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ResViT: Residual Vision Transformers for
Multimodal Medical Image Synthesis

Onat Dalmaz , Graduate Student Member, IEEE, Mahmut Yurt, and Tolga Çukur , Senior Member, IEEE

Abstract— Generative adversarial models with convolu-
tional neural network (CNN) backbones have recently been
established as state-of-the-art in numerous medical image
synthesis tasks. However, CNNs are designed to perform
local processingwith compact filters, and this inductive bias
compromises learning of contextual features. Here, we pro-
pose a novel generative adversarial approach for medical
image synthesis, ResViT, that leverages the contextual sen-
sitivity of vision transformers along with the precision of
convolution operators and realism of adversarial learning.
ResViT’s generator employs a central bottleneck compris-
ing novel aggregated residual transformer (ART) blocks
that synergistically combine residual convolutional and
transformer modules. Residual connections in ART blocks
promote diversity in captured representations,while a chan-
nel compression module distills task-relevant information.
A weight sharing strategy is introduced among ART blocks
to mitigate computational burden. A unified implementation
is introduced to avoid the need to rebuild separate synthesis
models for varying source-target modality configurations.
Comprehensive demonstrations are performed for synthe-
sizing missing sequences in multi-contrast MRI, and CT
images from MRI. Our results indicate superiority of ResViT
against competing CNN- and transformer-based methods in
terms of qualitative observations and quantitative metrics.

Index Terms— Medical image synthesis, transformer,
residual, vision, adversarial, generative, unified.

I. INTRODUCTION

MEDICAL imaging plays a pivotal role in modern health-
care by enabling in vivo examination of pathology

in the human body. In many clinical scenarios, multi-modal
protocols are desirable that involve a diverse collection of
images from multiple scanners (e.g., CT, MRI) [1], or multiple
acquisitions from a single scanner (multi-contrast MRI) [2].
Complementary information about tissue morphology, in turn,
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empower physicians to diagnose with higher accuracy and
confidence. Unfortunately, numerous factors including unco-
operative patients and excessive scan times prohibit ubiquitous
multi-modal imaging [3], [4]. As a result, there has been
ever-growing interest in synthesizing unacquired images in
multi-modal protocols from the subset of available images,
bypassing costs associated with additional scans [5], [6].

Medical image synthesis aims to predict target-modality
images for a subject given source-modality images acquired
under a limited scan budget [7]. This is an ill-posed inverse
problem since medical images are high dimensional, target-
modality data are absent during inference, and there exist
nonlinear differences in tissue contrast across modalities
[8]–[13]. Unsurprisingly, recent adoption of deep learning
methods for solving this difficult problem has enabled major
performance leaps [14]–[21]. In learning-based synthesis, net-
work models effectively capture a prior on the joint distribution
of source-target images [22]–[24]. Earlier studies using CNNs
for this purpose reported significant improvements over tradi-
tional approaches [22], [23], [25]–[28]. Generative adversarial
networks (GANs) were later introduced that leverage an adver-
sarial loss to increase capture of detailed tissue structure [24],
[29]–[35]. Further improvements were attained by leveraging
enhanced architectural designs [36]–[39], and learning strate-
gies [40]–[42]. Despite their prowess, prior learning-based
synthesis models are fundamentally based on convolutional
architectures that use compact filters to extract local image
features [43], [44]. Exploiting correlations among small neigh-
borhoods of image pixels, this inductive bias reduces the
number of model parameters to facilitate learning. However,
it also limits expressiveness for contextual features that reflect
long-range spatial dependencies [45], [46].

Medical images contain contextual relationships across both
healthy and pathological tissues. For instance, bone in the
skull or CSF in the ventricles broadly distribute over spa-
tially contiguous or segregated brain regions, resulting in
dependencies among distant voxels. While pathological tissues
have less regular anatomical priors, their spatial distribution
(e.g., location, quantity, shape) can still show disease-specific
patterns [47]. For instance, multiple diffuse brain lesions are
present in multiple sclerosis (MS) and Alzheimer’s (AD); com-
monly located near periventricular and juxtacortical regions in
MS, and near hippocampus, entorhinal cortex and isocortex
in AD [48]. Meanwhile, few lesions manifest as spatially-
contiguous clumps in cancer; with lesions typically located
near the cerebrum and cerebellum in gliomas, and near the
skull in meningiomas [48]. Thus, the distribution of pathology
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also involves context regarding the position and structure of
lesions with respect to healthy tissue. In principle, synthesis
performance can be enhanced by priors that capture these
relationships. Vision transformers are highly promising for this
goal since attention operators that learn contextual features
can improve sensitivity for long-range interactions [49], and
focus on critical image regions for improved generalization
to atypical anatomy such as lesions [50]. However, adopt-
ing vanilla transformers in tasks with pixel-level outputs is
challenging due to computational burden and limited localiza-
tion [51]. Recent studies instead consider hybrid architectures
or computation-efficient attention operators to adopt trans-
formers in medical imaging tasks [52]–[57].

Here, we propose a novel deep learning model for medical
image synthesis, ResViT, that translates between multi-modal
imaging data. ResViT combines the sensitivity of vision trans-
formers to global context, the localization power of CNNs, and
the realism of adversarial learning. ResViT’s generator follows
an encoder-decoder architecture with a central bottleneck to
distill task-critical information. The encoder and decoder con-
tain CNN blocks to leverage local precision of convolution
operators [58]. The bottleneck comprises novel aggregated
residual transformer (ART) blocks to synergistically preserve
local and global context, with a weight-sharing strategy to min-
imize model complexity. To improve practical utility, a unified
ResViT implementation is introduced that consolidates mod-
els for numerous source-target configurations. Demonstrations
are performed for synthesizing missing sequences in multi-
contrast MRI, and CT from MRI. Comprehensive experiments
on imaging datasets from healthy subjects and patients clearly
indicate the superiority of the proposed method against com-
peting methods. Code to implement the ResViT model is
publicly available at https://github.com/icon-lab/ResViT.

Contributions
• We introduce the first adversarial model for medical

image synthesis with a transformer-based generator to
translate between multi-modal imaging data.

• We introduce novel aggregated residual trans-
former (ART) blocks to synergistically preserve
localization and context.

• We introduce a weight sharing strategy among ART
blocks to lower model complexity and mitigate compu-
tational burden.

• We introduce a unified synthesis model that generalizes
across multiple configurations of source-target modalities.

II. RELATED WORK

The immense success of deep learning in inverse problems
has motivated its rapid adoption in medical imaging [59], [60].
Medical image synthesis is a particularly ill-posed problem
since target images are predicted without any target-modality
data [32]. Earlier studies in this domain have proposed
local networks based on patch-level processing [16], [61],
[62]. While local networks offer benefits over traditional
approaches, they can show limited sensitivity to broader con-
text across images [22]. Later studies adopted deep CNNs for
image-level processing with increasing availability of large

imaging databases. CNN-based synthesis has been success-
fully demonstrated in various applications including synthe-
sis across MR scanners [32], [63]–[65], multi-contrast MR
synthesis [22], [23], [25]–[28], and CT synthesis [66]–[69].
Despite significant improvements they enable, CNNs trained
with pixel-wise loss terms tend to suffer from undesirable loss
of detailed structure [24], [43], [44].

To improve capture of structural details, GANs [29] were
proposed to learn the distribution of target modalities condi-
tioned on source modalities [70]. Adversarial losses empower
GANs to capture an improved prior for recovery of high-
spatial-resolution information [24], [43], [44]. In recent years,
GAN-based methods were demonstrated to offer state-of-the-
art performance in numerous synthesis tasks, including data
augmentation as well as multi-modal synthesis [24], [34],
[71], [72]. Important applications of GAN models include
CT to PET [73], [74], MR to CT [75]–[77], unpaired cross-
modality [78]–[81], 3T-to-7T [82], [83], and multi-contrast
MRI synthesis [24], [30]–[42].

