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Purpose: Neural networks have received recent interest for reconstruction of  
undersampled MR acquisitions. Ideally, network performance should be optimized 
by drawing the training and testing data from the same domain. In practice, however, 
large datasets comprising hundreds of subjects scanned under a common protocol are 
rare. The goal of this study is to introduce a transfer-learning approach to address the 
problem of data scarcity in training deep networks for accelerated MRI.
Methods: Neural networks were trained on thousands (upto 4 thousand) of samples 
from public datasets of either natural images or brain MR images. The networks 
were then fine-tuned using only tens of brain MR images in a distinct testing domain. 
Domain-transferred networks were compared to networks trained directly in the test-
ing domain. Network performance was evaluated for varying acceleration factors  
(4-10), number of training samples (0.5-4k), and number of fine-tuning samples (0-100).
Results: The proposed approach achieves successful domain transfer between MR 
images acquired with different contrasts (T1- and T2-weighted images) and between 
natural and MR images (ImageNet and T1- or T2-weighted images). Networks ob-
tained via transfer learning using only tens of images in the testing domain achieve 
nearly identical performance to networks trained directly in the testing domain using 
thousands (upto 4 thousand) of images.
Conclusion: The proposed approach might facilitate the use of neural networks for 
MRI reconstruction without the need for collection of extensive imaging datasets.
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1 |  INTRODUCTION

The unparalleled soft-tissue contrast in MRI has rendered 
it a preferred modality in many diagnostic applications, but 
long scan durations limit its clinical use. Acquisitions can 
be accelerated by undersampling in k-space, and a tailored 

reconstruction can be used to recover unacquired data. 
Because MR images are inherently compressible, a popular 
framework for accelerated MRI has been compressive sens-
ing (CS).1,2 CS has offered improvements in scan efficiency 
in many applications, including structural,2 angiographic,3 
functional,4 diffusion,5 and parametric imaging.6 Yet, the CS 

[Correction added after online publication 6 March 2020. The author has updated section 3.1.2 to change “T2‐domain transfer” to “T2‐domain transfer.”]
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framework is not without limitation. First, CS involves non-
linear optimization algorithms that scale poorly with growing 
data size and hamper clinical workflow. Second, CS com-
monly assumes that MRI data are sparse in fixed transform 
domains, such as finite differences or wavelet transforms. 
Recent studies highlight the need for learning the transform 
domains specific to each dataset to optimize performance.7 
Lastly, CS requires careful parameter tuning (e.g., for reg-
ularization) for optimal performance. Whereas several ap-
proaches were proposed for data-driven parameter tuning,8,9 
these methods can induce further computational burden.

Neural network (NN) architectures that reconstruct images 
from undersampled data have recently been proposed to ad-
dress the abovementioned limitations. Improved image quality 
over traditional CS has readily been demonstrated for several 
applications, including angiographic,10 cardiac,11-13 brain,13-33  
abdominal,34-36 and musculoskeletal imaging.37-41 The com-
mon approach is to train a network off-line using a relatively 
large set of fully sampled MRI data, and then use it for on-
line reconstruction of undersampled data. Reconstructions 
can be achieved in several hundred milliseconds, significantly 
reducing computational burden.38,39 The NN framework also 
alleviates the need for ad hoc selection of transform domains. 
For example, a recent study used a cascade of convolutional 
neural networks (CNNs) to recover images directly from zero- 
filled Fourier reconstructions of undersampled data.11,22,39 
The trained CNN layers reflect suitable transforms for image 
reconstruction. The NN framework introduces more tunable 
hyperparameters (e.g., number of layers, units, activation 
functions) than would be required in CS. However, previous 
studies demonstrate that hyperparameters optimized during 
the training phase generally perform well during the testing 
phase.39 Taken together, these advantages render the NN 
framework a promising avenue for accelerated MRI.

A common strategy to enhance network performance is to 
boost model complexity by increasing the number of layers and 
units in the architecture. A large set of training data must then 
be used to reliably learn the numerous model parameters.42 
Previous studies either used an extensive database of MR im-
ages comprising several tens to hundreds of subjects,12,24,38 or 
data augmentation procedures to artificially expand the size 
of training data.11,12 For instance, an early study performed 
training on T1-weighted brain images from nearly 500 sub-
jects in the Human Connectome Project database and testing 
on T2-weighted images.24 Yet, it remains unclear how well a 
network trained on images acquired with a specific type of tis-
sue contrast generalizes to images acquired with different con-
trasts. Furthermore, for optimal reconstruction performance 
the network must be trained on images acquired with the same 
scan protocol that it later will be tested on. However, large 
databases such as those provided by the Human Connectome 
Project may not be readily available in many applications, po-
tentially rendering NN-based reconstructions suboptimal.

In this study, we propose a transfer-learning approach to 
address the problem of data scarcity in network training for 
accelerated MRI  (Figure 1). In transfer learning, network 
training is performed in a domain where large datasets are 
available, and knowledge captured by the trained network 
is then transferred to a different domain where data are 
scarce.43,44 Domain transfer was previously used to suppress 
coherent aliasing artifacts in projection reconstruction ac-
quisitions,15 to perform non-Cartesian to Cartesian interpo-
lation in k-space,24 and to assess the robustness of network 
reconstructions to variations in SNR and undersampling pat-
terns.40 In contrast, we employ transfer learning to enhance 
NN-based reconstructions of randomly undersampled acqui-
sitions in the testing domain. A deep CNN architecture with 
multiple subnetworks is taken as a model network.11 For re-
construction of multi-coil data, calibration consistency (CC), 
data consistency (DC) and CNN blocks are incorporated to 
synthesize missing samples. In the training domain using 
several thousand images, the network is pretrained to recon-
struct reference images from zero-filled reconstructions of 
undersampled data. The trained network is then fine-tuned 
end to end in the testing domain using tens of images.

To demonstrate the proposed approach, comprehensive 
evaluations were performed across a broad range of accelera-
tion factors (R = 4-10) on T1- and T2-weighted brain images, 
considering both single-coil data from a public database and 
multi-coil data acquired on a 3 Tesla (T) scanner. Separate net-
work models were learned for domain transfer between natural 
and MR images (ImageNet and T1- or T2-weighted). Domain-
transferred networks were quantitatively compared against net-
works trained in the testing domain and against conventional 
CS reconstructions in the single-coil setting1,2 and iTerative 
Self-consistent Parallel Imaging Reconstruction (SPIRiT) in 
the multi-coil setting.45 We find that domain-transferred net-
works fine-tuned with tens of images achieve nearly identical 
performance to networks trained directly in the testing domain 
using thousands  (upto 4 thousand) of images, and that net-
works outperform conventional image reconstruction methods.

