )×(1+𝑊 +2𝐿) is the attention map produced by the
FW-MSA layer at the 𝑚th block for the 𝑖th window, and the first row
and column of 𝐴𝑚𝑖 are reserved for attention values related to the 𝐶𝐿𝑆
token. The effect of map values onto the model output is characterized
via ∇𝐴𝑚𝑖, i.e., the gradient of the loss function with respect to 𝐴𝑚𝑖.
Meanwhile, 𝐸ℎ denotes the averaging operator across attention heads
for aggregation, ⊙ is the Hadamard product to modulate the attention
maps with the gradients, and + denotes rectification to prevent negative
values. Within each transformer block, single-window attention maps
are then aggregated to form a global attention map across the entire
time series, �̄�𝐺[𝑚] ∈ R(𝐹+𝑇 )×(𝐹+𝑇 ) where 𝐹 is the number of windows, 𝑇
is the number of BOLD tokens. During aggregation, projections of fringe
tokens that appear in multiple windows are averaged across windows.
Assuming that 𝑡′ = 𝐹 + 𝑖 × 𝑠 is the starting index of base tokens in the
𝑖th window, 𝑡′′ = 𝑡′ − 𝐿 + 𝑝𝑙 and 𝑡′′′ = 𝑡′ + 𝑊 + 𝐿 − 𝑝𝑟 respectively
denote the starting and ending indices of the fringe tokens, where
𝑝𝑙 = 𝑚𝑎𝑥(0, 𝑖×𝑠−𝐿)−(𝑖×𝑠−𝐿) and 𝑝𝑟 = 𝑖×𝑠+𝑊 +𝐿−𝑚𝑖𝑛(𝑇 , 𝑖×𝑠+𝑊 +𝐿)
are correction factors to handle windows near the edges of the time
series. Receiving as input �̄�𝑚𝑖, the projection in the 𝑖th window is then
expressed as:

�̄�𝐺[𝑚](𝑖, 𝑖) = �̄�𝑚𝑖(0, 0) (6)
�̄�𝐺[𝑚](𝑖, 𝑡′′ ∶ 𝑡′′′) = �̄�𝑚𝑖(0, 1 + 𝑝𝑙 ∶ −𝑝𝑟) (7)
�̄�𝐺[𝑚](𝑡′ ∶ 𝑡′ +𝑊 , 𝑖) = �̄�𝑚𝑖(1 ∶, 0) (8)
�̄�𝐺[𝑚](𝑡′ ∶ 𝑡′ +𝑊 , 𝑡′′ ∶ 𝑡′′′) = �̄�𝑚𝑖(1 ∶, 1 + 𝑝𝑙 ∶ −𝑝𝑟) (9)
�̄�𝐺[𝑚] = �̄�𝐺[𝑚]⊘𝐴𝑛𝑜𝑟𝑚 (10)

Eq. (6) captures self-attention for 𝐶𝐿𝑆𝑖, Eq. (7) captures attention
between 𝐶𝐿𝑆𝑖 and BOLD tokens within the receptive field of the 𝑖th
5

window, Eq. (8) captures attention between base BOLD tokens and the
Algorithm 1: Calculation of relevancy map
Input: {{𝐴0(0), ..., 𝐴0(𝐹−1)}, ..., {𝐴𝑀−1(0), ..., 𝐴𝑀−1(𝐹−1)}}: Set of F

single-window attention maps from FW-MSA modules across
M transformer blocks.

Output: 𝑅𝑒𝑙[𝑀]: Relevancy map.
𝑅𝑒𝑙[0] = I𝐹+𝑇 Initialize relevancy map
for 𝑚 = 0 ∶ 𝑀 − 1 do

�̄�𝐺[𝑚] = 0𝐹+𝑇 Initialize global attention map
for 𝑖 = 0 ∶ 𝐹 − 1 do

�̄�𝑚𝑖 ← 𝐸ℎ((∇𝐴𝑚𝑖 ⊙ 𝐴𝑚𝑖)+)Weighted attention map
𝑡′ ← 𝐹 + 𝑖 × 𝑠
𝑝𝑙 ← 𝑚𝑎𝑥(0, 𝑖 × 𝑠 − 𝐿) − (𝑖 × 𝑠 − 𝐿)
𝑝𝑟 ← 𝑖 × 𝑠 +𝑊 + 𝐿 − 𝑚𝑖𝑛(𝑇 , 𝑖 × 𝑠 +𝑊 + 𝐿)
𝑡′′ ← 𝑡′ − 𝐿 + 𝑝𝑙
𝑡′′′ ← 𝑡′ +𝑊 + 𝐿 − 𝑝𝑟
�̄�𝐺[𝑚](𝑖, 𝑖) ← �̄�𝑚𝑖(0, 0) CLS to CLS attention
�̄�𝐺[𝑚](𝑖, 𝑡

′′ ∶ 𝑡′′′ ) ← �̄�𝑚𝑖(0, 1 + 𝑝𝑙 ∶ −𝑝𝑟) CLS to BOLD
�̄�𝐺[𝑚](𝑡

′ ∶ 𝑡′ +𝑊 , 𝑖) ← �̄�𝑚𝑖(1 ∶, 0) BOLD to CLS
�̄�𝐺[𝑚](𝑡

′ ∶ 𝑡′ +𝑊 , 𝑡′′ ∶ 𝑡′′′ ) ← �̄�𝑚𝑖(1 ∶, 1 + 𝑝𝑙 ∶ −𝑝𝑟)
BOLD to BOLD

�̄�𝐺[𝑚] ← �̄�𝐺[𝑚]⊘𝐴𝑛𝑜𝑟𝑚 Normalize for repeats
𝑅𝑒𝑙[𝑚 + 1] ← 𝑅𝑒𝑙[𝑚] + �̄�𝐺[𝑚]𝑅𝑒𝑙[𝑚] Update rel. map

return 𝑅𝑒𝑙[𝑀]

𝐶𝐿𝑆𝑖 token, and Eq. (9) captures attention between based and fringe
BOLD tokens. Note that (𝑎 ∶ −𝑏 + 1) selects between the (𝑎 + 1)-th
element from the start and the 𝑏th element from the end. In Eq. (10),
𝐴𝑛𝑜𝑟𝑚 ∈ R(𝐹+𝑇 )×(𝐹+𝑇 ) is an occurrence matrix that captures the number
of times each token occurs across windows (i.e., all entries for a given
token that appears in 𝑛 windows are set to 𝑛), and ⊘ is Hadamard
ivision used to normalize for repeated token occurrence.

Next, a token-relevance map 𝑅𝑒𝑙[0] that represents the influence
f each token onto other tokens in the time series is initialized as an
dentity matrix in R(𝐹+𝑇 )×(𝐹+𝑇 ), implying that each token is initially
elf-relevant. The normalized attention maps are then used to progres-
ively update the token-relevancy map across transformer blocks where
∈ [0, 1,… ,𝑀 − 1]:

𝑒𝑙[𝑚 + 1] = 𝑅𝑒𝑙[𝑚] + �̄�𝐺[𝑚]𝑅𝑒𝑙[𝑚]. (11)

Following the calculation of the token-relevancy map at the final
W-MSA module, importance weights for input BOLD tokens 𝑤𝑖𝑚𝑝 ∈ R𝑇

re finally derived as:

𝑖𝑚𝑝 =
1
𝐹

𝐹−1
∑

𝑖=0
𝑅𝑒𝑙[𝑀](𝑖, 𝐹 ∶ ). (12)

Importance weight of a BOLD token for the classification task is taken
as the across-window average of relevancy scores between the 𝐶𝐿𝑆
tokens and the given BOLD token.