While GAN models have arguably emerged as a gold stan-
dard in recent years, they are not without limitation. In particu-
lar, GANs are based on purely convolutional operators known
to suffer from poor across-subject generalization to atypical
anatomy and sub-optimal learning of long-range spatial depen-
dencies [45], [46]. Recent studies have incorporated spatial
or channel attention mechanisms to modulate CNN-derived
feature maps [37], [50], [84]–[88]. Such modulation motivates
the network to give greater focus to regions that may suffer
from greater errors [50], [85]. While attention maps might
be distributed across image regions, multiplicative gating of
local CNN features offers limited expressiveness in modeling
of global context [51], [89], [90].

To incorporate contextual representations, transformer-
based methods have received recent interest in imaging tasks
such as segmentation [51], [89], [91], reconstruction [52]–[54],
and synthesis [55]–[57]. Among relevant methods are
Transformer GAN that suppresses noise in low-dose PET
images [52], TransCT that suppresses noise in low-dose CT
images [53], and SLATER that recovers MR images from
undersampled k-space acquisitions [54]. While these methods
reconstruct images for single-modality data, ResViT trans-
lates imaging data across separate modalities. Furthermore,
Transformer GAN is an adversarial model with convolu-
tional encoder-decoder and a bottleneck that contains a trans-
former without external residual connections. TransCT is a
non-adversarial model where CNN blocks first learn textural
components of low-frequency (LF) and high-frequency (HF)
image parts; and a transformer without external residual con-
nections then combines encoded HF and textural LF maps.
In comparison, ResViT is an adversarial model that employs
a hybrid architecture in its bottleneck comprising a cascade
of residual transformer and residual CNN modules. Unlike
SLATER based on an unconditional model that maps latent
variables to images via cross-attention transformers, ResViT
is a conditional model based on self-attention transformers.

Few recent studies have independently introduced
transformer-based methods for medical image synthesis.
VTGAN generates retinal angiograms from fundus
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Fig. 1. The generator in ResViT follows an encoder-decoder architecture bridged with a central information bottleneck to distill task-specific
information. The encoder and decoder comprise convolutional layers to maintain local precision and inductive bias in learned structural representa-
tions. Meanwhile, the information bottleneck comprises a stack of novel aggregated residual transformer (ART) blocks. ART blocks learn contextual
representations via vision transformers, and synergistically fuse CNN-based local and transformer-based global representations.

photographs [55] and GANBERT performs MR-to-PET
synthesis [56], whereas ResViT performs multi-contrast MRI
and MR-to-CT synthesis. Both VTGAN and GANBERT
use entirely convolutional generators and only include
transformers in their discriminators. In contrast, ResViT
incorporates transformers in its generator to explicitly
leverage long-range context. The closest study to our work
is PTNet that performs one-to-one translation between T1-
and T2-weighted images in infant MRI [57]. However, PTNet
is a non-adversarial model without a discriminator, and it
follows a convolution-free architecture. In contrast, ResViT
is an adversarial model with a hybrid CNN-transformer
architecture to achieve high localization and contextual
sensitivity along with a high degree of realism in synthesized
images. Furthermore, a broader set of tasks are considered
for ResViT including one-to-one and many-to-one translation.

A unique component of ResViT is the novel ART blocks in
its generator that contain a cascade of transformer and CNN
modules equipped with skip connections. These residual paths
enable effective aggregation of contextual and convolutional
representations. Based on this powerful component, we pro-
vide the first demonstrations of a transformer architecture for
many-to-one synthesis tasks and a unified synthesis model for
advancing practicality over task-specific methods.

III. THEORY AND METHODS

A. Residual Vision Transformers

Here we propose a novel adversarial method for medical
image synthesis named residual vision transformers, ResViT,
that can unify various source-target modality configurations
into a single model for improved practicality. ResViT lever-
ages a hybrid architecture of deep convolutional operators
and transformer blocks to simultaneously learn high-resolution
structural and global contextual features (Fig. 1). The gen-
erator subnetwork follows an encoder - information bottle-
neck - decoder pathway, and the discriminator subnetwork
is composed of convolutional operators. The generator’s bot-
tleneck contains a stack of novel aggregated residual trans-
former (ART) blocks. Each ART block is organized as the cas-
cade of a transformer module that extracts hidden contextual
features, and a CNN module that extracts hidden local features
of input feature maps. Importantly, external skip connections
are inserted around both modules to create multiple paths of
information flow through the block. These paths propagate
multiple sets of features to the output: (a) Input features from
the previous network layer passing through skip connections
of transformer and CNN modules; (b) Contextual features
computed by the transformer module passing through the skip
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connection of the CNN module; (c) Local features computed
by the CNN module based on input features reaching through
the skip connection of the transformer module; (d) Hybrid
local-contextual features computed by the transformer-CNN
cascade. Therefore, the main motivation for use of residual
transformer and residual CNN modules in ART blocks is to
learn an aggregated representation that synergistically com-
bines lower-level input features along with their contextual,
local, and hybrid local-contextual features.

The central segment of ResViT containing ART blocks acts
as an information bottleneck for spatial and feature dimensions
of medical image representations. On the one hand, the central
segment processes feature maps that have been spatially down-
sampled by the encoder. This increases the relative emphasis
on mid- to high-level spatial information over lower-level
information [58]. On the other hand, ART blocks contain
channel-compression (CC) modules that process concatenated
feature maps from the previous ART block and the transformer
module. CC modules downsample the concatenated maps in
the feature dimension to distill a task-relevant set of convolu-
tional and contextual features.

Given the computational efficiency of convolutional layers,
CNNs pervasively process feature maps at high spatial resolu-
tion to improve sensitivity for local features [58]. In contrast,
vision transformers include computationally exhaustive self-
attention layers, so they typically process feature maps at rel-
atively lower resolution [49]. To ensure that both the residual
CNNs and transformers in ART blocks receive input feature
maps at their expected resolutions, we incorporated down
and upsampling blocks respectively at the input and output
of transformer modules. This design ensures compatibility
between the resolutions of feature maps extracted from CNN
and transformer modules. In the remainder of this section,
we explain the detailed composition of each architectural
component, and we describe the loss functions to train ResViT.

1) Encoder: The first component of ResViT is a deep
encoder network that contains a series of convolutional layers
to capture a hierarchy of localized features of source images.
Note that ResViT can serve as a unified synthesis model, so its
encoder receives as input the full set of modalities within the
imaging protocol, both source and target modalities (Fig. 2).
Source modalities are input via an identity mapping, whereas
unavailable target modalities are masked out:

X G
i = ai · mi (1)

where i denotes the channel index of the encoder input
i ∈ {1, 2, . . . , I }, mi is the image for the i th modality.
In Eq. (1), ai denotes the availability of the i th modality:

ai =
{

1 if mi is a source modality

0 if mi is a target modality
(2)

During training, various different configurations of source-
target modalities are considered within the multi-modal pro-
tocol (e.g., T1, T2 → PD; T2, PD → T1; T1, PD → T2 for
a three-contrast MRI protocol). During inference, the specific
source-target configuration is determined via the availability
conditions in individual test subjects. Given the availability-
masked multi-channel input, the encoder uses convolutional

operators to learn latent structural representations shared
across the consolidated synthesis tasks. The encoder maps
the multi-channel input X G onto the embedded latent feature
map fne ∈ R

NC ,H,W via convolutional filters, where NC is
the number of channels, H is the height and W is the width
of the feature map. These representations are then fed to the
information bottleneck.