A preliminary version of this work was presented at the 26th 
Annual Meeting of International Society for Magnetic Resonance 
in Medicine under the title Transfer Learning for Reconstruction 
of Accelerated MRI Acquisitions via Neural Networks.46

2 |  METHODS

2.1 | MRI reconstruction via compressed 
sensing

2.1.1 | Single-coil data

In accelerated MRI, an undersampled acquisition is fol-
lowed by a reconstruction to recover missing k-space 
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samples. This recovery can be formulated as a linear in-
verse problem:

where x denotes the image to be reconstructed; Fu is the 
partial Fourier transform operator at the sampled k-space 
locations; and yu denotes acquired k-space data. Because 
Equation 1 is underdetermined, additional prior information 

is typically incorporated in the form of a regularization 
term:

Here, the first term enforces consistency between ac-
quired and reconstructed data, whereas R(x) enforces prior 
information to improve reconstruction performance. In CS, 
R(x) typically corresponds to L1-norm of the image in a 

(1)Fux= yu, (2)xrec =min
x

‖‖Fux−yu
‖‖2

+R(x).

F I G U R E  1  Proposed transfer-learning approach for NN-based reconstructions of multi-coil (Nc coils) undersampled acquisitions. A deep 
architecture with multiple subnetworks is used. The subnetworks consist of CC and CNN blocks, each followed by a DC block. (A) Each CNN 
block is trained sequentially to reconstruct synthetic multi-coil natural images from ImageNet, given zero-filled Fourier reconstructions of their 
undersampled versions. Due to differences in the characteristics of natural and MR images, the ImageNet-trained network will yield suboptimal 
performance when directly tested on MR images. (B) For domain transfer, the ImageNet-trained network is fine-tuned end to end in the testing 
domain using tens of images. This approach enables successful domain transfer between natural and MR images. CC, calibration-consistency; 
CNNs, convolutional neural networks; DC, data consistency; NN, neural networks

(A)

(B)
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known transform domain (e.g., wavelet transform or finite 
differences transform).

The solution of Equation 2 involves nonlinear optimiza-
tion algorithms that are often computationally complex. This 
reduces clinical feasibility as reconstruction time becomes 
prohibitive with increasing size of data. Furthermore, as-
suming ad hoc selection of fixed transform domains leads to 
suboptimal reconstructions in many applications.7 Lastly, it 
is often challenging to find a set of reconstruction parameters 
that work optimally across subjects.47

2.1.2 | Multi-coil data

For reconstruction of multi-coil data, a hybrid parallel  
imaging/compressed sensing approach is commonly used. 
In the common SPIRiT method, k-space samples are synthe-
sized as a weighted linear combination of acquired samples 
across neighboring k-space locations and coils.45 The synthe-
sis operation can be formulated as:

where ⊗ is the convolution operator; gmj denotes weights of 
the interpolation kernel that takes as input data for the jth coil 
(yj) and outputs data for the mth coil (ŷm); and NC denotes 
the number of coils. For each coil, the interpolation kernel 
is estimated from calibration data yc, a fully sampled central 
k-space region. For the mth coil, the estimation is performed 
via Tikhonov regularized regression as follows:

where gm is obtained by aggregating gmj across coils; yc
m
 are 

calibration data from the mth coil; Y is obtained by aggregating 
calibration data yc

j
 in form of a matrix; and � is the Tikhonov 

regularization parameter.
Given the entire k-space data y, Equation 3 can be ex-

pressed in matrix form with the use of an interpolation oper-
ator G as follows:

where ŷ is the recovered k-space data, and G is the operator that 
performs interpolation in matrix form.45

In SPIRiT,45 the recovery problem in Equation 2 can be 
reformulated as:

where x denotes multi-coil images to be reconstructed; yu de-
notes acquired multi-coil k-space data; F is the forward Fourier 
transform operator; and G denotes the interpolation operator 
that synthesizes unacquired samples in terms of acquired sam-
ples across neighboring k-space and coils. To enforce sparsity, 
R(x) can be selected as the L1-norm of wavelet coefficients. 
One efficient way to solve Equation 6 is via the projection 
onto convex sets algorithm.48 Projection onto convex sets al-
ternates among a calibration-consistency (CC) projection that 
applies G, a sparsity projection that enforces sparsity in the 
transform domain, and a data-consistency (DC) projection.

2.2 | MRI reconstruction via 
neural networks

2.2.1 | Single-coil data

In the NN framework, a network architecture is used for 
reconstruction instead of explicit transform-domain con-
straints. Network training is performed via a supervised 
learning procedure with the aim to find the set of network 
parameters that yield accurate reconstructions of undersam-
pled acquisitions. This procedure is performed on a large set 
of training data (with Ntrain samples) in which fully sampled 
reference acquisitions are retrospectively undersampled. 
Network training typically amounts to minimizing the fol-
lowing loss function14:

where xun represents the Fourier reconstruction of nth 
undersampled acquisition; xrefn represents the respective 
Fourier reconstruction of the fully sampled acquisition; and 
C
(
xun; �

)
 denotes the output of the network given the input 

image xun and the network parameters �. To reduce sensitiv-
ity to outliers, here we minimized a hybrid loss that includes 
both mean-squared error and mean-absolute error terms. To 
minimize overfitting, we further added an L2-regularization 
term on the network parameters. Therefore, neural network 
training was performed with the following loss function:

where �Φ is the regularization parameter for network parameters.
A network trained on a sufficiently large set of training 

examples can then be used to reconstruct an undersampled 

(3)�ym =

NC∑
j=1

gmj⊗yj,

(4)gm =(Y∗Y + �I)Y∗yc
m

,

(5)ŷ=Gy,

(6)xrec =min
x

��Fux−yu
��2

+‖(G− I)Fx‖2+R(x),

(7)min
�

Ntrain∑
n=1

1

Ntrain

‖‖‖C
(
xun; �

)
−xrefn

‖‖‖2
,

(8)
min
�

Ntrain�
n=1

1

Ntrain

���C
�
xun; �

�
−xrefn

���2

+

Ntrain�
n=1

1

Ntrain

���C
�
xun; �

�
−xrefn

���1
+�Φ ‖�‖2 ,
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acquisition from an independent test dataset. This recon-
struction can be achieved by reformulating the problem in 
Equation 214:

where C
(
xu; �∗

)
 is the output of the trained network with opti-

mized parameters �∗. Note that the problem in Equation 9 has 
the following closed-form solution14:

where k denotes k-space location; Ω represents the set of 
acquired k-space locations; F and F−1 are the forward and 
backward Fourier transform operators; and xrec is the recon-
structed image. The solution outlined in Equation 10 per-
forms 2 separate projections during reconstruction. The first 
projection calculates the output of the trained neural network 
C
(
xu; �∗

)
 given the input image xu, the Fourier reconstruc-

tion of undersampled data. The second projection enforces 
DC. The parameter � in Equation 10 controls the relative 
weighting between data samples that are originally acquired 
and those that are recovered by the network. Here we used 
�=∞ to enforce DC strictly. Given an input xin in the image 
domain, the DC projection outlined in Equation 10 can be 
compactly expressed as 11:

where Λ is a diagonal matrix:

Conventional optimization algorithms for CS run it-
eratively to progressively minimize the loss function. A 
similar approach can also be adopted for NN-based recon-
structions.11,22,39 Here, we cascaded several CNN blocks in 
series with DC projections interleaved between consecutive 
CNN blocks.11 In this architecture, the input xip to the pth 
CNN block was formed as:

where �∗
p
 denotes the parameters of the pth CNN block. 

Starting with the initial network with p = 1, each CNN block 
was trained sequentially by solving the following optimiza-
tion problem:

While training the pth CNN block, the parameters of pre-
ceding networks and thus the input xip are assumed to be fixed.

2.2.2 | Multi-coil data

Similar to SPIRiT, for multi-coil reconstructions, here we re-
formulate Equation 6 as:

where x denotes the multi-coil images to be reconstructed; 
A denotes coil-sensitivity profiles using ESPIRiT49 and A∗ 
denotes its adjoints; and G denotes the interpolation operator 
in SPIRiT as in Equation 6. The network C has been trained 
to recover fully sampled coil-combined images given under-
sampled coil-combined images as outlined in Equation 8. The 
trained network regularizes the reconstruction in Equation 
15 given undersampled coil-combined images A∗xu. The op-
timization problem in Equation 15 is solved by alternating 
projections for CC, DC, and CNN blocks (see Supporting 
Information Figure S1 for details). CNN blocks are cascaded 
in series with DC and calibration consistency projections. 
Given an input xin in the image domain, the calibration- 
consistency projection can be compactly expressed as:

where F and F−1 are the forward and backward Fourier trans-
form operators. Note that the input and output of the CC blocks 
are in the image domain.

In this multi-coil implementation, the input xip to the pth 
CNN block was formed as:

(9)xrec =min
x

� ‖‖Fux−yu
‖‖2

+
‖‖‖C

(
xu; �∗

)
−x

‖‖‖2
,

(10)yrec(k)=

{
[FC(xu; �∗)](k) + �yu(k)

1+�
, if k�Ω[

FC
(
xu; �∗

)]
(k), otherwise

xrec =F−1yrec

,

(11)fDC{xin}=F−1ΛFxin+
�

1+�
xu,

(12)Λkk =

{
1

1+�
, if k�Ω

1, otherwise
.

(13)

xip =

{
xun, if p=1

fDC

{
Cp−1

(
fDC

{
Cp−2(fDC …C1

(
xun; 𝜃∗

1

)}
;… 𝜃∗

p−1

)}
, if p>1

,

(14)

min
�p

Ntrain∑
n=1

1

Ntrain

‖‖‖C
(
xip; �p

)
−xrefn

‖‖‖2

+

Ntrain∑
n=1

1

Ntrain

‖‖‖C
(
xip; �p

)
−xrefn

‖‖‖1
+�Φ

‖‖‖�p
‖‖‖2

.

(15)
xrec =min

x

��Fux−yu
��2

+‖(G− I)Fx‖2+
���C

�
A∗xu; �∗

�
−A∗x

���2
,

(16)fCC

{
xin

}
=F−1GFxin,

(17)

xip =

⎧⎪⎨⎪⎩

fDC

�
fCC{xun}

�
, if p=1

fDC

�
fCC

�
fDC

�
ACp−1

�
A∗fDC

�
fCC … fDC

�
AC1

�
A∗fDC

�
fCC{xun

��
; 𝜃∗

1

��
;… 𝜃∗

p−1

����
, if p>1

.
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Note that CNN blocks receive coil-combined images, 
and CC and DC blocks receive multi-coil images as input. 
A∗ converts multi-coil images into a coil-combined image, 
and A back projects the coil-combined image onto individual 
coils. CC and CNN blocks are both followed by a DC block.

2.3 | Datasets

2.3.1 | Single-coil magnitude images

For demonstrations on single-coil data, 2 distinct types of 
datasets were used: MR brain images and natural images. 
The details are listed below.

MR brain images
Training deep neural networks for MR image reconstruc-
tion typically requires large datasets containing thousands 
of images that may be difficult to acquire. Yet, in this 
study we wanted to systematically examine the interaction 
between the number of training and fine-tuning samples 
for domain-transferred neural networks. To comprehen-
sively examine this issue, we opted for the publicly avail-
able MIDAS dataset with multi-contrast MR images from 
nearly 100 subjects.

T1-weighted images: We assembled a total of 6500 T1-
weighted images (58 subjects) from the MIDAS database.50 
These images were divided into 4580 training images  
(42 subjects), 720 fine-tuning images (6 subjects), and 1200 
testing images (10 subjects). During the training phase, for 
CNN block training 4000 images (34 subjects) were used 
for training, and 240 images (2 subjects) were reserved for 
validation. During the end-to-end network training, 100 
images (4 subjects) were used for training, and 240 im-
ages (2 subjects) were reserved for validation. During the 
fine-tuning phase, 480 images (4 subjects) were used for 
fine-tuning, and 240 images (2 subjects) were reserved for 
validation. There was no overlap between subjects included 
in the training, validation, and testing sets. T1-weighted im-
ages analyzed here were collected on a 3T scanner via the 
following parameters: a 3D gradient-echo sequence, TR = 
14 ms, TE = 7.7 ms, flip angle = 25º, matrix size = 256 × 
176, 1 mm isotropic resolution.