4. Methods

4.1. Datasets

Demonstrations were performed on fMRI data from the HCP S12001

(Van Essen et al., 2013) and ABIDE I releases2 (Di Martino et al., 2014).
In HCP S1200, resting-state fMRI data (HCP-Rest) were analyzed to
predict gender, and task-based fMRI data (HCP-Task) were analyzed
to predict cognitive task. In ABIDE I, resting-state fMRI data were
analyzed to detect Autism Spectrum Disorder (ASD). Details about
datasets are provided below.

HCP-Rest: Preprocessed fMRI data from 1200 subjects released by
the WU-Minn HCP consortium were analyzed (Glasser et al., 2013).

1 https://db.humanconnectome.org
2 https://fcon_1000.projects.nitrc.org/indi/abide/

https://db.humanconnectome.org
https://fcon_1000.projects.nitrc.org/indi/abide/
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For each subject, the first session of resting-state scans was used, and
incomplete scans with shorter than 1200 time samples were excluded.
HCP-Rest comprised a total of 1093 scans from 594 female and 499
male subjects.

HCP-Task: Preprocessed fMRI data from 1200 subjects released by
he WU-Minn HCP consortium were analyzed (Glasser et al., 2013). The
irst session of task-based scans was used, where each subject performed
even different tasks in separate runs: emotion, relational, gambling,
anguage, social, motor, and working memory. Incomplete scans were
xcluded. HCP-Task comprised a total of 7450 scans from 594 female
nd 501 male subjects.
ABIDE-I: Preprocessed fMRI data released by the Preprocessed Con-

ectomes Project were analyzed (Craddock et al., 2013; Di Martino
t al., 2014). Low-quality scans that did not pass quality checks from all
aters were excluded from analysis. ABIDE-I comprised a total of 871
cans from 403 patients with ASD and 468 healthy controls (Abraham
t al., 2017).

.2. Experimental procedures

Experiments were conducted in PyTorch on an NVIDIA RTX 3090
PU. Modeling was performed via a nested cross-validation procedure
ith 10 outer and 1 inner folds. Accordingly, subjects were split into
on-overlapping training (80%), validation (10%), and test sets (10%).
or fair comparison, all competing methods used identical data splits.
or each competing method, hyperparameter selection was performed
ased on performance in the first validation set and selected parameters
hat showed near optimal performance across all datasets and atlases
ere used thereafter. The selected parameters included learning rate ∈

(10−6, 10−1), number of epochs ∈ (5, 100) and mini-batch size ∈ (1, 100).
Training was performed via the Adam optimizer. BolT was trained to
minimize the following loss: 𝐿 = 𝐿𝐶𝐸 + 𝜆 ⋅ 𝐿𝐶𝑊𝑅 where 𝐿𝐶𝐸 is cross-
entropy loss, and 𝜆 = 0.1 is the regularization coefficient for CWR
loss set via cross-validation. Mean and standard deviation of model
performance were reported across the test sets.

For each subject in the training set, fMRI time series were randomly
cropped in the temporal dimension to 600 samples for HCP-Rest,
150 samples for HCP-Task, and 100 samples for ABIDE-I to improve
stochasticity and learning efficiency (Kim et al., 2021). Functional data
were registered to corresponding structural data for each subject, and
aligned to the MNI template. ROI definitions were implemented using
two public brain atlases: the Schaefer atlas (Schaefer et al., 2018) with
400 regions labeled across seven intrinsic connectivity networks, and
the AAL atlas (Tzourio-Mazoyer et al., 2002) with 116 regions.

4.3. Implementation details

In this section, the architectural and hyperparameter details of BolT
are summarized. BolT was trained for 20 epochs with a batch size of
32 and an initial learning rate of 10−4. The learning rate was increased
to 2x10−4 in the first 10 epochs and then gradually decreased to 10−5.
A linear projection layer matched the dimensionality of input BOLD
responses to the hidden dimensionality of the transformer blocks. A
cascade of four blocks was used, each composed of FW-MSA and MLP
modules that used layer normalization and skip connections. A hidden
dimensionality of 400 and 40 attention heads with 20 dimensions per
head were prescribed. A dropout rate of 0.1 was used in both FW-MSA
and MLP layers. For FW-MSA modules, given a desired window size 𝑊 ,
stride 𝑠 and fringe length 𝐿 were set proportionately as follows:

𝑠 = 𝑊 𝛼, 𝐿 = 𝑚 (𝑊 − 𝑠) 𝛽 = 𝑚 (1 − 𝛼)𝑊 𝛽, (13)

where 𝑚 ∈ {0, 1,… ,𝑀 − 1} is the block index, 𝛼 ∈ R+ is the stride
coefficient (i.e., proportionality constant), and 𝛽 ∈ 𝑍+ is the fringe
coefficient. Note that the fringe length was progressively grown over
transformer blocks as the number of fused tokens increased. Here,
cross-validated search for 𝑊 ∈ (10, 200), 𝛼 ∈ (0.0, 1.0), 𝛽 ∈ (0, 3) was
6

performed. Hyperparameters were selected as 𝑊 = 20, 𝛼 = 0.4, 𝛽 = 2.
4.4. Model complexity

Complexity of models that directly analyze BOLD responses as a
temporal sequence depends on the extent of computations performed
on the input sequence of BOLD tokens. Assume that the latent di-
mensionality of tokens is 𝑁 in a sequence of length 𝑇 . Recurrent
architectures process the tokens in the input sequence serially. As
such, a recurrent layer follows a well-known 𝑂(𝑁2𝑇 ) complexity that
scales linearly with the sequence length (Dvornek et al., 2017; Zhao
et al., 2020; Xing et al., 2019). A convolution layer also has a linear
𝑂(𝑘𝑁2𝑇 ) complexity where 𝑘 denotes the size of the convolution
kernel. Meanwhile, vanilla transformers use regular MSA layers that
exhaustively compute interactions between all time points in the input
sequence, with 𝑇 queries and 𝑇 keys of dimensionality 𝑁 . Thus, vanilla
transformers such as BAnD and IFT-Net incur 𝑂(𝑁𝑇 2) complexity that
cales quadratically with the input sequence length (Nguyen et al.,
020; Zhao et al., 2022).