2) Information Bottleneck: Next, ResViT employs a residual
bottleneck to distill task-relevant information in the encoded
features. Note that convolution operators have greater power
in capturing localized features, whereas attention operators
are more sensitive to context-driven features. To simultane-
ously maintain localization power and contextual sensitiv-
ity, we introduce ART blocks that aggregate the information
from residual convolutional and transformer branches (Fig. 1).
Receiving as input the j th layer feature maps f j ∈ R

NC ,H,W ,
an ART block first processes the feature maps via a vision
transformer. Due to computational constraints, the transformer
expects feature maps at smaller resolutions compared to con-
volutional layers. Thus, the spatial dimensions (H, W ) of
f j ∈ R

NC ,H,W are lowered by a downsampling block (DS):

f �
j ∈ R

N �
C ,H �,W � = DS( f j ) (3)

where DS is implemented as a stack of strided convolutional
layers, f �

j ∈ R
N �

C ,H �,W �
are downsampled feature maps with

W � = W/M , H � = H/M , M denoting the downsampling
factor. A transformer branch then processes f �

j to extract
contextual information. Accordingly, f �

j is first split into NP =
W � H �/P2 non-overlapping patches of size (P, P), and the
patches are then flattened to N �

C P2-dimensional vectors. The
transformer embeds patches onto an ND-dimensional space
via trainable linear projections, supplemented with learnable
positional encoding:

z0 = [ f 1
j PE ; f 2

j PE ; . . . ; f NP
j PE ] + P pos

E (4)

where z0 ∈ R
NP ,ND are the input patch embeddings,

f p
j ∈ R

N �
C P2

is the pth patch, PE is the embedding projection,
and P pos

E is the learnable positional encoding.
Next, the transformer encoder processes patch embed-

dings via a cascade of L layers of multi-head self-attention
(MSA) [92] and multi-layer perceptrons (MLP) [93]. The
output of the lth layer in the transformer encoder is given
as:

z�
l = MSA(LN(zl−1)) + zl−1 (5)

zl = MLP(LN(z�
l)) + z�

l (6)

MSA layers in Eq. 5 employ S separate self-attention heads:
MSA(z) = [SA1(z); SA2(z); . . . ; SAS(z)]Umsa (7)

where SAs stands for the sth attention head with s ∈
{1, 2, . . . , S} and Umsa denotes the learnable tensor projecting
attention head outputs. SA layers compute a weighted combi-
nation of all elements of the input sequence z: SA(z) = Av
where v is value, and attention weights Aa,b are taken as
pairwise similarity between the query q and key k:

Aa,b = so f tmax(qa kT
b /ND

0.5) (8)
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Fig. 2. ResViT is a conditional image synthesis model that can unify various source-target modality configurations into a single model for improved
practicality. a) During training, ResViT takes as input the entire set of images within the multi-modal protocol, including both source and target
modalities. For model consolidation across multiple synthesis tasks, various configurations of source-target modalities are expressed in terms of
availability conditions in ResViT. b) During inference, the specific source-target configuration is determined via the availability conditions in each
given test subject.

Note that q , k, v are respectively obtained as learnable pro-
jections Tq , Tk , Tv of z.

The output of the transformer encoder zL is then deflattened
to form g�

j ∈ R
ND ,H �,W �

. Resolution of g�
j is increased to

match the size of input feature maps via an upsampling block
US based on transposed convolutions:

g j ∈ R
NC ,H,W = US(g�

j ) (9)

where g j ∈ R
NC ,H,W are upsampled feature maps output

by the transformer module. Channel-wise concatenation is
performed to fuse global context learned via the transformer
with localized features captured via convolutional operators.
To distill learned structural and contextual representations, the
channels of the concatenated feature maps are then compressed
via a channel compression (CC) module:

h j ∈ R
NC ,H,W = CC(concat ( f j , g j )) (10)

where h j are compressed feature maps. CC uses two parallel
convolutional branches of varying kernel size. Finally, the fea-
ture maps are processed via a residual CNN (ResCNN) [58]:

f j+1 ∈ R
NC ,H,W = ResCNN(h j ) (11)

where f j+1 denotes the output of the ART block at the j th
network layer.

3) Decoder: The last component of the generator is a deep
decoder based on transposed convolutional layers. Because
ResViT can serve as a unified model, its decoder can syn-
thesize all contrasts within the multi-modal protocol regard-
less of the specific source-target configuration (Fig. 2).
The decoder receives as input the feature maps fA dis-
tilled by the bottleneck and produces multi-modality images
Ŷ G

i ∈ Ŷ G in separate channels, where A is the total num-
ber of ART blocks, and Ŷ G

i denotes the i th synthesized
modality.

4) Parameter Sharing Transformers: Multiple ART blocks
are used in the information bottleneck to increase the capacity
of ResViT in learning contextual representations. That said,

multiple independent transformer blocks would inevitably
elevate memory demand and risk of overfitting due to an exces-
sive number of parameters. To prevent these risks, a weight-
sharing strategy is adopted where the model weights for the
transformer encoder are tied across separate ART blocks.
The tied parameters include the projection matrices Tq , Tk ,
Tv for query, key, value along with projection tensors for
attention heads Umsa in M S A layers, and weight matrices in
M L P layers. Remaining parameters in transformer modules
including down/upsampling blocks, patch embeddings and
positional encodings are kept independent. During backprop-
agation, updates for tied weights are computed based on the
summed error gradient across ART blocks.

5) Discriminator: The discriminator in ResViT is based on
a conditional PatchGAN architecture [43]. The discrimina-
tor performs patch-level differentiation between acquired and
synthetic images. This implementation increases sensitivity
to localized details related to high-spatial-frequency informa-
tion. As ResViT can serve as a unified model by generating
all modalities in the multi-modal protocol including sources,
an availability-guided selective discriminator is employed:

X D
i (source) = X G

i = ai · mi (12)

X D
i (syn target) = (1 − ai ) · Y G

i (13)

X D
i (acq target) = (1 − ai ) · mi (14)

where X D
i (source) are source images, X D

i (syn target) are
synthesized target images, and X D

i (acq target) are acquired
target images. The conditional discriminator receives as input
the concatenation of source and target images:

X D(synthetic) = concat (X D
i (source), X D

i (syn target))

(15)

X D(acquired) = concat (X D
i (source), X D

i (acq target))

(16)

where X D(synthetic) is the concatenation of source and syn-
thetic target images, and X D(acquired) is the concatenation
of the source and acquired target images.
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6) Loss Function: The first term in the loss function is a
pixel-wise L1 loss defined between the acquired and synthe-
sized target modalities:

L pix =
I∑

i=1

(1 − ai)E[||(X G)i − mi ||1] (17)

where E denotes expectation, and G denotes the generator
subnetwork in ResViT. ResViT takes as input source modal-
ities to reconstruct them at the output. Thus, the second
term is a pixel-wise consistency loss between acquired and
reconstructed source modalities based on an L1 distance:

Lrec =
I∑

i=1

ai E[||G(X G)i − mi ||1] (18)

The last term is an adversarial loss defined via the conditional
discriminator (D):

Ladv = −E[D(X D(acquired)2]
−E[(D(X D(synthetic)) − 1)2] (19)

The three terms are linearly combined to form the overall
objective:

L ResV iT = λpix L pix + λrec Lrec + λadv Ladv (20)

where λpix , λrec , and λadv are the weightings of the pixel-
wise, reconstruction, and adversarial losses, respectively.

B. Datasets

We demonstrated the proposed ResViT model on two
multi-contrast brain MRI datasets (IXI: https://brain-
development.org/ixi-dataset/, BRATS [94]) and a multi-modal
pelvic MRI-CT dataset [95].

1) IXI Dataset: T1-weighted, T2-weighted, and PD-weighted
brain MR images from 53 healthy subjects were analyzed.
25 subjects were reserved for training, 10 were reserved
for validation, and 18 were reserved for testing. From each
subject, 100 axial cross-sections containing brain tissues were
selected. Acquisition parameters were as follows. T1-weighted
images: TE = 4.603ms, TR = 9.813ms, spatial resolution
= 0.94 × 0.94×1.2mm3. T2-weighted images: TE = 100ms,
TR = 8178.34ms, spatial resolution = 0.94 × 0.94×1.2mm3.
PD-weighted images: TE = 8ms, TR = 8178.34ms, spatial
resolution = 0.94 ×0.94×1.2mm3. The multi-contrast images
in this dataset were unregistered. Hence, T2- and PD-weighted
images were spatially registered onto T1-weighted images
prior to modelling. Registration was performed via an affine
transformation in FSL [96] based on mutual information.