T2-weighted images: We assembled a total of 6100 
T2-weighted images (64 subjects) from the MIDAS data-
base.50 These images were divided into 4500 training im-
ages (48 subjects); 600 fine-tuning images (6 subjects); and 
1000 testing images (10 subjects), with no subject over-
lap between training, validation, and testing sets. During 
the training phase, for CNN block training 4000 images 
(40 subjects) were used for training, and 200 images  
(2 subjects) were reserved for validation. During the end-
to-end network training, 100 images (4 subjects) were used 

for training, and 200 images (2 subjects) were reserved 
for validation. During the fine-tuning phase, 400 images 
(4 subjects) were used for fine-tuning, and 200 images  
(2 subjects) were used for validation. T2-weighted images 
that were analyzed here were collected on a 3T scanner via 
the following parameters: a 2D spin-echo sequence, TR = 
7730 ms, TE = 80 ms, flip angle = 180º, matrix size =  
256 × 192, 1 mm isotropic resolution.

For the fine-tuning phase, images from 4 subjects were 
reserved. Cross-section images from the reserved subjects 
were aggregated, and 100 images were randomly selected 
from within the aggregate set. Therefore, the selected images 
during the fine-tuning phase contained images from multiple 
different subjects.

Note that the MIDAS dataset contains DICOM images 
with only magnitude information. Therefore, all analyses 
were performed for magnitude-only reconstructions.

Natural images
To perform domain transfer from natural images to 
single-coil magnitude MR images, we assembled 5100 
natural images from the validation set used during the 
ImageNet Large Scale Visual Recognition Challenge 
2011 (ILSVRC2011).51 Four thousand images were used 
for training; 100 images were used for end-to-end train-
ing; and 1000 images were used for validation. All images 
were either cropped or zero-padded to yield consistent 
dimensions of 256 × 256. Color RGB images were first 
converted to LAB color space  using rgb2lab function of 
MATLAB 2015b, and the L-channel was extracted to ob-
tain grayscale images.

2.3.2 | Multi-coil complex images

MR brain images
The proposed approach was also demonstrated on multi-
coil complex k-space data. Images from 10 subjects were 
acquired. Within each subject, 60 central cross-sections 
containing sizeable amount of brain tissue were se-
lected. Images were then divided into 360 training images  
(6 subjects), 60 validation images (1 subject), and 180 test-
ing images (3 subjects), with no subject overlap. Images 
were collected on a 3T Siemens Magnetom scanner 
(maximum gradient strength of 45 mT/m and slew rate of  
200 T/m/s) using a 32-channel receive-only head coil at 
Bilkent University, Ankara, Turkey.

1. T1-weighted images: The images were collected via 
the following parameters: a 3D MPRAGE sequence,  
TR = 2000 ms, TE = 5.53 ms, flip angle = 20º, matrix  
size = 256 × 192 × 80, 1 mm × 1 mm × 2 mm  
resolution.
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2. T2-weighted images: The images were collected via the 
following parameters: a 3D spin-echo sequence, TR = 
1000ms, TE = 118 ms, flip angle = 90º, matrix size = 256 ×  
192 × 80, 1 mm × 1 mm × 2 mm resolution.

Imaging protocols were approved by the local ethics 
committee at Bilkent University, Ankara, Turkey, and all 
participants provided written informed consent. To reduce 
computational complexity, geometric-decomposition coil 
compression was performed to reduce number of coils from 
32 to 8.52

Natural images
The multi-coil data mentioned in section 2.3.2.1 consisted 
of complex T1- and T2-weighted images acquired on a 3T 
scanner. However, the ImageNet dataset consisted of mag-
nitude images. Therefore, to perform domain transfer from 
natural images to multi-coil MR images, complex natural 
images were simulated from 2420 magnitude images in 
ImageNet by adding sinusoidal phase at random spatial fre-
quencies along each axis varying from –π to +π. The am-
plitude of the sinusoids was normalized between 0 and 1.  
Fully sampled multi-coil T1-weighted acquisitions from  
2 training subjects were selected to extract coil-sensitivity 
maps using ESPIRiT.49 Each multi-coil complex natural 
image was then simulated by utilizing coil-sensitivity maps 
of a randomly selected cross-section from the 2 reserved 
subjects (see Supporting Information Figure S2 for sam-
ple multi-coil complex natural images). Please note that 
this phase simulation procedure was also demonstrated to 
enable successful domain transfer in other recent studies 
on image reconstruction.24,40 From the simulated 2420 im-
ages, 2000 images were used for initial CNN block train-
ing; 360 images were used for end-to-end training; and  
60 images were used for validation.

2.3.3 | Single-coil complex images

Single-coil reconstructions on the MIDAS dataset (see sub-
section 2.3.1) were performed on magnitude images that 
were Fourier-transformed and undersampled in k-space. 
To demonstrate the proposed approach on single-coil com-
plex images, we conducted additional experiments using 
the multi-coil complex MRI data (subsection 2.3.2). To do 
this, multi-coil images were combined via coil-sensitivity 
maps estimated using ESPIRiT. For domain transfer from 
natural images to single-coil complex MR images, com-
plex natural images were synthesized from 2420 ImageNet 
images by adding sinusoidal phase at random spatial fre-
quencies along each axis varying from –π to +π. Note that 
for domain transfer experiments in the multi-coil case, 
natural images were multiplied with coil sensitivity maps 

estimated from actual MRI data to synthesize multi-coil 
images. This multiplication intrinsically restricts the spa-
tial extent of objects in natural images. When performing 
domain transfer in the single-coil complex case, we wanted 
to match the simulation procedures as closely as possible. 
Therefore, the synthesized images were spatially restricted 
by utilizing brain masks extracted from coil sensitivity 
maps of a randomly selected cross-section from 2 subjects 
reserved for this purpose. From the simulated 2420 images; 
2000 images were used for initial CNN block training; 360 
images were used for end-to-end training; and 60 images 
were used for validation.