In contrast, the FW-MSA layer in BolT computes focal interactions
etween time points in overlapping time windows. Each window has
+ 1 queries and 𝑊 + 2𝐿 + 1 keys. The complexity within a single

indow is 𝑂(𝑁𝑊 2 +𝑁𝑊𝐿). Given a total of (𝑇 −𝑊 )∕𝑠 windows for
he entire sequence, the overall complexity is 𝑂(𝑁𝑇𝑊 2∕𝑠 +𝑁𝑇𝑊𝐿∕𝑠).
electing 𝑠 and 𝐿 as outlined in Eq. (13), BolT incurs
(𝑁𝑇𝑊 (1+𝛽 (𝑚) (1−𝛼))

𝛼 ) complexity that linearly scales with sequence
length. Other efficient transformers also show a similar linear trend (Liu
et al., 2021; Malkiel et al., 2021; Beltagy et al., 2020; Mehta et al.,
2022). For instance, 𝐿 = 0 (no cross-window attention) and 𝑠 = 𝑊

2
result in a linear 𝑂(𝑁𝑇𝑊 ) complexity in SwinT (Liu et al., 2021),
and 𝐿 = 0 and 𝑠 = 𝑊 result in 𝑂(𝑁𝑇𝑊 ) complexity in TFF and
HATNet (Malkiel et al., 2021).

4.5. Competing methods

BolT was demonstrated against several state-of-the-art methods for
fMRI classification including recent transformer, graph, convolutional
and recurrent network models, along with a traditional classifier. The
architecture, loss function and learning rate scheduler for each compet-
ing method were adopted from the original proposing papers.

SVM: A traditional model operating on static FC features was con-
sidered (Abraham et al., 2017). An 𝓁2 regularized model with linear
kernel was used. FC features were computed via Pearson’s correlation
between ROI-level responses. The cross-validated hyperparameter was
a regularization weight of 𝐶 = 1.

BrainNetCNN: A CNN model operating on static FC features of fMRI
data was considered (Kawahara et al., 2017). ROI-level features were
processed with a cascade of two edge-to-edge, one edge-to-node, and
one node-to-graph convolutional layers followed by three linear layers.
FC features were computed via Pearson’s correlation. Cross-validated
hyperparameters were 10−4 learning rate, 20 epochs, and 16 batch size.

BrainGNN: A GNN operating on static FC features of fMRI data was
considered (Li et al., 2021). Taking ROIs as graph nodes, BrainGNN
used a cascade of graph convolutional layers to assign nodes to clus-
ters with learned embeddings, and used pooling layers to aggregate
information with element-wise score normalization. FC features were
computed via partial correlation (Li et al., 2021). Cross-validated hy-
perparameters were 10−2 learning rate, 50 epochs, and 100 batch
size.

STAGIN: A GNN operating on dynamic FC features of fMRI data
was considered (Kim et al., 2021). STAGIN processed shifted windows
across the time series by a four-layer GNN taking ROIs as nodes,
deriving edges based on FC features, and calculating node features via
a recurrent unit. Features extracted from each graph by a squeeze-
excitation readout module were consolidated onto a single latent fea-
ture by a transformer. The latent feature was linearly projected to
class logits. A window size of 50 was prescribed, FC features were
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computed via Pearson’s correlation (Kim et al., 2021). Cross-validated
hyperparameters were 2 ×10−4 learning rate, 40 epochs, 8 batch size.

LSTM: An RNN model operating on BOLD responses was consid-
ered (Dvornek et al., 2017). A single-layer LSTM model averaged
hidden states across time samples, and performed classification via a
sigmoid activation layer. Cross-validated hyperparameters were 10−3

learning rate, 30 epochs, 64 batch size.
CNN-LSTM: A convolutional RNN model operating on BOLD re-

sponses was considered (Zhao et al., 2020). CNN-LSTM was adopted to
use 1D convolutions. Hidden states were averaged across time samples
to perform classification via a sigmoid activation layer. Cross-validated
hyperparameters were 10−3 learning rate, 50 epochs, and 64 batch
size.

GC-LSTM: A graph convolutional RNN model operating on FC
features was considered (Xing et al., 2019). GC-LSTM was adopted to
use the FC features to construct graph adjacency matrices on windowed
time series, and it computed recurrent state updates via spectral graph
convolution. The window size and stride were set to 120 and 2 s, re-
spectively (Xing et al., 2019). Hidden states were averaged across time
samples to perform classification via an MLP followed by a sigmoid
activation layer (Xing et al., 2019). Cross-validated hyperparameters
were a learning rate of 10−3, 100 epochs, and a batch size of 16.

SwinT: A transformer model with a windowed attention mecha-
nism proposed for computer vision tasks was considered (Liu et al.,
2021). For fair comparison, the number and hidden dimensionality
of transformer blocks, number of attention heads, and window size
were matched with BolT. ROI-level responses were linearly projected
to match the hidden dimensionality of the transformer blocks. Output
tokens were averaged across windows and linearly projected onto
class logits for classification (Beltagy et al., 2020). Cross-validated
hyperparameters were 2 × 10−4 learning rate, 30 epochs, and 32 batch
size.

Longformer: A transformer model with a windowed attention
mechanism proposed for language tasks was considered (Beltagy et al.,
2020). Longformer uses sliding window attention for BOLD tokens,
and global attention for the 𝐶𝐿𝑆 token. For fair comparison, the
number and hidden dimensionality of transformer blocks, number of
attention heads, and window size were matched with BolT. ROI-level
responses were linearly projected to match the hidden dimensionality
of the transformer blocks. The global 𝐶𝐿𝑆 token output was linearly
projected onto class logits for classification (Beltagy et al., 2020). Cross-
validated hyperparameters were 2 × 10−4 learning rate, 40 epochs, and
32 batch size.

BAnD: A hybrid CNN-transformer model operating on BOLD re-
sponses was considered (Nguyen et al., 2020). The CNN module suf-
fered from suboptimal learning, so for fair comparison BAnD was
implemented with ROI-level inputs as in BolT. ROI-level responses
were linearly projected to match the hidden dimensionality of the
transformer. No windowing was performed on the time series. Cross-
validated hyperparameters were 10−4 learning rate, 30 epochs, and 32
batch size.

TFF: A hybrid CNN-transformer model operating on BOLD responses
was considered (Malkiel et al., 2021). The CNN module was observed to
suffer from suboptimal learning, so for fair comparison TFF was imple-
mented with ROI-level inputs as in BolT. ROI-level responses were lin-
early projected to match the hidden dimensionality of the transformer.
The time series was split into windows of size 20 with shifts of 10,
which were processed independently until the final layer where they
were averaged (Malkiel et al., 2021). Cross-validated hyperparameters
were 10−5 learning rate, 30 epochs, and 32 batch size.

IFT-Net: A hybrid CNN-transformer model proposed for medical
image analysis was considered (Zhao et al., 2022). IFT-Net was adopted
to use 1D convolutional projections in attention layers where ROI-level
responses were taken as input channels. ROI-level responses were lin-
early projected to match the hidden dimensionality of the transformer
7

blocks. The output feature vector was fed to a sigmoid activation layer c
for classification. Cross-validated hyperparameters were 10−4 learning
rate, 30 epochs, and 8 batch size.