2) BRATS Dataset: T1-weighted, T2-weighted, post-contrast
T2-weighted, and T2 Fluid Attenuation Inversion Recov-
ery (FLAIR) brain MR images from 55 subjects were ana-
lyzed. 25 subjects were reserved for training, 10 were reserved
for validation, and 20 were reserved for testing. From each
subject, 100 axial cross-sections containing brain tissues were
selected. Please note that the BRATS dataset contains images
collected under various clinical protocols and scanners at
multiple institutions. As publicly shared, multi-contrast images

are co-registered to the same anatomical template, interpolated
to 1 × 1×1mm3 resolution and skull-stripped.

3) MRI-CT Dataset: T2-weighted MR and CT images of
the male pelvis from 15 subjects were used. 9 subjects were
reserved for training, 2 were reserved for validation, and
4 were reserved for testing. From each subject, 90 axial
cross-sections were analysed. Acquisition parameters were as
follows. T2-weighted images: Group 1, TE = 97ms, TR =
6000-6600ms, spatial resolution = 0.875 × 0.875×2.5mm3.
Group 2, TE = 91-102ms, TR = 12000-16000ms, spatial
resolution = 0.875-1.1 × 0.875-1.1 × 2.5mm3. CT images:
Group 1, spatial resolution = 0.98 × 0.98×3mm3, Kernel =
B30f. Group 2: spatial resolution = 0.1 × 0.1×2mm3, Kernel
= FC17. This dataset contains images collected under various
protocols and scanners for each modality. As publicly shared,
multi-modal images are co-registered onto T2-weighted MR
scans.

C. Competing Methods

We demonstrated the proposed ResViT model against
several state-of-the-art image synthesis methods. The base-
line methods included convolutional models (task-specific
models: pGAN [24], pix2pix [43], medSynth [32]; unified
models: MM-GAN [41], pGANuni), attention-augmented con-
volutional models (A-UNet [50], SAGAN [85]), and trans-
former models (task-specific: TransUNet [51], PTNet [57];
unified: TransUNetuni). Hyperparameters of each competing
method were optimized via identical cross-validation proce-
dures.

1) Convolutional Models:
pGAN A convolutional GAN model with ResNet backbone
was considered [24]. pGAN comprises CNN-based generator
and discriminator networks. Its generator follows an encoder-
bottleneck-decoder pathway, where the encoder and decoder
are identical to those in ResViT. The bottleneck contains a
cascade of residual CNN blocks.

pix2pix A convolutional GAN model with U-Net backbone
was considered [43]. pix2pix has a CNN-based generator with
an encoder-decoder structure tied with skip connections.

medSynth A convolutional GAN model with resid-
ual U-Net backbone was considered as provided at
https://github.com/ginobilinie/medSynthesisV1 [32]. The gen-
erator of medSynth contains a long-skip connection from the
first to the last layer.

MM-GAN A unified synthesis model based on a con-
volutional GAN was considered [41]. MM-GAN comprises
CNN-based generator and discriminator networks, where the
generator is based on U-Net. MM-GAN trains a single network
under various source-target modality configurations. The orig-
inal MM-GAN architecture was directly adopted, except for
curriculum learning to ensure standard sample selection for
all competing methods. The unification strategy in MM-GAN
matches the unification strategy in ResViT.

pGANuni A unified version of the pGAN model was trained
to consolidate multiple synthesis tasks. The unification proce-
dure was identical to that of ResViT.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 12,2022 at 10:24:09 UTC from IEEE Xplore.  Restrictions apply. 



2604 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 10, OCTOBER 2022

2) Attention-Augmented Convolutional Models:
Attention U-Net (A-UNet) A CNN-based U-Net architecture
with additive attention gates was considered [50]. Here we
adopted the original A-UNet model as the generator of a
conditional GAN model, where the discriminator was identical
to that in ResViT.

Self-Attention GAN (SAGAN) A CNN-based GAN model
with self-attention modules incorporated into the generator
was considered [85]. Here we adapted the original SAGAN
model designed for unconditional mapping by inserting the
self-attention modules into the pGAN model as described
in [97]. For fair comparison, the number and position of atten-
tion modules in SAGAN were matched to those of transformer
modules in ResViT.

3) Transformer Models:
TransUNet A recent hybrid CNN-transformer architecture
was considered [51]. Here, we adopted the original TransUNet
model as the generator of a conditional GAN architecture with
an identical discriminator to ResViT. We further replaced the
segmentation head with a convolutional layer for synthesis.

PTNet A recent convolution-free transformer architecture
was considered [57]. Here we adopted the original PTNet
model as the generator of a conditional GAN architecture with
an identical discriminator to ResViT.

TransUNetuni The TransUNet model was unified to consol-
idate multiple synthesis tasks. The unification procedure was
identical to that of ResViT.

D. Architectural Details

The encoder in the ResViT model contained three con-
volutional layers of kernel size 7, 3, 3 respectively. The
feature map in the encoder output was of size R

256,64,64,
and this dimensionality was retained across the informa-
tion bottleneck. The decoder contained three convolutional
layers of kernel size 3, 3, 7 respectively. The information
bottleneck contained nine ART blocks. The downsampling
blocks preceding transformers contained two convolutional
layers with stride 2 and kernel size 3. The upsampling blocks
succeeding transformers contained two transposed convolu-
tional layers with stride 2 and kernel size 3. Down and
upsampling factors were set to M = 4. Channel compres-
sion lowered the number of channels from 512 to 256. The
transformer encoder was adopted by extracting the transformer
component of the ImageNet-pretrained model R50+ViT-
B/16 (https://github.com/google-research/vision_transformer).
The transformer encoder expected an input map of 16×16 spa-
tial resolution. Patch flattening was performed with size P = 1
yielding a sequence length of 256 [49]. Note that trans-
former modules contain substantially higher number of para-
meters compared to convolutional modules. Thus, retaining a
transformer in each ART block results in significant model
complexity, inducing computational burden and suboptimal
learning. To alleviate these issues, transformer modules in
ART blocks utilized tied weights, and they were only retained
in a subset of ART blocks while remaining blocks reduced to
residual CNNs.

The configuration of transformer modules, i.e. their total
number and position, was selected via cross-validation

TABLE I
VALIDATION PERFORMANCE OF CANDIDATE RESVIT CONFIGURATIONS

IN REPRESENTATIVE SYNTHESIS TASKS. PERFORMANCE IS TAKEN AS

PSNR (dB) BETWEEN SYNTHESIZED AND REFERENCE TARGET

IMAGES. Ai DENOTES THE PRESENCE OF A TRANSFORMER

MODULE IN THE iTH ART BLOCK

TABLE II
VALIDATION PERFORMANCE OF RESVIT MODELS WITH VARYING

SIZES OF TRANSFORMER MODULES IN REPRESENTATIVE

SYNTHESIS TASKS

TABLE III
AVERAGE INFERENCE TIMES (MSEC) PER CROSS-SECTION, MODEL

COMPLEXITY (MILLIONS OF PARAMETERS), AND MEMORY

LOAD (GIGABYTES) FOR COMPETING METHODS

experiments. Due to the extensive number of potential configu-
rations, a pre-selection process was implemented. Accordingly,
performance for a transformer module inserted in a single
ART block (A1, A2, . . . , A9) was measured, and the top half
of positions was pre-selected. Composite configurations with
multiple transformer modules were then formed based on the
pre-selected blocks (A1− A5, A1− A6− A9 etc.). We observed
that retaining more than 2 modules elevated complexity with-
out any performance benefits. Validation performance for the
best performing configurations (A1 − A5, A1 − A6, A1 −
A9, A5 − A9, A4 − A9, A5 − A9, A1 − A6 − A9) are listed
in Table I for three representative tasks (T1, T2 → PD in
IXI, T1, T2 → FLAIR in BRATS, and MRI → CT in MRI-
CT). Consistently across tasks, the (A1 − A6) configuration
yielded near-optimal performance and so it was selected for
all experiments thereafter.