Data augmentation is a common method to increase data 
size for network training. Yet, artificially created samples are 
inherently correlated with the original samples. Because a 
central aim of the current study was to examine the interac-
tion between the number of training and fine-tuning samples, 
no data augmentation was employed to minimize bias due to 
sample correlation.

Undersampling patterns: Images in each dataset were un-
dersampled via variable-density Poisson-disc sampling.45 All 
datasets were undersampled for varying acceleration factors 
(R = 4, 6, 8, 10). Fully sampled images were first Fourier 
transformed and then retrospectively undersampled. To en-
sure reliability against mask selection, 100 unique under-
sampling masks were generated and used during the training 
phase. A different set of 100 undersampling masks was used 
during the testing phase.

2.4 | Network training and fine-tuning

We adopted a cascade of neural networks as inspired by 
Ref. 11. Five subnetworks were cascaded in series. For 
single-coil magnitude data, the CNN block within each 
subnetwork contained an input layer, 4 convolutional 
layers, and an output layer. The input layer consisted of  
2 channels for real imaginary parts of undersampled  
images. Each convolution operation in the convolutional 
layers was passed through a rectified linear unit activation. 
The hidden layers consisted of 64 channels. The output 
layer consisted of only a single channel for a magnitude 
reconstruction. For multi-coil complex data, undersam-
pled multi-coil data were combined prior to CNN blocks 
using coil-sensitivity maps estimated via ESPIRiT. Real 
and imaginary parts of coil-combined images were then 
reconstructed using 2 separate networks, and each network 
consisted of a single input and output channel. The net-
work outputs were joined to form a coil-combined complex 
image. Note that the DC block operates on individual-coil 
data. Thus, prior to the DC block, the coil-combined com-
plex image was back-projected onto individual coils, again 
using coil-sensitivity maps.
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2.4.1 | CNN block training

CNN blocks were trained on Ntrain images in the source do-
main via the back-propagation algorithm.53 In the forward 
passes, a batch of 50 samples in the single-coil case and 10 
samples in the multi-coil case were passed through the net-
work to calculate the respective loss function. In the back-
ward passes, network parameters were updated according to 
the gradients of this function with respect to the parameters. 
The gradient of the loss function with respect to parameters of 
the mth hidden layer (�m) can be calculated using chain rule:

where l is the output layer of the network; al is the output of 
the lth layer; and ol is the output of the lth layer passed through 
the activation function. The parameters of the mth layer are 
only updated if the loss-function gradient flows through all 
subsequent layers (i.e., gradients are non-zero). Each subnet-
work was trained individually for 20 epochs. In the CNN block 
training, the network parameters were optimized using the 
ADAM optimizer with a learning rate of η = 10−4, decay rate 
for first moment of gradient estimates of β1 = 0.9, and decay 
rate for the second moment of gradient estimate of β2 = 0.999.54 
Connection weights were L2-regularized with a regularization 
parameter of �Φ =10−6.

2.4.2 | End-to-end network training

Networks formed by sequential training of the CNN blocks 
were then trained end to end on Nend-to-end images in the source 
domain. For single-coil magnitude data, this end-to-end train-
ing was performed on only 100 images from the source do-
main (i.e., Nend-to-end = 100). For single-coil and multi-coil 
complex data, a relatively smaller set of images was used for 
initial training (360 images); thus, end-to-end training was per-
formed on 360 images from the source domain (i.e., Nend-to-end 
= 360). In the forward passes, a batch of 20 samples in the sin-
gle-coil case and 4 samples in the multi-coil case were passed 
through the network to calculate the respective loss function.

To perform end-to-end training, the gradients must be cal-
culated through the CNN, DC, and CC blocks. The gradient 
flow through the convolutional network layers that contain 
basic arithmetic operations and rectified linear unit activa-
tion functions are well known.55 The gradient flow through 
DC in Equation 11 with respect to its input xin is given as:

due to the linearity of the Fourier operator (F). Similarly, the 
gradient flow through CC in Equation 16 with respect to its 
input xin is given as:

Based on Equations 19 and 20, the gradient of the loss 
function with respect to output of the jth CNN block is given 
as:

where l corresponds to the last subnetwork; fDC,(l−1)2 corre-
sponds to the DC layer posterior to the (l−1)th CC block; and 
fDC,(l−1)1 corresponds to the DC block posterior to the (l−1)th 
subnetwork. Once we have the gradient of the loss function 
with respect to output of the jth CNN block, the gradients of 
the mth hidden layer (�m) within the jth CNN block can be cal-
culated using chain rule.

where l corresponds to the last layer. If we define the gradient 
�L

��m

 at the kth iteration as gk
m
, estimates of the first and second 

moments of the gradients at the kth iteration can be expressed 
as:

where mk
m
 is the estimate of the first moment of the gradient at 

the kth iteration; �1 is the decay rate for mk
m

; vk
m
 is the estimate 

of the second moment of the gradient at the kth iteration; and 
�2 is the decay rate for vk

m
. The update for the parameters of 

the mth hidden layer (�m) in the kth iteration can then be ex-
pressed as:

where � is the learning rate and ε is a small constant that avoids 
division by 0 (set to 10−8).

During the end-to-end training phase, the ADAM opti-
mizer was used with identical parameters to those used in the 
subnetwork training, apart from a lower learning rate of 10−5 
and a total of 100 epochs.
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2.4.3 | Network fine-tuning

A network trained in 1 domain might lead to suboptimal 
performance in a different target domain. For this purpose, 
end-to-end fine-tuning was performed on a small number of 
images from the target domain. We will refer to the number 
of fine-tuning images as Ntune. Gradient calculation and pa-
rameter updates were identical to end-to-end network train-
ing, as described in subsection 2.4.2.

During the fine-tuning phase, the ADAM optimizer was 
used with identical parameters to those used in subnetwork 
training, apart from a lower learning rate of 10−5 and a total 
of 100 epochs.