HATNet: A hybrid CNN-transformer model proposed for medical
image analysis was considered (Mehta et al., 2022). HATNet was
adopted to use 1D CNN modules with ROI-level responses taken as
input channels. The output of the CNN module was split into windows
of size 16 and processed via the transformer module for classifica-
tion (Mehta et al., 2022). Cross-validated hyperparameters were 10−4

earning rate, 100 epochs, and 32 batch size.

. Results

.1. Ablation studies

We conducted a series of ablation studies to evaluate the contri-
ution of individual design elements in BolT. The design elements
ncluded learnable and local (i.e., window-specific) 𝐶𝐿𝑆 tokens, split
ime windows, token fusion, cross attention between base and fringe
okens, and cross-window regularization. Starting with a vanilla trans-
ormer variant, ablated variants were obtained by progressively intro-
ucing individual elements. The vanilla variant omitted all elements
ncluding 𝐶𝐿𝑆 tokens, so classification was performed by linearly
rojecting the time average of encoded BOLD tokens at the output of
he last transformer block. For all variants, the architecture and hyper-
arameters for the utilized components were matched with BolT. To
ssess the contribution of a learnable 𝐶𝐿𝑆 token, a variant was formed
y introducing a global 𝐶𝐿𝑆 token into the vanilla variant. Note that
ocal 𝐶𝐿𝑆 tokens are not applicable in this case since windowing was
mitted. To assess the contribution of windowing, two variants were
ormed that used split time windows and either global or local 𝐶𝐿𝑆
okens, albeit omitted token fusion, cross attention and cross-window
egularization. Since cross attention was not used, these variants split
he time series into non-overlapping windows by setting stride equal to
indow size and fringe coefficient to 0 (i.e., 𝑠 = 𝑊 , 𝐿 = 0). For the
lobal 𝐶𝐿𝑆 variant, attention for the 𝐶𝐿𝑆 token was computed with
ll BOLD tokens in the time series, whereas attention for a BOLD token
as restricted to the window it resided in. For the local 𝐶𝐿𝑆 variant,
ttention computations for all tokens were restricted to local windows.
o assess the contribution of token fusion, a variant was formed that
sed local 𝐶𝐿𝑆 tokens, splitting into overlapping windows (i.e., 𝑠 =
𝛼 as in BolT) and token fusion, albeit omitted cross attention and

ross-window regularization. Cross attention was omitted by setting
= 0. To assess the contribution of cross attention, a variant was

ormed that used local 𝐶𝐿𝑆 tokens, splitting into overlapping windows,
oken fusion and cross-window attention (i.e., 𝐿 = 𝑚(1 − 𝛼)𝑊 𝛽), albeit
mitted cross-window regularization. Finally, to assess the contribution
f cross-window regularization, a variant using all elements (i.e., BolT)
as employed where regularization was achieved via adding the loss

erm in Eq. (4).
Table 1 lists performance metrics for all ablated variants. First, we

ind that introduction of a learnable, global 𝐶𝐿𝑆 token into the vanilla
ariant consistently improves performance metrics, demonstrating the
tility of high-level 𝐶𝐿𝑆 over low-level BOLD tokens in classification
asks. Second, a performance loss is incurred when the global 𝐶𝐿𝑆
oken is used along with split time windows, suggesting that the global
oken does not adequately capture local representations. In contrast,
ocal 𝐶𝐿𝑆 tokens in combination with windowing yield a performance
oost, indicating the importance of using window-specific 𝐶𝐿𝑆 tokens
o learn local representations. Third, fusion of tokens with repeated
ccurrence in overlapping windows yields a further improvement. Note
hat the BOLD token for a given time point appears in a single window
nd is encoded in a single context for a non-overlapping split, whereas
t appears in multiple windows and is encoded in multiple contexts for
n overlapping split. Thus, improvements due to token fusion demon-
trate the benefit of encoding representations of time points in diverse

ontexts. Fourth, enabling cross attention between base tokens in each



Medical Image Analysis 88 (2023) 102841H.A. Bedel et al.

t
t
t
O
y

m
p
d
d
t

Table 1
Performance of BolT variants ablated of essential design elements. Ablated elements were learnable 𝐶𝐿𝑆 tokens (𝐶𝐿𝑆), split time windows
(Windowing), token fusion (Fusion), cross-attention between the base and fringe tokens (Cross Attn.), and cross-window regularization (CWR).
When windowing is enabled, the annotation (G) denotes utilization of a global 𝐶𝐿𝑆 token shared across windows, whereas (L) denotes utilization
of local 𝐶𝐿𝑆 tokens in each window. Results are shown based on both the Schaefer and AAL atlases. Accuracy, recall, precision and AUC
metrics are reported as mean(std) across test folds. Bold-face indicates the top-performing model.

Atlas 𝐶𝐿𝑆 Windowing Fusion Cross Attn. CWR Acc. (%) Rec. (%) Prec. (%) AUC (%)

Schaefer ✗ ✗ ✗ ✗ ✗ 86.35
±3.56

85.76
±4.94

84.74
±4.68

94.59
±1.57

✓ ✗ ✗ ✗ ✗ 89.65
±3.36

88.38
±5.63

89.15
±4.78

96.03
±1.23

✓(G) ✓ ✗ ✗ ✗ 84.99
±2.37

89.78
±4.76

79.95
±2.68

93.63
±1.58

✓(L) ✓ ✗ ✗ ✗ 89.65
±1.85

88.77
±3.27

88.71
±3.06

96.79
±0.90

✓(L) ✓ ✓ ✗ ✗ 90.29
±1.77

89.57
±2.54

89.34
±3.23

97.15
±1.01

✓(L) ✓ ✓ ✓ ✗ 91.03
±2.12

89.97
±2.70

90.42
±3.30

97.09
±1.10

✓(L) ✓ ✓ ✓ ✓ 91.85
±3.05

90.58
±4.97

91.51
±3.07

97.35
±1.06

AAL ✗ ✗ ✗ ✗ ✗ 80.01
±3.06

78.20
±5.61

78.22
±3.88

88.74
±3.14

✓ ✗ ✗ ✗ ✗ 83.12
±3.58

80.80
±5.38

82.25
±5.05

90.88
±1.91

✓(G) ✓ ✗ ✗ ✗ 78.74
±4.11

85.00
±5.07

73.02
±4.41

88.41
±3.41

✓(L) ✓ ✗ ✗ ✗ 86.85
±3.06

87.20
±4.30

84.78
±4.65

93.57
±2.25

✓(L) ✓ ✓ ✗ ✗ 87.04
±2.48

87.60
±4.96

84.73
±3.43

93.80
±2.13

✓(L) ✓ ✓ ✓ ✗ 87.13
±3.03

85.80
±5.39

86.17
±4.22

94.12
±1.98

✓(L) ✓ ✓ ✓ ✓ 87.31
±2.69

86.99
±4.49

85.65
±4.01

94.29
±2.05
Table 2
Performance of BolT under varying window sizes 𝑊 . Results are shown based on the Schaefer and AAL atlases.
Accuracy, recall, precision and AUC metrics are reported as mean±std across test folds. Bold-face indicates the
top-performing model.