We also tuned the intrinsic complexity of transformer
modules. To do this, two variant modules were examined:
“base” and “large”. The “base” module contained 12 layers
with latent dimensionality Nd = 768, 12 attention heads,
and 3073 hidden units in each layer of the M L P . Mean-
while, the “large” module contained 24 layers with latent
dimensionality Nd = 1024, 16 attention heads, and 4096 hid-
den units in each layer of the MLP. Validation perfor-
mances based on the two variant modules are listed in
Table II. The “base” module that offers higher performance for
lower computational complexity was selected for consequent
experiments.
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Fig. 3. ResViT was demonstrated on the IXI dataset for two representative many-to-one synthesis tasks: a) T1, T2 → PD b) T2, PD → T1. Synthesized
images from all competing methods are shown along with the source images and the reference target image. ResViT improves synthesis performance
in regions that are depicted sub-optimally in competing methods. Overall, ResViT generates images with lower artifact and noise levels and sharper
tissue depiction.

E. Modeling Procedures

For fair comparisons among competing methods, all models
were implemented adversarially using the same PatchGAN
discriminator and the loss function in Eq. 20. Task-specific
models used adversarial and pixel-wise losses, whereas unified
models used adversarial, pixel-wise, and reconstruction losses.
Learning rate, number of epochs, and loss-term weighting
were selected via cross-validation. Validation performance was
measured as Peak Signal to Noise Ratio (PSNR) on three
representative tasks (T1, T2 → PD in IXI, T1, T2 → FLAIR in
BRATS, and MRI → CT in MRI-CT). We considered different
learning rates in the set {10−5, 10−4, 2x10−4, 5x10−4, 10−3}
and number of epochs in the set {5, 10, …, 200}. Eq. 20
contains only two degrees of freedom regarding the loss-term
weights, and prior studies have reported models with higher
weighting for pixel-wise over adversarial loss [24], [40].
Thus, we considered λpix in {20, 50, 100, 150} and λadv = 1.
Note that λrec = 0 by definition in task-specific models
with fixed configuration of source and target modalities, while
λrec = λpix was used in unified models as both loss terms
measure the L1-norm difference between reference and gen-
erated images for individual modalities. To minimize potential
biases among competing methods, a common set of parame-
ters that consistently yielded near-optimal performance were
prescribed for all methods: 2×10−4 learning rate, 100 training
epochs, λadv = 1, λpix = 100 for task-specific models, and
λadv = 1, λrec = 100, λpix = 100 for unified models. All
competing methods were trained via the Adam optimizer [98]
with β1 = 0.5, β2 = 0.999. The learning rate was constant
for the first 50 epochs and linearly decayed to 0 in the
remaining epochs. Transformer modules in TransUNet and
ResViT were initiated with ImageNet pre-trained versions for

object classification [99]. ART blocks were initiated without
transformer modules and then fine-tuned for 50 epochs fol-
lowing insertion of transformers at a higher learning rate of
10−3 as in [49]. Elevated learning rate during the second half
of the training procedure was not adopted for other methods as
it diminished performance. Modelling was performed via the
PyTorch framework on Nvidia RTX A4000 GPUs. Inference
times, model complexity, and memory load for all methods
are listed in Table III. The hybrid ResViT and TransUNet
models have comparable inference times and memory usage
with pure convolutional architectures, while incurring notably
higher model complexity due to the dense connections in
self-attention and MLP layers. Although the convolution-free
PTNet model uses an efficient attention operator to mitigate
model complexity, it has significantly higher memory use and
inference time compared to remaining models.

Synthesis quality was assessed via PSNR and Struc-
tural Similarity Index (SSIM) [100]. Metrics were calculated
between ground truth and synthesized target images. Mean
and standard deviations of metrics were reported across an
independent test set, non-overlapping with training-validation
sets. Significance of performance differences were evaluated
with signed-rank tests (p<0.05). Tests were conducted on
subject-average metrics, except MRI → CT where cross-
sectional metrics were tested in each subject due to limited
number of test subjects.

F. Experiments

1) Multi-Contrast MRI Synthesis: Experiments were
conducted on the IXI and BRATS datasets to demonstrate
synthesis performance in multi-modal MRI. In the IXI
dataset, one-to-one tasks of T2 → PD; PD → T2 and
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TABLE IV
PERFORMANCE OF TASK-SPECIFIC SYNTHESIS MODELS IN

MANY-TO-ONE (T1, T2 → PD, T1, PD → T2, AND T2, PD → T1)
AND ONE-TO-ONE (T2 → PDAND PD → T2) TASKS IN THE

IXI DATASET. PSNR (DB) AND SSIM ARE LISTED AS MEAN±STD

ACROSS TEST SUBJECTS. BOLDFACE INDICATES THE

TOP-PERFORMING MODEL FOR EACH TASK

many-to-one tasks of T1, T2 → PD; T1, PD → T2;
T2, PD → T1 were considered. In the BRATS dataset, one-to-
one tasks of T2→FLAIR; FLAIR→T2, many-to-one tasks of
T1, T2 → FLAIR; T1, FLAIR → T2; T2, FLAIR → T1 were
considered. In both datasets, task-specific ResViT models
were compared against pGAN, pix2pix, medSynth, A-UNet,
SAGAN, TransUNet, and PTNet. Meanwhile, unified ResViT
models were demonstrated against pGANuni, MM-GAN, and
TransUNetuni.

2) MRI to CT Synthesis: Experiments were performed on
the MRI-CT dataset to demonstrate across-modality synthesis
performance. A one-to-one synthesis task of deriving target
CT images from source MR images was considered. The task-
specific ResViT model was compared against pGAN, pix2pix,
medSynth, A-UNet, SAGAN, TransUNet, and PTNet.

3) Ablation Studies: Several lines of ablation experiments
were conducted to demonstrate the value of the individual
components of the ResViT model, including both architectural
design elements and training strategies. Experiments were per-
formed on three representative tasks: namely T1, T2 → PD in
IXI, T1, T2 → FLAIR in BRATS, and MRI → CT. First,
we assessed the performance contribution of the three main
components in ResViT: transformer modules, convolutional
modules and adversarial learning. Variant models were trained
when transformer modules were ablated from ART blocks,
when residual CNNs were ablated from transformer-retaining
ART blocks, and when the adversarial loss term and the
discriminator were ablated. In addition to PSNR and SSIM,
we measured the Fréchet inception distance (FID) [101]
between the synthesized and ground truth images to evaluate
the importance of adversarial learning.

Second, we probed the design and training proce-
dures of ART blocks. We assessed the utility of tied
weights across transformer modules, and multiple transformer-
retaining ART blocks. Variant models were trained separately
using untied weights in transformers, and based on a single

TABLE V
PERFORMANCE OF TASK-SPECIFIC SYNTHESIS MODELS IN

MANY-TO-ONE TASKS (T1, T2 → FLAIR, T1, FLAIR → T2,
AND T2, FLAIR → T1) AND ONE-TO-ONE TASKS (T2→FLAIR

AND FLAIR→T2) ACROSS TEST SUBJECTS IN THE BRATS
DATASET. BOLDFACE INDICATES THE TOP-PERFORMING

MODEL FOR EACH TASK

transformer-retraining module at either first or sixth ART
blocks. We also examined the importance of model initiation
with ImageNet pre-trained transformer modules, and delayed
insertion of transformer modules during training. Variant mod-
els were built by using randomly initialized transformer mod-
ules, by inserting pre-trained transformer modules into ART
blocks at the beginning of training, and by inserting randomly
initialized transformer modules at the beginning of training.