2.5 | Network validation

During both the training and fine-tuning phases, the number 
of epochs and learning rate were selected based on recon-
struction error (mean absolute error + mean square error) 
on the validation set. Training and fine-tuning phases exer-
cised early stopping based on network performance on the 
validation set. During the course of model training, pre-
diction errors will initially decrease on both training and 
validation sets. Yet, continued training will reduce train-
ing error at the expense of elevated validation error. This 
transition serves as a hallmark symptom of overfitting. To 
catch the onset of overfitting, we stopped network training 
based on a convergence criterion. Convergence was taken 
as the number of epochs in which the percentage change 
in validation error across consecutive epochs fell below 
0.1% of the initial validation error. We found that for CNN 
block training all CNN blocks converged within 20 ep-
ochs, and for end-to-end training all networks converged 
within 100 epochs (see Supporting Information Figure S3). 
Learning rate was selected to facilitate convergence while 
preventing undesirable oscillations in the validation error. 
We observed the resulting learning rates to be 10−4 in the 
subnetwork training phase, 10−5 in the end-to-end train-
ing phase, and 10−5 in the fine-tuning phase. During the 
fine-tuning phase, because fine-tuning is performed on a 
few samples, proper selection of the learning rate is more 
critical. An excessive learning rate can cause the networks 
to overfit to the fine-tuning samples. This overfitting can 
be observed in the form of undesirable oscillations and 
increase in validation error (see Supporting Information 
Figure S4).

During the fine-tuning phase, validation data were 
again used to select the number of epochs and learning 
rate, and additionally to determine the number of fine- 
tuning samples required for successful domain trans-
fer. Peak SNR (PSNR) values obtained on the validation  
images were used to assess domain transfer performance. 

The PSNR convergence point was used to select the  
number of fine-tuning samples. Convergence was taken as 
the number of fine-tuning samples in which the percentage 
change in PSNR by incrementing number of fine-tuning 
samples fell below 0.05% of PSNR for the network trained 
in the target domain.

Both training and fine-tuning phases consisted of sepa-
rate validation datasets. During the training phase, validation 
data were exclusively selected from the source domain. For 
example, the validation set for the ImageNet-trained network 
contained ImageNet images, whereas the validation set for 
the T1-trained network contained T1-weighted images. In 
contrast, the validation set during the fine-tuning phase con-
tained data exclusively from the target domain. For example, 
when T1 was the target domain, the validation set for both 
domain-transferred and T1-trained networks contained an 
identical set of T1-weighted images.

2.6 | Performance analyses

2.6.1 | Single-coil magnitude data

We first evaluated the performance of networks under im-
plicit domain transfer (i.e., without fine-tuning in the target 
domain). We reasoned that a network trained and tested 
in the same domain should outperform networks trained 
and tested on different domains. To investigate this issue, 
we reconstructed undersampled T1-weighted acquisitions 
using the ImageNet-trained and T2-trained networks for 
varying acceleration factors (R = 4, 6, 8, 10). The recon-
structions obtained via these 2 networks were compared 
with reference reconstructions obtained from the network 
trained directly on T1-weighted images. To ensure that our 
results were not biased by the selection of a specific MR 
contrast as the test set, we also reconstructed undersam-
pled T2-weighted acquisitions using the ImageNet-trained 
and T1-trained networks. The reconstructions obtained via 
these 2 networks were compared with reference recon-
structions obtained from the network trained directly on 
T2-weighted images.

Next, we evaluated the performance of network under 
explicit domain transfer (i.e., with fine-tuning in the tar-
get domain). Networks were fine-tuned end to end in the 
testing domain. When T1-weighted images were the testing 
domain, ImageNet-trained and T2-trained networks were 
fine-tuned using a small set of T1-weighted images (Ntune) 
with size ranging in [0 100]. When T2-weighted images 
were the testing domain, ImageNet-trained and T1-trained 
networks were fine-tuned using a small set of T2-weighted 
images (Ntune) with size ranging in [0 100]. In both cases, 
the performance of fine-tuned networks was compared 
with the networks trained and further fine-tuned end to 
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end directly in the testing domain on Ntune images. We also 
compared the performance of the fine-tuned networks with 
limited networks that were obtained via end-to-end training 
only on Ntune images.

Reconstruction performance of a fine-tuned network 
likely depends on the number of both training and fine- 
tuning images. To examine potential interaction between 
the number of training and fine-tuning samples, separate 
networks were trained using training sets of varying size 
(Ntrain) in [500 4000]. Each network was then fine-tuned 
using sets of varying size (Ntune) in [0 100]. Performance 
was evaluated to determine the number of fine-tuning sam-
ples that are required to achieve near-optimal performance 
for each separate size of training set. Optimal performance 
was taken as the PSNR of a network trained directly in the 
testing domain.

Please note that for all aforementioned analyses, networks 
were also end-to-end trained using a set of 100 images in the 
source domain (i.e., Nend-to-end = 100).

NN-based reconstructions were also compared to those 
obtained by conventional CS (SparseMRI).2 Single-coil CS 
reconstructions were implemented via a nonlinear conjugate 
gradient method. Daubechies-4 wavelets were selected as the 
sparsifying transform. Parameter selection was performed 
to maximize PSNR on the validation images from the fine- 
tuning set. Consequently, an L1-regularization parameter of 
10−3, 80 iterations for T1-weighted acquisitions, and 120 it-
erations for T2-weighted acquisitions were observed to yield 
near-optimal performance broadly across R.

2.6.2 | Multi-coil complex data

We also demonstrated the proposed approach on multi-
coil MR images. For this purpose, a network was trained 
in which initial CNN block training was performed on 
2000 (Ntrain) multi-coil complex natural images, and end-
to-end training was performed on 360 (Nend-to-end) ad-
ditional multi-coil complex natural images (see section 
2.3.2 for details). The network was then fine-tuned using 
a set of multi-coil images (Ntune) from the target domain 
(T1- or T2-weighted) with varying size in [0 100]. Here, 
cross-sections from the training set in the target domain 
were aggregated, and 100 images were then randomly se-
lected. Reconstruction performance was compared with 
networks trained using 360 multi-coil MR images from 
the target domain (6 subjects) and L1-SPIRiT.45 A pro-
jection onto convex sets implementation of SPIRiT was 
used. For each R, parameter selection was performed to 
maximize PSNR on validation images drawn from the 
multi-coil MR image dataset. For T1-weighted images, an 
interpolation kernel width of 7, a Tikhonov regularization 
parameter of 10−2 for calibration, and an L1-regularization 

parameter of 10−3 were observed to yield near-optimal 
performance across R. Meanwhile, the optimal number 
of iterations varied based on acceleration factor. For R = 
[4, 6, 8, 10], the following number of iterations = [30, 45, 
65, 80] were selected. For T2-weighted images, an inter-
polation kernel width of 7, a Tikhonov regularization pa-
rameter of 10−2 for calibration, and an L1-regularization 
parameter of 10−4 were observed to yield near-optimal 
performance across R. Meanwhile, the optimal number 
of iterations varied based on acceleration factor. For  
R = [4, 6, 8, 10], the following number of iterations = 
[45, 70, 80, 80] were selected. The interpolation ker-
nels optimized for SPIRiT were used in the calibration- 
consistency blocks of the networks that contained 5  
consecutive CC projections.