Atlas Window size Acc. (%) Rec. (%) Prec. (%) AUC (%)

Schaefer W = 10 91.39 ± 2.67 89.98 ± 4.28 91.09 ± 2.81 97.49 ± 0.78
W = 20 91.85 ± 3.05 90.58 ± 4.97 91.51 ± 3.07 97.35 ± 1.05
W = 80 91.48 ± 2.17 90.18 ± 4.41 91.18 ± 2.86 97.56 ± 0.95
W = 200 88.74 ± 2.73 84.77 ± 5.92 90.04 ± 2.34 96.32 ± 1.44

AAL W = 10 86.58 ± 2.68 86.20 ± 4.77 84.88 ± 3.98 93.83 ± 2.10
W = 20 87.31 ± 2.69 86.99 ± 4.49 85.65 ± 4.01 94.29 ± 2.05
W = 80 86.39 ± 4.42 86.00 ± 4.56 84.71 ± 5.88 94.17 ± 2.30
W = 200 85.57 ± 4.04 82.80 ± 5.60 85.40 ± 5.31 91.98 ± 3.72
window and neighboring fringe tokens increases performance, indicat-
ing the importance of this cross-attention mechanism for integration
of contextual representations across neighboring windows. Lastly, we
find that cross-window regularization that aligns window-specific 𝐶𝐿𝑆
okens contributes notably to model performance. This result indicates
hat the model benefits from coherence of representations in 𝐶𝐿𝑆
okens that are averaged across windows to implement classification.
verall, we find that the BolT model including all of its design elements
ields the highest performance among all variants.

Compared to the non-windowed variant with 𝐶𝐿𝑆, the ablated
variant with windowing and local 𝐶𝐿𝑆 tokens yields a notable perfor-

ance improvement on the AAL atlas, albeit it shows relatively stable
erformance on the Schaefer atlas ( Table 1). Since the measured fMRI
ata and modeling procedures were identical for the two atlases, this
ifference is best attributed to an interaction between window size and
he temporal characteristics of ROI responses. In theory, a larger 𝑊 can

be suited to analyze relatively slow varying responses, and a smaller
W can be suited to analyze relatively fast varying responses. A power
8

spectral density analysis shows that ROI responses based on the AAL
atlas that groups voxels based on anatomical proximity carry higher
energy at high temporal frequencies, whereas responses based on the
Schaefer atlas that groups voxels based on functional similarity carry
higher energy at low temporal frequencies (not reported). In turn, we
observe that the performance benefits from split time windows are max-
imized at 𝑊 = 20 for the AAL atlas, and at 𝑊 = 200 for the Schaefer
atlas (not reported). Note, however, that BolT does not only use basic
windowing as in the ablated variant, but it also leverages additional
window-related design elements including cross-attention between base
and fringe tokens, token fusion and cross-window regularization. These
elements promote information exchange across separate time windows,
increasing the effective temporal receptive field for each window. As
such, a small W can serve to sensitively analyze a broad range of
responses. Table 2 lists performance metrics for BolT under varying
window sizes. We find that optimal or near-optimal performance is
attained at a compact window size of 𝑊 = 20 commonly for both at-
lases. This result suggests that window-related design elements in BolT
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Fig. 3. Importance weights for individual cognitive tasks in HCP-Task averaged across subjects (see colorbar). (a) Results for emotion, relational, gambling, language, social and
motor tasks. Subtask annotations are shown to outline task structure during fMRI scans. (b) Input fMRI time series and importance weights for the working memory task. Relevant
ROIs and time points are emphasized by masking the input time series with importance weights.
Table 3
Performance of logistic-regression models given as
input most important tokens determined via the
explanatory technique. Results are also given for
logistic-regression models based on random tokens.
Boldface indicates the top-performing model in
each classification task.

LR (Important) LR (Random)

HCP-Rest
Acc. (%) 77.74±6.82 49.59 ± 2.79
Rec. (%) 71.93±6.43 26.86 ± 3.76
Prec. (%) 77.98±8.47 41.98 ± 4.37
AUC (%) 83.70±5.64 45.70 ± 1.25

HCP-Task
Acc. (%) 94.83±1.44 15.14 ± 1.18
Rec. (%) 94.81±1.44 15.15 ± 1.18
Prec. (%) 94.89±1.43 15.51 ± 1.47
AUC (%) 99.22±0.33 51.19 ± 0.73

ABIDE-I
Acc. (%) 60.44±3.55 51.23 ± 4.05
Rec. (%) 46.81±4.80 33.11 ± 5.36
Prec. (%) 59.71±4.84 47.68 ± 6.31
AUC (%) 62.26±4.65 49.33 ± 5.34

collectively introduce a degree of reliability against varying temporal
frequency characteristics of BOLD responses.

Next, we examined the efficacy of the explanatory technique that
computes an importance weight for each BOLD token (see Fig. 3). This
importance weight is supposed to reflect the degree of discriminative
information captured by the token for the respective detection task.
We reasoned that if the explanatory technique computes reasonable
weights, significant detection should be possible based on a subset of
highly important tokens. To test this prediction, BOLD tokens in the
time series were ordered according to their importance weights. ROI
definitions based on the Schaefer atlas were used for this analysis, since
they yielded better performance in BolT. Logistic-regression models
were then built for the same detection task given as input a subset
of five consecutive tokens (Tagliazucchi et al., 2012, 2011). Table 3
lists detection performance based on the most important subset of
9

Fig. 4. Accuracy of logistic-regression models receiving as input a subset of five
important tokens, while the total importance of the subset is systematically varied.
Tokens were ordered according to their importance weights, different subsets of five
consecutive tokens in the ordered list were selected. Results are shown for varying
subset index for (a) HCP-Task, (b) HCP-Rest, (c) ABIDE-I. Subset index refers to the
offset within the ordered list for the selected subset. Importance score was taken as the
average importance weight of tokens in a given subset normalized by the minimum
importance weight within the time series. As such, total importance of the subset and
detection accuracy show a general decrease with increasing subset index.
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Table 4
Performance of competing methods and BolT using Schaefer atlas for gender detection on the HCP-Rest dataset, task detection on the HCP-Task dataset and disease detection on
the ABIDE-I dataset. Metrics are reported as mean±std across test folds. Boldface indicates the top-performing model in terms of each metric in individual classification tasks.