Third, we investigated the design of skip connections
and down/upsampling modules. We considered benefits of
external skip connections in ART blocks for residual
learning. Variant models were trained by removing skip
connections around either the transformer or convolution
modules in ART. We also assessed alternative designs for
down/upsampling modules in ART to mitigate added model
complexity. In a first variant, original down/upsampling mod-
ules were replaced with unlearned maxpooling modules for
downsampling and bilinear interpolation modules for upsam-
pling. In a second variant, additional downsampling lay-
ers in the encoder and upsampling layers in the decoder
were included in order to remove down/upsampling modules
in ART blocks.

Next, we inspected the relative strength of contextual fea-
tures in the distilled task-relevant representations in ART
blocks. For a quantitative assessment, we compared the
L2-norm of the contextual feature map derived by the trans-
former module against that of the input feature map to the
ART block relayed through the transformer’s skip connection.
Note that these two maps are distilled via the channel com-
pression (CC) module following concatenation. Thus, we also
compared the L2-norm of the combination weights in the CC
module for the contextual versus input features.

To interpret the information that self-attention mechanisms
focus on during synthesis tasks, we computed and visualized
the attention maps as captured by the transformer modules
in ResViT. Attention maps were calculated based on the
Attention Rollout technique, and a single average map was
extracted for a given transformer module [102].
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Fig. 4. ResViT was demonstrated on the BRATS dataset for two representative many-to-one synthesis tasks: a) T1, T2 → FLAIR, b) T2, FLAIR → T1.
Synthesized images from all competing methods are shown along with the source images and the reference image. ResViT improves synthesis
performance, especially in pathological regions (e.g., tumors, lesions) in comparison to competing methods. Overall, ResViT images have better-
delineated tissue boundaries and lower artifact/noise levels.

Fig. 5. ResViTuni was demonstrated against other unified models on brain MRI datasets for two representative tasks: a) T1, PD → T2 in IXI,
b) T1, FLAIR → T2 in BRATS. Synthesized images from all competing methods are shown along with the source images and the reference target
image. ResViTuni improves synthesis performance especially in pathological regions (tumors, lesions) in comparison to competing methods. Overall,
ResViTuni generates images with lower artifact and noise levels and more accurate tissue depiction for tasks in both datasets.

IV. RESULTS

A. Multi-Contrast MRI Synthesis

1) Task-Specific Synthesis Models: We demonstrated the
performance of ResViT in learning task-specific synthesis
models for multi-contrast MRI. ResViT was compared against
convolutional models (pGAN, pix2pix, medSynth), attention-
augmented CNNs (A-UNet, SAGAN), and recent transformer
architectures (TransUNet, PTNet). First, brain images of
healthy subjects in the IXI dataset were considered. PSNR
and SSIM metrics are listed in Table IV for many-to-one and
one-to-one tasks. ResViT achieves the highest performance in
both many-to-one (p<0.05) and one-to-one tasks (p<0.05).
On average, ResViT outperforms convolutional models by
1.71dB PSNR and 1.08% SSIM, attention-augmented models
by 1.40dB PSNR and 1.45% SSIM, and transformer models

by 2.33dB PSNR and 1.79% SSIM (p<0.05). Representative
images for T1, T2 → PD and T2, PD → T1 are displayed in
Fig. 3a,b. Compared to baselines, ResViT synthesizes target
images with lower artifact levels and sharper tissue depiction.

We then demonstrated task-specific ResViT models on
the BRATS dataset containing images of glioma patients.
PSNR and SSIM metrics are listed in Table V for many-
to-one and one-to-one tasks. ResViT again achieves the
highest performance in many-to-one (p<0.05) and one-
to-one tasks (p<0.05), except T2→FLAIR where A-UNet
has slightly higher SSIM. On average, ResViT outper-
forms convolutional models by 1.01dB PSNR and 1.41%
SSIM, attention-augmented models by 0.84dB PSNR and
1.24% SSIM, and transformer models by 1.56dB PSNR
and 1.63% SSIM (p<0.05). Note that the BRATS dataset
contains pathology with large across-subject variability.
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TABLE VI
PERFORMANCE OF UNIFIED SYNTHESIS MODELS IN MANY-TO-ONE

TASKS T1, T2 → PD, T1, PD → T2, AND T2, PD → T1) ACROSS

TEST SUBJECTS IN THE IXI DATASET. BOLDFACE INDICATES THE

TOP-PERFORMING MODEL FOR EACH TASK

TABLE VII
PERFORMANCE OF UNIFIED SYNTHESIS MODELS IN MANY-TO-ONE

TASKS (T1, T2 → FLAIR, T1, FLAIR → T2, AND T2, FLAIR → T1)
ACROSS TEST SUBJECTS IN THE BRATS DATASET. BOLDFACE

INDICATES THE TOP-PERFORMING MODEL FOR EACH TASK

As expected, attention-augmented models show relative ben-
efits against pure convolutional models, yet ResViT that
explicitly models contextual relationships still outperforms all
baselines. Representative target images for T1, T2 → FLAIR
and T2, FLAIR → T1 are displayed in Fig. 3a,b, respectively.
Compared to baselines, ResViT synthesizes target images with
lower artifact levels and sharper tissue depiction. Importantly,
ResViT reliably captures brain lesions in patients in contrast
to competing methods with inaccurate depictions including
TransUNet.

Superior depiction of pathology in ResViT signals the
importance of ART blocks in simultaneously maintaining
local precision and contextual consistency in medical image
synthesis. In comparison, transformer-based TransUNet and
PTNet yield relatively limited synthesis quality that might
be attributed to several fundamental differences between the
models. TransUNet uses only a transformer in its bottleneck
while propagating shallow convolutional features via encoder-
decoder skip connections, and its decoder increases spatial
resolution via bilinear upsampling that might be ineffective in
suppressing high-frequency artifacts [103]. In contrast, ResViT
continues encoding and propagating convolutional features
across the information bottleneck to create a deeper feature
representation, and it employs transposed convolutions within
upsampling modules to mitigate potential artifacts. PTNet is a
convolution-free architecture that relies solely on self-attention
operators that have limited localization ability [49]. Instead,
ResViT is devised as a hybrid CNN-transformer architecture
to improve sensitivity for both local and contextual features.

2) Unified Synthesis Models: Task-specific models are
trained and tested to perform a single synthesis task to improve

TABLE VIII
PERFORMANCE FOR THE ACROSS-MODALITY SYNTHESIS TASK

(T2-WEIGHTED MRI → CT) ACROSS TEST SUBJECTS IN THE PELVIC

MRI-CT DATASET. BOLDFACE INDICATES THE TOP-PERFORMING

MODEL FOR EACH TASK

performance, but a separate model has to be built for each task.
Next, we demonstrated ResViT in learning unified synthesis
models for multi-contrast MRI. A unified ResViT (ResViTuni)
was compared against unified convolutional (pGANuni, MM-
GAN) and transformer models (TransUNetuni). Performance
of unified models were evaluated at test time on many-
to-one tasks in IXI (Table VI) and BRATS (Table VII).
ResViTuni maintains the highest performance in many-to-one
tasks in both IXI (p<0.05) and BRATS (p<0.05). In IXI,
ResViTuni outperforms pGANuni by 1.12dB PSNR and 0.70%
SSIM, MM-GAN by 2.37dB PSNR and 1.80% SSIM, and
TransUNetuni by 2.69dB PSNR and 1.67% SSIM (p<0.05).
In BRATS, ResViT outperforms pGANuni by 0.74dB PSNR
and 0.93% SSIM, MM-GAN by 0.77dB PSNR and 0.90%
SSIM, and TransUNetuni by 1.08dB PSNR and 1.43% SSIM
(p<0.05). Representative target images are displayed in Fig. 5.
ResViT synthesizes target images with lower artifacts and
sharper depiction than baselines. These results suggest that
a unified ResViT model can successfully consolidate models
for varying source-target configurations.