We also inspected the degree of change in model weights 
following fine-tuning. To inspect the changes, we computed 
percentage change in coefficients of convolution kernels 
in CNN layers for R = 4-10. Measurements were averaged 
across neurons within each layer and across R.

2.6.3 | Single-coil complex data

We also demonstrated the proposed approach on single-
coil complex images. For this purpose, initial CNN block 
training was performed on 2000 (Ntrain) synthetic single-
coil complex natural images, and end-to-end training was 
performed on 360 (Nend-to-end) additional synthetic single-
coil complex natural images (see section 2.3.3 for details). 
The network was then fine-tuned using a set of single-coil 
complex images (Ntune) from the target domain (T1- or 
T2-weighted) with varying size in [0 100]. Here, cross-
sections from the training set in the target domain were 
aggregated, and 100 images were then randomly selected. 
Reconstruction performance was compared with networks 
trained using 360 single-coil MR complex images from the 
target domain (6 subjects).

To quantitatively compared alternative methods, we 
measured the structural similarity index (SSIM) and PSNR 
between the reconstructed and fully sampled reference im-
ages. For multi-coil data, the reference image was taken 
as the coil-combined image obtained via weighted linear 
combination using coil sensitivity maps from ESPIRiT. The 
training and testing of NN architectures were performed 
in the TensorFlow framework56 using 2 NVIDIA Titan X 
Pascal GPUs (12 GB video RAM). Single-coil CS recon-
structions were performed via libraries in the SparseMRI 
V0.2 toolbox available at https ://people.eecs.berke ley.
edu/~mlust ig/Softw are.html. Multi-coil CS reconstruc-
tions were performed via libraries in the SPIRiT V0.3 tool-
box available at https ://people.eecs.berke ley.edu/~mlust ig/
Softw are.html.

https://people.eecs.berkeley.edu/~mlustig/Software.html
https://people.eecs.berkeley.edu/~mlustig/Software.html
https://people.eecs.berkeley.edu/~mlustig/Software.html
https://people.eecs.berkeley.edu/~mlustig/Software.html
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3 |  RESULTS

3.1 | Single-coil magnitude data

3.1.1 | T1-domain transfer

A network trained on the same type of images with which 
it later will be tested should outperform networks that are 
trained and tested on different types of images. However, 
this performance difference should diminish following 
successful domain transfer between the training and test-
ing domains. To test this prediction, we first investigated 
generalization performance for implicit domain transfer 
(i.e., without fine-tuning) in a single-coil setting. The train-
ing domain contained natural images from the ImageNet 
database or T2-weighted images, and the testing domain 
contained T1-weighted images. Figure 2 displays recon-
structions of an undersampled T1-weighted acquisition via 
the ImageNet-trained, T2-trained, and T1-trained networks 
for R = 4. As expected, the T1-trained network yields 
sharper and more accurate reconstructions compared to 
the raw ImageNet–trained and T2-trained networks. Next, 
we examined explicit domain transfer in which ImageNet-
trained and T2-trained networks were fine-tuned. In this 
case, all networks yielded visually similar reconstructions. 
Furthermore, when compared against conventional com-
pressive sensing (CS), all network models yielded superior 
performance. Figure 3 displays reconstructions of an under-
sampled T1-weighted acquisition via the ImageNet-trained, 
T2-trained, and T1-trained networks, and CS for R = 4. The 
ImageNet-trained network produces images of similar vis-
ual quality to other networks and outperforms CS in terms 
of image sharpness and residual aliasing artifacts.

Reconstruction performance of domain-transferred net-
works may depend on the sizes of both training and fine- 
tuning sets. To examine interactions between the number of 
training (Ntrain) and fine-tuning (Ntune) samples, we trained 
networks using training sets in the range [500 4000] and 
fine-tuning sets in the range [0 100]. Figure 4 shows average 
PSNR values for a reference T1-trained network trained on 
4000 and fine-tuned on 100 images, and domain-transferred 
networks for R = 4-10. Without fine-tuning, the T1-trained 
network outperforms both domain-transferred networks. As 
the number of fine-tuning samples increases, the PSNR dif-
ferences decay gradually to a negligible level. Consistently 
across R, domain-transferred networks trained on smaller 
training sets require more fine-tuning samples to yield simi-
lar performance.

Figure 5 displays the number of fine-tuning samples re-
quired for the PSNR values for ImageNet-trained networks 
to converge for R = 4-10. Convergence was taken as the 
number of fine-tuning samples in which the percentage 
change in PSNR by incrementing number of fine-tuning 

samples fell below 0.05% of PSNR for the T1-trained net-
work. Across R, networks trained on fewer samples re-
quire more fine-tuning samples for convergence. However, 
the required number of fine-tuning samples is greater for 
higher R. Averaged across R, Ntune= 68 for Ntrain = 500; 
Ntune = 72 for Ntrain = 1000; Ntune = 35 for Ntrain = 2000; 
and Ntune =3 8 for Ntrain = 4000.

To corroborate the visual observations, reconstruc-
tion performance was quantitively assessed for both im-
plicit and explicit domain transfer across R = 4-10. PSNR 
and SSIM measurements across the test set are listed in 
Table 1 and Supporting Information Table S1. (For recon-
struction performance when Ntune is fixed to 100, please 
refer to Supporting Information Table S3.) For implicit 
domain transfer, the T1-trained networks outperform do-
main-transferred networks and CS consistently across all 
R. For explicit domain transfer, the differences between 
the T1-trained and domain-transferred networks diminish. 
Following fine-tuning, the average differences in (PSNR, 
SSIM) across R between ImageNet and T1-trained net-
works diminish from (1.61 dB, 1.50%) to (0.35 dB, 0.50%), 
and difference between T2-trained and T1-trained networks 
diminish from (1.96 dB, 2.50%) to (0.20 dB, 0.25%). 
Furthermore, the domain-transferred networks outperform 
CS consistently across R by an average of 3.70 dB PSNR 
and 6.13% SSIM and outperform limited networks by an 
average of 7.63 dB PSNR and 8.38% SSIM.