HCP-Rest
(Schaefer)

HCP-Task
(Schaefer)

ABIDE-I
(Schaefer)

Acc.(%) Rec.(%) Prec.(%) AUC(%) Acc.(%) Rec.(%) Prec.(%) AUC(%) Acc.(%) Rec.(%) Prec.(%) AUC(%)

SVM 75.92
±4.78

65.13
±7.41

78.63
±6.27

85.34
±4.59

95.57
±0.87

95.58
±0.88

95.61
±0.86

99.78
±0.07

65.72
±4.11

53.97
±7.33

66.26
±6.68

71.33
±4.62

BrainNetCNN 84.16
±3.73

82.97
±6.63

82.39
±3.04

90.95
±3.85

96.42
±0.82

96.42
±0.87

96.52
±0.82

99.81
±0.06

66.78
±3.90

63.82
±8.73

65.50
±4.63

73.15
±5.62

BrainGNN 79.14
±3.90

78.96
±5.43

76.89
±6.19

86.31
±2.51

93.10
±1.40

93.11
±1.43

93.80
±1.07

99.67
±0.12

59.87
±5.80

47.86
±12.21

57.79
±6.50

63.86
±6.63

STAGIN 82.51
±3.69

84.16
±5.61

79.20
±4.71

87.63
±3.53

99.27
±0.43

99.26
±0.43

99.27
±0.42

99.98
±0.01

61.70
±3.56

41.69
±7.37

63.63
±7.03

64.71
±6.02

LSTM 81.59
±4.03

82.16
±3.00

78.99
±6.37

90.46
±2.37

98.35
±0.65

98.34
±0.65

98.41
±0.58

99.94
±0.04

64.55
±5.41

57.14
±16.20

62.85
±6.98

68.88
±5.87

CNN-LSTM 80.77
±3.83

79.57
±9.34

80.38
±9.27

88.47
±3.39

99.04
±0.59

99.04
±0.59

99.07
0.56

99.96
±0.05

65.49
±5.70

57.31
±9.40

64.79
±7.57

71.40
±5.41

GC-LSTM 83.99
±4.85

76.90
±16.09

87.64
±5.14

93.85
±1.35

98.16
±0.59

98.16
±0.59

98.20
±0.59

99.96
±0.02

62.77
±5.46

60.24
±19.56

62.11
±10.96

68.28
±4.84

SwinT 79.41
±2.49

77.35
±4.54

77.67
±3.63

87.49
±1.71

99.54
±0.27

99.54
±0.27

99.55
±0.27

99.99
±0.00

68.56
±4.74

60.75
±7.60

68.27
±6.56

74.13
±4.15

Longformer 83.24
±3.34

79.15
±8.49

84.03
±5.45

92.41
±2.81

99.46
±0.39

99.46
±0.38

99.47
±0.38

99.99
±0.00

67.85
±4.58

57.15
±15.79

70.09
±7.13

74.87
±3.99

BaND 83.61
±4.03

84.54
±6.41

80.87
±5.42

92.62
±2.20

99.24
±0.46

99.24
±0.46

99.26
±0.43

99.98
±0.01

65.48
±3.04

58.07
±7.93

64.47
±4.76

72.10
±4.38

TFF 87.36
±3.68

84.17
±4.21

87.89
±5.09

94.79
±2.39

99.08
±0.25

99.08
±0.25

99.11
±0.24

99.98
±0.02

66.73
±5.33

42.71
±16.49

78.93
±10.19

75.44
±3.94

IFT-Net 82.97
±2.84

79.76
±10.28

83.72
±7.27

93.12
±2.05

97.58
±3.62

97.58
±3.62

98.08
±2.59

99.91
±0.16

61.88
±5.52

51.59
±23.88

63.82
±9.42

68.50
±6.44

HATNet 85.72
±2.64

84.38
±5.89

84.57
±3.68

93.66
±2.26

99.37
±0.33

99.36
±0.33

99.38
±0.32

99.99
±0.00

64.66
±4.53

57.67
±6.88

62.99
±5.76

68.92
±4.95

BolT 91.85
±3.05

90.58
±4.97

91.51
±3.07

97.35
±1.06

99.66
±0.35

99.66
±0.35

99.67
±0.34

99.99
±0.00

71.28
±4.62

64.85
±7.94

71.32
±7.35

77.56
±3.44
tokens against that based on a subset of randomly selected tokens.
While random tokens perform near chance level, important tokens
achieve substantially higher performance. We also reasoned that de-
tection performance should scale with the overall importance of the
selected token subset. To examine this issue, separate logistic-regression
models were built while the overall importance of the token subset
was systematically reduced (Fig. 4). Detection performance elevates
near-monotonically with increasing levels of token importance. Taken
together, these results indicate that the importance weights returned by
the explanatory technique closely reflect the contribution of individual
tokens to model decisions.

5.2. Comparative demonstration of BolT

We demonstrated BolT for three main tasks in fMRI analysis: gen-
der detection on HCP-Rest, cognitive task detection on HCP-Task,
and disease detection on ABIDE-I datasets. BolT was demonstrated
against state-of-the-art traditional (SVM), CNN (BrainNetCNN), GNN
(BrainGNN, STAGIN), RNN (LSTM, CNN-LSTM, GC-LSTM), and trans-
former (SwinT, Longformer, BaND, TFF, IFT-Net, HATNet) baselines.
Demonstrations were performed using ROI definitions extracted via
two different brain atlases. Performance metrics for competing methods
for Schaefer atlas are listed in Table 4, and those for AAL atlas are
listed in Table 5. For each detection task and based on each atlas,
BolT outperforms all competing methods in each metric (p < 0.05,
Wilcoxon signed-rank test), except for TFF that offers higher precision
on ABIDE-I, SwinT that offers similar recall on ABIDE-I (AAL atlas),
and SwinT, Longformer, and HATNet that offer similar AUC on HCP-
Task. On average across atlases in gender detection, BolT improves
(accuracy, recall, precision, AUC) by (8.39, 11.13, 7.41, 5.87)% over
transformer baselines, (10.96, 13.78, 9.58, 7.95)% over RNN baselines,
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(12.67, 11.85, 14.49, 12.10)% over GNN baselines, (11.92, 13.59,
12.78, 10.84)% over the CNN baseline, and (15.76, 23.51, 13.99,
14.00)% over the traditional baseline. In cognitive task detection, BolT
achieves improvements of (1.14, 1.14, 1.00, 0.03)% over transformer
baselines, (2.35, 2.35, 2.21, 0.12)% over RNN baselines, (6.84, 6.82,
6.18, 0.82)% over GNN baselines, (6.09, 6.09, 5.98, 0.56)% over the
CNN baseline, and (7.75, 7.73, 7.67, 0.82)% over the traditional base-
line. Finally, in disease detection, BolT achieves improvements of (5.11,
10.56, -, 4.88)% over transformer baselines, (6.44, 9.63, 5.86, 7.22)%
over RNN baselines, (8.58, 12.53, 9.43, 10.69)% over GNN baselines,
(4.31, 0.64, 5.73, 4.46)% over the CNN baseline, and (4.05, 8.15,
4.23, 4.68)% over the traditional baseline. Taken together, these results
indicate that BolT enables significant performance benefits in detection
tasks over prior traditional and DL methods.

In general, we observe that DL models yield superior performance to
the traditional SVM baseline on HCP-Rest and HCP-Task, whereas SVM
outperforms CNN, GNN, RNN, and a subset of transformer baselines in
disease detection on ABIDE-I. Note that HCP-Rest and HCP-Task were
acquired using relatively standardized protocols and scanner hardware
in a compact set of imaging sites. In contrast, ABIDE-I was curated by
aggregating data from a larger number of sites with more substantial
variations in imaging protocols and hardware. In turn, the resultant
data heterogeneity can limit generalization performance for DL meth-
ods with relatively high complexity, while the simpler SVM method
starts performing competitively. That said, we observe that windowed
transformer models including BolT still outperform SVM in this case,
implying a degree of reliability against data heterogeneity due to the
generalization capabilities of self-attention operators combined with
local sensitivity from split time windows. We also observe that all
competing methods yield notably higher performance on HCP-Task,
compared to HCP-Rest and ABIDE-I. This is expected as detecting diver-
gent cognitive tasks from task-based fMRI scans that elicit responses in
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Table 5
Performance of competing methods and BolT using AAL atlas for gender detection on the HCP-Rest dataset, task detection on the HCP-Task dataset and disease detection on the
ABIDE-I dataset. Metrics are reported as mean±std across test folds. Boldface indicates the top-performing model in terms of each metric in individual classification tasks.