B. Across-Modality Synthesis

We also demonstrated ResViT in across-modality synthesis.
T2-weighted MRI and CT images in the pelvic dataset were
considered. ResViT was compared against pGAN, pix2pix,
medSynth, A-UNet, SAGAN, TransUNet, and PTNet. PSNR
and SSIM metrics are listed in Table VIII. ResViT yields
the highest performance in each subject (p<0.05). On aver-
age, ResViT outperforms convolutional models by 1.89dB
PSNR and 3.20% SSIM, attention-augmented models by
0.75dB PSNR and 1.95% SSIM, and transformer models
by 1.52dB PSNR and 2.40% SSIM (p<0.05). Representative
target images are displayed in Fig. 6. Compared to baselines,
ResViT synthesizes target images with lower artifacts and
more accurate tissue depiction. Differently from multi-contrast
MRI, attention-augmented models and TransUNet offer more
noticeable performance benefits over convolutional models.
That said, ResViT still maintains further elevated performance,
particularly near bone structures in CT images. This finding
suggests that the relative importance of contextual representa-
tions is higher in MRI-CT synthesis. With the help of its resid-
ual transformer blocks, ResViT offers reliable performance
with accurate tissue depiction in this task.

C. Ablation Studies

We performed a systematic set of experiments to demon-
strate the added value of the main components and training
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Fig. 6. ResViT was demonstrated on the pelvic MRI-CT dataset for the T2-weighted MRI → CT task. Synthesized images from all competing methods
are shown along with the source and reference images. ResViT enhances synthesis of relevant morphology in the CT domain as evidenced by the
elevated accuracy near bone structures.

strategies used in ResViT. First, we compared ResViT against
ablated variants where the convolutional modules in ART
blocks, transformer modules in ART blocks, or the adversarial
term in training loss were separately removed. Table IX lists
performance metrics in the test set for three representative syn-
thesis tasks. Consistently across tasks, ResViT yields optimal
or near-optimal performance. ResViT achieves higher PSNR
and SSIM in representative tasks compared to variants without
transformer or convolutional modules (p<0.05). It also yields
lower FID than these variants, except in MRI → CT where
ablation of the convolutional module slightly decreases FID.
Importantly, ResViT maintains notably lower FID compared
to the variant without adversarial loss (albeit slightly lower
SSIM in T1, T2 → FLAIR and PSNR, SSIM in MRI →
CT). This is expected since FID is generally considered as
a more suited metric to examine the perceptual benefits of
adversarial learning than PSNR or SSIM that reflect heavier
influence from relatively lower frequencies [101]. Representa-
tive synthesized images are also displayed in Fig. 7a. ResViT
images more closely mimic the reference images, and show
greater spatial acuity compared against the variant without
adversarial loss. Taken together, these results indicate that
adversarial learning enables ResViT to more closely capture
the distributional properties of target-modality images.

Second, we compared ResViT against ablated variants
where the weight tying procedure across transformer modules
was neglected, or transformer modules in one of the two
retaining ART blocks were removed. Table X lists performance
metrics in the test set. ResViT yields higher performance
than variants across representative tasks (p<0.05), except for
the variant only retraining A6 that yields similar SSIM in
T1, T2 → PD. These results demonstrate the added value of
the weight tying procedure and the transformer configuration
in ResViT. We also compared ResViT against ablated variants
where the pre-training of transformer modules or their delayed
insertion during training were selectively neglected, as listed
in Table XI. Our results indicate that ResViT outperforms
all ablated variants (p<0.05), except for the variant without
delayed insertion that yields similar SSIM in T1, T2 → PD.

Third, we examined the utility of the skip connections
and down/upsampling blocks in the proposed architecture.
We compared ResViT against variants built by removing the
skip connection around the transformer module or around
the CNN module in ART blocks. Table XII lists perfor-
mance metrics in the test set. ResViT yields higher per-
formance than all variants (p<0.05). Our results indicate
that ResViT benefits substantially from residual learning in
ART blocks. We also compared ResViT against variants

TABLE IX
TEST PERFORMANCE OF RESVIT AND VARIANTS ABLATED OF

TRANSFORMER MODULES, CONVOLUTIONAL MODULES OR

ADVERSARIAL LOSS. FID IS A SUMMARY METRIC ACROSS THE

ENTIRE TEST SET. BOLDFACE INDICATES THE TOP-PERFORMING

MODEL FOR EACH TASK

TABLE X
TEST PERFORMANCE OF RESVIT (A1 − A6 ) AND VARIANTS ABLATED

OF WEIGHT TYING AND INDIVIDUAL TRANSFORMER MODULES.
BOLDFACE INDICATES THE TOP-PERFORMING MODEL

FOR EACH TASK

TABLE XI
TEST PERFORMANCE OF RESVIT AND VARIANTS ABLATED OF

PRE-TRAINING AND DELAYED INSERTION PROCEDURES FOR

TRANSFORMERS. BOLDFACE INDICATES THE TOP-PERFORMING

MODEL FOR EACH TASK

built by replacing down/upsampling modules in ART blocks
with unlearned maxpooling/bilinear interpolation modules, and
by increasing encoder downsampling and decoder upsam-
pling rates to remove down/upsampling modules in ART
blocks entirely. ResViT outperforms all variants as listed in
Table XII (p<0.05), except for MRI→CT where the variant
with unlearned down/upsampling and ResViT yield similar
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Fig. 7. a) ResViT was compared against a variant where the adversarial term was removed from the loss function. Representative results are
shown for T1, T2 → PD in IXI, T1, T2 → FLAIR in BRATS, and MRI → CT in the pelvic dataset. Adversarial loss improves the acuity of synthesized
images. b) Representative results from ResViT and pGAN are shown along with the reference images for T2, FLAIR → T1, T1, FLAIR → T2, and
T1, T2 → FLAIR in BRATS; and MRI → CT in the pelvic dataset. Error maps between the synthetic and reference images for each method are
displayed, along with the attention map for the first transformer module of ResViT. Here, the attention maps were overlaid onto the reference image
for improved visualization. Attention maps focus on image regions where ResViT substantially reduces synthesis errors compared to pGAN.

TABLE XII
TEST PERFORMANCE OF RESVIT AND VARIANTS BUILT BY: REMOVING

SKIP CONNECTIONS IN CONVOLUTIONAL MODULES, REMOVING SKIP

CONNECTIONS IN TRANSFORMER MODULES, USING UNLEARNED

DOWN/UPSAMPLING BLOCKS IN ART, REMOVING DOWN/UPSAMPLING

BLOCKS IN ART VIA A HIGHER DEGREE OF DOWN/UPSAMPLING

IN THE ENCODER/DECODER. BOLDFACE INDICATES THE

TOP-PERFORMING MODEL FOR EACH TASK

SSIM. These results demonstrate the benefits of the proposed
down/upsampling scheme in ResViT.

Next, we inspected the relative strength of transformer-
derived contextual features in distilled representations within
ART blocks. To do this, we computed the L2-norms of contex-
tual feature maps output by the transformer module, and input
feature maps from the previous ART block relayed through
the skip connection of the transformer module. We also com-
puted the relative weighting of the two feature maps as the
L2-norms of respective combination weights in the channel
compression (CC) module. Measurements for ResViT models
trained in representative tasks are listed in Table XIII. We find
that contextual and input feature maps, and their respective
combination weights in CC blocks have comparable strength,
demonstrating that contextual features are a substantial com-
ponent of image representations in ART blocks.

Lastly, we wanted to visually interpret the benefits of the
self-attention mechanisms in ResViT towards synthesis per-
formance. Fig. 7b displays representative attention maps in
ResViT. Synthetic images and error maps are also shown for
ResViT as well as pGAN, which generally offered the closest
performance to ResViT in our experiments. We find that
the attention maps exhibit higher intensity in critical regions
such as brain lesions in multi-contrast MRI and pelvic bone
structure in MR-to-CT synthesis. Importantly, these regions
of higher attentional focus are also the primary regions where
the synthesis errors are substantially diminished with ResViT
compared to pGAN. Taken together, these results suggest
that the transformer-based ResViT model captures contextual
relationships related to both healthy and pathological tissues
to improve synthesis performance.

V. DISCUSSION

In this study, we proposed a novel adversarial model for
image translation between separate modalities. Traditional
GANs employ convolutional operators that have limited ability
to capture long-range relationships among distant regions [46].
The proposed model aggregates convolutional and transformer
branches within a residual bottleneck to preserve both local
precision and contextual sensitivity. To our knowledge, this is
the first adversarial model for medical image synthesis with a
transformer-based generator. We further introduced a weight-
sharing strategy among transformer modules to lower model
complexity. Finally, a unification strategy was implemented to
learn an aggregate model that copes with numerous source-
target configurations without training separate models.

We demonstrated ResViT for missing modality synthesis
in multi-contrast MRI and MRI-CT imaging. ResViT outper-
formed several state-of-the-art convolutional and transformer
models in one-to-one and many-to-one tasks. We trained all
models with an identical loss function to focus on architectural
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TABLE XIII
FEATURE MAPS AND CORRESPONDING COMBINATION WEIGHTS FOR

THE CHANNEL COMPRESSION (CC) MODULE WERE INSPECTED IN

RESVIT. AVERAGED ACROSS THE TEST SET AND ART BLOCKS,
L2-NORM OF FEATURE MAPS FROM THE TRANSFORMER MODULE (g)

AND FEATURE MAPS INPUT BY THE PREVIOUS ART BLOCK (f) ARE

LISTED ALONG WITH COMBINATION WEIGHTS FOR g AND FOR f

influences to synthesis performance. In unreported experi-
ments, we also trained competing methods that were proposed
with different loss functions using their original losses, includ-
ing PTNet with mean-squared loss [57] and medSynth with
mean-squared, adversarial and gradient-difference losses [32].
We observed that ResViT still maintains similar performance
benefits over competing methods in these experiments. Yet,
it remains important future work to conduct an in-depth assess-
ment of optimal loss terms for ResViT, including gradient-
difference and difficulty-aware losses for the generator [32],
[104], [105], and edge-preservation and binary cross-entropy
losses for the discriminator [105], [106].

Trained with image-average loss terms, CNNs have diffi-
culty in coping with atypical anatomy that substantially varies
across subjects [24], [43]. To improve generalization, recent
studies have proposed self-attention mechanisms in GAN mod-
els over spatial or channel dimensions [50], [85]. Specifically,
attention maps are used for multiplicative modulation of CNN-
derived feature maps. This modulation encourages the network
to focus on critical image regions with relatively limited
task performance. While attention maps can be distributed
across image regions, they mainly capture implicit contextual
information via modification of local CNN features. Since
feature representations are primarily extracted via convolu-
tional filtering, the resulting model can still manifest limited
expressiveness for global context. In contrast, the proposed
architecture uses dedicated transformer blocks to explicitly
model long-range spatial interactions in medical images.

Few recent studies have independently proposed
transformer-based models for medical image synthesis
[55]–[57]. In [56], a transformer is included in the
discriminator of a traditional GAN for MR-to-PET synthesis.
In [57], a UNet-inspired transformer architecture is proposed
for infant MRI synthesis [57]. Differing from these efforts,
our work makes the following contributions. (1) Compared
to [56] that uses transformers to learn a prior for target
PET images, we employ transformers in ResViT’s generator
to learn latent contextual representations of source images.
(2) Unlike [57] that uses mean-squared error loss amenable
to over-smoothing of target images [24], we leverage an
adversarial loss to preserve realism. (3) While [57] uses a
convolution-free transformer architecture, we instead propose
a hybrid architecture that combines localization capabilities
of CNNs with contextual sensitivity of transformers.
(4) While [56] and [57] consider only task-specific, one-to-
one synthesis models, here we uniquely introduce many-to-one

synthesis models and a unified model that generalizes across
multiple source-target configurations.

UNet-style models follow an encoder-decoder architecture
with an hourglass structure [43]. Because spatial resolu-
tion is substantially lower in the midpoint of the hourglass
(e.g. 16 × 16 maps), these models typically introduce skip
connections between the encoder and decoder layers to facil-
itate preservation of low-level features. In contrast, ResViT
is a ResNet-style model where encoded representations pass
through a bottleneck of residual blocks before reaching the
decoder [58], and encoder-decoder skip connections are omit-
ted due to several reasons. First, ResViT maintains relatively
high resolution at the output of its encoder (e.g. 64×64 maps),
so its bottleneck represents relatively lower-level information.
Second, each ART block is organized as a transformer-CNN
cascade with skip connections around both modules, creating a
residual path between the input and output of each block. This
eventually bridges the encoder output to the decoder input,
creating a native residual path in ResViT. Lastly, we observed
during early stages of the study that a variant model that
included encoder-decoder skip connections caused a minor
performance drop, suggesting that these extra connections
might reduce the effectiveness of the central information bot-
tleneck.

Here, ResViT models were initialized with transformers pre-
trained on 16×16 input feature maps. In turn, 256×256 images
were 16-fold downsampled cumulatively across the encoder
and transformer modules, and the transformer used a patch
size of P=1 and sequence length of 256. Several strategies
can be adopted to use ResViT at different image resolutions.
In a first scenario, the downsampling rate and patch size can be
preserved, while the sequence length is adjusted. For instance,
a 512×512 image would be downsampled to a 32×32 feature
map, resulting in a sequence of 1024 patches. While a trans-
former pre-trained on 32 × 32 maps would be ideal, vision
transformers can reliably handle variable sequence lengths
without retraining so the original transformer can still be
used [49]. Note that longer sequences would incur a quadratic
increase in processing and memory load in both cases [49].
In a second scenario, the original transformer with sequence
length 256 can be maintained, while either the patch size or
the downsampling rate is adjusted. For a 512 × 512 image,
P=2 (2×2 patches) on a 32×32 map (16-fold downsampled)
or P=1 on a 16 × 16 map (32-fold downsampled) could
be used. Both options would achieve on par computational
complexity to the original architecture, albeit the transformer
would process feature maps at a relatively lower resolution
compared to the resolution of the input image. It is unlikely
that this would significantly affect ResViT’s sensitivity to local
features since the primary component of ART that captures
local features is the residual CNN module whose resolution
can be preserved. If the input image does not have a power-of-
two size, the abovementioned strategies can be adopted after
zero-padding to round up the resolution to the nearest power of
two, or by implementing the encoder with non-integer down-
sampling rates [107]. Note that computer vision studies rou-
tinely fine-tune transformers at different image resolutions than
encountered during pre-training without performance loss [49],
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so ResViT might also demonstrate similar behavior. It remains
important future work to investigate the comparative utility of
the discussed resolution-adaptation strategies in medical image
synthesis.

Several lines of development can help further improve
ResViT’s performance. Here, we considered synthesis tasks
in which source and target modalities were registered prior
to training, and they were paired across subjects. When
registration accuracy is limited, a spatial registration block
can be incorporated into the network. Furthermore, a cycle-
consistency loss [44] can be incorporated in the optimization
objective to allow the use of unregistered images. This latter
strategy would also permit training of ResViT models on
unpaired datasets [76], [77]. Data requirements for model
training can be further alleviated by adopting semi-supervised
strategies that allow mixing of paired and unpaired training
data [75], or that would enable training of synthesis mod-
els directly from undersampled acquisitions [108]. Finally,
ResViT might benefit from incorporation of multi-scale mod-
ules in the decoder to improve preservation of fine image
details [106].

VI. CONCLUSION

Here we introduced a novel synthesis approach for
multi-modal imaging based on a conditional deep adversar-
ial network. In an information bottleneck, ResViT aggre-
gates convolutional operators and vision transformers, thereby
improving capture of contextual relations while maintaining
localization power. A unified implementation was introduced
that prevents the need to rebuild models for varying source-
target configurations. ResViT achieves superior synthesis qual-
ity to state-of-the-art approaches in multi-contrast brain MRI
and multi-modal pelvic MRI-CT datasets. Therefore, it holds
promise as a powerful candidate for medical image synthesis.
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