HCP-Rest
(AAL)

HCP-Task
(AAL)

ABIDE-I
(AAL)

Acc.(%) Rec.(%) Prec.(%) AUC(%) Acc.(%) Rec.(%) Prec.(%) AUC (%) Acc.(%) Rec.(%) Prec.(%) AUC(%)

SVM 71.71
±3.76

65.40
±11.86

70.55
±3.28

78.30
±4.09

88.11
±1.46

88.14
±1.46

88.25
±1.38

98.54
±0.31

65.60
±3.14

55.00
±7.40

64.10
±5.77

71.16
±4.18

BrainNetCNN 71.16
±4.91

67.40
±9.21

69.20
±6.47

78.99
±5.12

90.56
±1.06

90.58
±1.07

90.73
±1.04

99.04
±0.27

64.01
±6.04

60.24
±9.33

61.86
± 6.75

69.79
±6.16

BrainGNN 69.79
±4.59

72.40
±9.70

65.25
±4.36

77.85
±4.59

79.73
±5.92

79.85
±5.88

81.72
±4.77

97.05
±1.29

61.40
±4.66

58.30
±10.86

58.40
±6.74

65.68
±5.61

STAGIN 76.18
±3.10

72.20
±9.22

75.00
±3.75

83.07
±3.15

98.87
±0.60

98.86
±0.61

98.91
±0.57

99.95
±0.03

61.52
±3.49

52.69
±7.38

60.12
±4.94

66.68
±4.36

LSTM 73.25
±4.48

67.19
±8.44

73.10
±7.59

81.96
±2.90

96.96
±0.69

96.97
±0.69

97.06
±0.64

99.88
±0.06

63.06
±3.96

45.81
±22.76

64.05
±13.93

70.25
±3.85

CNN-LSTM 74.81
±3.15

66.40
±9.20

76.25
±5.28

82.88
±3.30

97.77
±0.60

97.76
±0.61

97.83
±0.57

99.91
±0.05

63.65
±5.42

49.47
±17.04

66.49
±11.86

68.78
±4.13

GC-LSTM 77.27
±5.29

77.79
±14.57

77.61
±11.50

89.59
±1.93

93.14
±1.39

93.14
±1.39

93.74
±1.09

99.57
±0.14

60.05
±5.36

48.27
±19.80

61.04
±9.04

64.67
±6.90

SwinT 78.37
±4.00

76.60
±6.69

76.14
±4.07

84.84
±3.58

99.23
±0.38

99.23
±0.38

99.25
±0.36

99.99
±0.01

66.78
±4.25

60.48
±6.38

65.56
±5.57

72.92
±4.30

Longformer 76.28
±4.30

63.00
±13.94

83.53
±9.68

87.80
±3.10

99.11
±0.42

99.11
±0.43

99.13
±0.41

99.99
±0.00

64.77
±4.71

58.69
±18.18

64.99
±9.42

71.42
±4.70

BaND 78.55
±4.12

70.40
±8.38

80.46
±5.18

87.39
±2.84

98.16
±0.45

98.16
±0.45

98.20
±0.41

99.93
±0.03

63.12
±3.60

45.18
±12.53

65.25
±6.33

68.65
±3.61

TFF 82.57
±4.05

81.80
±8.59

81.34
±7.41

91.14
±2.98

97.43
±1.00

97.43
±1.00

97.55
±0.90

99.90
±0.07

65.84
±3.87

46.30
±15.83

73.30
±8.86

74.14
±4.16

IFT-Net 77.72
±4.85

76.00
±11.76

76.57
±7.28

86.69
±2.62

95.22
±5.58

95.17
±5.67

96.19
±3.80

99.87
±0.19

58.26
±4.72

32.11
±24.85

54.23
±25.90

64.99
±4.64

HATNet 78.37
±2.15

74.60
±5.58

77.23
±1.54

87.43
±2.96

97.97
±0.35

97.96
±0.35

98.02
±0.32

99.96
±0.02

61.16
±5.64

54.59
±7.15

58.79
±6.55

66.52
±5.10

BolT 87.31
±2.69

86.99
±4.49

85.65
±4.01

94.29
±2.05

99.52
±0.39

99.52
±0.40

99.54
±0.38

99.99
±0.00

68.14
±2.81

60.49
±4.22

67.52
±4.07

74.30
±3.69
largely non-overlapping brain networks is relatively easier compared
to detection tasks on resting-state fMRI scans. Here, we preferred
to report HCP-Task since it is a highly relevant, benchmark dataset
that is frequently reported in methodology studies on task-based fMRI
analysis. Yet, future studies are warranted to examine the utility of BolT
in detecting BOLD-response differences among more similar cognitive
tasks driving partly overlapping brain networks.

5.3. Explainability of BolT

To interpret the spatio-temporal patterns of brain activation that
contribute to BolT’s decisions, we employed the explanatory technique
to calculate token importance weights. Importance weights for each
cognitive task in HCP-Task are shown in Fig. 3. Landmark time points of
high importance closely align with transitions in the temporal structure
of task variables following an offset due to hemodynamic delay. For
instance, periods of target maintenance following target appearance are
attributed high importance in the working memory task, corresponding
to abrupt changes in activation (Tagliazucchi et al., 2011).

We then leveraged the landmark time points to identify brain re-
gions critical for the detection tasks. To do this, a logistic-regression
model was trained on top-five most important BOLD tokens, and model
weights were taken to reflect the importance of individual ROIs for task
performance (Rahman et al., 2022). As shown in Fig. 5 for gender de-
tection, we find important ROIs across the attention and somatosensory
networks in male subjects, and ROIs in prefrontal/frontal cortices and
default mode network (DMN) in female subjects. This is consistent with
previous reports on stronger FC features across sensorimotor cortices
in males and across DMN in females (Ritchie et al., 2018; Filippi
et al., 2013). We further find important ROIs in visual networks for
both genders. This result is aligned with a recent report suggesting
11
that responses in visual regions might implicitly represent gender-
discriminating information (Kim et al., 2021). As shown in Fig. 6
for task detection, brain regions implicated with the target task are
attributed high importance (e.g., sensorimotor regions in the Motor
task, temporal regions in the Language task). As shown in Fig. 7 for ASD
detection, we find important ROIs in healthy controls across the frontal-
parietal network (FPN), thought to mediate goal-oriented, cognitively
demanding behavior (Uddin et al., 2019). In contrast, ASD patients
manifest important ROIs across DMN, with commonly reported over-
activation in ASD (Buckner et al., 2008; Abraham et al., 2017; Chen
et al., 2021). Taken together, these results indicate that BolT effectively
captures task-relevant patterns of brain activation in both normal and
disease states.

6. Discussion

Here, we introduced a transformer architecture that efficiently cap-
tures local-to-global representations of time series to perform detec-
tion tasks based on fMRI scans. The proposed architecture learns la-
tent representations of fMRI data via a novel fused window attention
mechanism that incorporates long-range context with linear complex-
ity in terms of scan length. Detection is then performed based on
learned high-level classification tokens regularized across time win-
dows. Demonstrations were performed on resting-state and task-based
fMRI data with superior performance against state-of-the-art baselines
including convolutional, graph and transformer models.

In this study, we primarily built classification models with categori-
cal output variables for gender, cognitive task, and disease. To improve
classification performance, learnable 𝐶𝐿𝑆 tokens were included that
provide a condensed high-level representation of corresponding time
windows. Note that the human brain does not only represent categor-
ical variables, but it is also assumed to carry information regarding
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Fig. 5. Landmark time points (i.e. BOLD tokens) selected by BolT were used to identify brain regions critical for gender detection in HCP-Rest. A collection of K = 5 tokens were
retrieved from each subject, characterizing responses across R ROIs. Next, a logistic regression model was trained to map the tokens in landmark time points onto the associated
output class. Model weights reflect each ROI’s contribution to the classification decision. For each class, the top 2 percent of most influential ROIs were visualized (i.e. female in
red color, male in blue color).
Fig. 6. Critical ROIs for cognitive task detection in HCP-Task. For each task, the
top 2 percent of most influential ROIs were visualized. Elevated BOLD responses in
highlighted ROIs imply the presence of the associated task.

continuous stimulus or task features (Çukur et al., 2013). To ana-
lyze cortical representations of such continuous features, BolT can be
adapted to instead build regression models (Nishimoto et al., 2011;
VanRullen and Reddy, 2019; Li et al., 2018). To do this, latent rep-
resentations of BOLD tokens in downstream layers of BolT can be
12
Fig. 7. Critical ROIs for ASD detection in ABIDE-I. The top 2 percent of most influential
ROIs were visualized for ASD patients and healthy controls. Elevated BOLD responses
in red ROIs imply the presence of the ASD condition, whereas elevated responses in
blue ROIs imply a healthy condition.

coupled with linear or ReLU activation functions. This can enable BolT
to decode continuous stimulus or task variables from fMRI scans.

A common approach to interrogate brain function in computational
neuroimaging studies is to build decoding models that predict stimulus
or task features given as input measured brain activations (LaConte,
2011; Andersson et al., 2011). Following this framework, here we used
BolT to build decoding models that detect external features based on
measured BOLD responses. An alternative framework rests on analysis
of brain function by building encoding models that predict brain acti-
vations given as input stimulus/task features (Nishimoto, 2021; Celik
et al., 2021; Shahdloo et al., 2022; Anderson et al., 2016; Ngo et al.,
2022). In cognitive neuroimaging studies, the experimental time course
for the stimulus and/or cognitive task can be taken as input to BolT, and
voxel-wise regression models can be built to estimate measured BOLD
responses. It remains important future work to assess the efficacy of
BolT in training encoding models.

Literature suggests that resting-state fMRI scans carry idiosyncratic
information regarding disease progression in neurodevelopmental dis-
orders (Uddin et al., 2010; Hohenfeld et al., 2018). Based on this
literature, we considered ASD detection using solely information from
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resting-state fMRI scans. Recent studies suggest that auxiliary informa-
tion on patient demographics or scan protocols might help facilitate
disease detection (Dvornek et al., 2018). Moreover, some neurological
diseases such as Alzheimer’s or dementia have complementary imaging
signatures in other modalities such as structural or diffusion-weighted
MRI (Román and Pascual, 2012). Thus, it is reasonable to expect
that disease detection performance with BolT can be further improved
by incorporating auxiliary information as well as additional imaging
modalities. Auxiliary information can be integrated via bypass channels
near the output layers of BolT, whereas additional imaging modalities
can be incorporated as added input channels alongside fMRI data.

As commonly practiced in many fMRI studies, here we first normal-
ized each subject’s brain volume onto an anatomical template, and then
used an anatomical atlas to define brain ROIs. Average BOLD responses
in individual ROIs were then provided as input to BolT. Note that this
approach ensures relatively consistent and comprehensive ROI defini-
tions across subjects, permitting analyses in brain regions that do not
have well established functional-localization procedures (Flandin et al.,
2002). Yet, spatial registration to a common template involves a poten-
tially lossy transformation of fMRI data. Such losses can be mitigated by
defining ROIs in the brain spaces of individual subjects as opposed to a
template. To do this, the registration transform between the subject and
template brain spaces can be estimated. ROI boundaries in the template
brain space can then be backprojected onto the individual subject brain
space by inverting the estimated transformation (Shahdloo et al., 2020,
2022). Alternatively, a CNN model can also incorporated in BolT to
perform spatial encoding of volumetric MRI data prior to processing
with the transformer blocks (Nguyen et al., 2020; Malkiel et al., 2021).

Here we trained all competing models from scratch on fMRI data
from several hundred subjects for each detection task. Given their rel-
atively higher complexity against convolutional models, transformers
are generally considered to require substantial datasets for successful
learning (Dosovitskiy et al., 2020; Güngör et al., 2022). In appli-
cations where only compact datasets are available, pre-training and
transfer learning procedures can be adopted to initialize the network
weights in transformer architectures (Devlin et al., 2018; Dalmaz et al.,
2022b). Reliable augmentation via image synthesis based on advanced
procedures such as diffusion modeling can also help alleviate data
scarcity (Dar et al., 2022; Özbey et al., 2022). Alternatively, complexity
of self-attention modules can be mitigated by replacing regular dot-
product attention operators with efficient kernelized operators (Zhang
et al., 2022). Federated learning across multiple institutions might facil-
itate learning from large, diverse datasets without introducing privacy
risks (Elmas et al., 2022; Dalmaz et al., 2022a). Lastly, unsupervised
learning strategies can also be adopted to permit training on partially
labeled fMRI datasets from a larger subject cohort (Malkiel et al., 2021;
Korkmaz et al., 2022). A systematic exploration of the data efficiency of
BolT against competing models remains an important topic for future
research.

7. Conclusion

In this study, we introduced a novel transformer model to im-
prove classification performance on fMRI time series. BolT leverages
fused window attention to capture local interactions among temporally-
overlapped time windows, and hierarchically grows window overlap to
capture global representations. Token fusion and cross-window regu-
larization are used to effectively integrate latent representations across
the time series. Here, demonstrations were performed for gender and
disease detection from resting-state fMRI and task detection from task-
based fMRI. Furthermore, an explanatory technique was devised to
interpret model decisions in terms of landmark time points and brain
regions. Collectively, the proposed approach holds great promise for
sensitive and explainable analysis of multi-variate fMRI data. BolT may
help detect other neurological disorders with characteristic influences
on fMRI activation patterns, and classification of more intricate task
13

variables during cognitive processing.
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