3.1.2 | T2-domain transfer

Next, we repeated the analyses for implicit and explicit 
domain transfer when the testing domain contained  
T2-weighted images. Supporting Information Figure S5 
displays reconstructions of an undersampled T2-weighted 
acquisition via the ImageNet-, T1-, and T2-trained net-
works for acceleration factor R = 4. Again, the network 
trained directly in the testing domain (T2-weighted) out-
performs domain-transferred networks. After fine-tuning 
with as few as 20 images, the domain-transferred networks 
yield visually similar reconstructions to the T2-trained net-
work. Supporting Information Figure S6 displays recon-
structions of an undersampled T2-weighted acquisition via 
the ImageNet-trained, T2-trained, and T1-trained networks, 
and CS for R = 4. The ImageNet-trained network produces 
images of similar visual quality to other networks and 
outperforms CS in terms of image sharpness and residual 
aliasing artifacts.

We also examined interactions between the number of 
training and fine-tuning samples when the target domain con-
tained T2-weighted images. Supporting Information Figure S7  
shows average PSNR values for a reference T2-trained net-
work trained on 4000 and fine-tuned on 100 images, and 
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domain-transferred networks for R = 4-10. Compared to 
the case of T1-weighted images, interaction between num-
ber of training and fine-tuning samples is weaker. Yet, 
a greater number of fine-tuning samples is still required 

for reconstructions at higher R. Supporting Information  
Figure S8 displays the number of fine-tuning samples re-
quired for convergence of ImageNet-trained networks. 
Averaged across R = 4-10, Ntune = 53 for Ntrain = 500;  

F I G U R E  2  Representative reconstructions of a T1-weighted acquisition at acceleration factor R = 4. Reconstructions were performed via 
the ZF method and ImageNet-trained, T2-trained, and T1-trained networks. (A) Reconstructed images and error maps for raw networks (see color 
bar). (B) Reconstructed images and error maps for fine-tuned networks. The fully sampled reference image is also shown. Network training was 
performed on a training dataset of 2000 images and fine-tuned on a sample of 20 T1-weighted images. Following fine-tuning, ImageNet-trained and 
T2-trained networks yield reconstructions of highly similar quality to the T1-trained network. ZF, zero-filled Fourier reconstruction

(A)

(B)
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Ntune = 50 for Ntrain = 1000; Ntune = 48 for Ntrain = 2000; and 
Ntune = 49 for Ntrain = 4000.

PSNR and SSIM measurements on T2-weighted re-
constructions across the test set are listed in Supporting 
Information Table S2. (For results using Ntune = 100, please 
refer to Supporting Information Table S4.) Following fine-tun-
ing, average (PSNR, SSIM) differences between ImageNet 
and T2-trained networks diminish from (1.23 dB, 2.00%) 
to (0.29 dB, 0.50%), and difference between T1-trained and  
T2-trained networks diminish from (0.67 dB, 1.25%) to  
(0.15 dB, 0.50%). Across R, the domain-transferred networks 
also outperform CS by 5.20 dB PSNR and 8.50% SSIM, and 
limited networks by 2.67 dB PSNR and 1.50% SSIM.

3.2 | Multi-coil complex data

3.2.1 | T1-domain transfer

Next, we demonstrated the proposed approach on multi-coil 
T1-weighted images. We compared ImageNet- and T1-trained 
networks at R = 4-10. Figure 6 displays average PSNR val-
ues for the T1-trained network (trained and fine-tuned on 
360 images) and ImageNet-trained network (Ntrain = 2000 
and Nend-to-end = 360 multi-coil natural images, and Ntune ∊ 

[0, 100] T1-weighted images). As Ntune increases, the PSNR 
differences between T1- and ImageNet-trained networks start 
diminishing. Figure 7 displays the number of fine-tuning 
samples required for the PSNR values for ImageNet-trained 
networks to converge. Averaged across R = 4-10, ImageNet-
trained networks require Ntune = 18 for convergence. We 
also compared the proposed transfer learning approach with 
L1-regularized SPIRiT. Figure 8 shows representative re-
constructions obtained via the ImageNet-trained network, 
T1-trained network, and SPIRiT for R = 10. The ImageNet-
trained network produces images of similar visual quality to 
the T1-trained network and outperforms SPIRiT in terms of 
residual aliasing artifacts.

Quantitative assessment of multi-coil reconstructions 
for the ImageNet-trained network, T1-trained network, and 
SPIRiT across R = 4-10 are listed in Table 2. For implicit 
domain transfer, the T1-trained network performs better 
than the ImageNet-trained network. Following fine-tuning, 
the average differences in (PSNR, SSIM) across R between 
ImageNet and T1-trained networks diminish from (2.10 dB, 
1.43%) to (0.62 dB, 0.15%). Furthermore, the ImageNet-
trained network outperforms SPIRiT in all cases. On av-
erage across R, the ImageNet-trained network improves 
performance over SPIRiT by 0.93 dB PSNR and 0.60% 
SSIM.

F I G U R E  3  Reconstructions of a T1-weighted acquisition with R = 4 via ZF; conventional CS; and ImageNet-trained, T1-trained and  
T2-trained networks along with the fully sampled reference image. Error maps for each reconstruction are shown below (see color bar). Networks 
were trained on 2000 images and fine-tuned on 20 images acquired with the test contrast. The domain-transferred networks maintain nearly 
identical performance to the networks trained directly in the testing domain. Furthermore, the domain-transferred networks reconstructions 
outperform conventional CS in terms of image sharpness and residual aliasing artifacts. CS, compressed sensing
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3.2.2 | T2-domain transfer

We also demonstrated the proposed approach when the 
testing domain contained multi-coil T2-weighted im-
ages. Supporting Information Figure S9 displays aver-
age PSNR values for the T2-trained network (trained and 
fine-tuned on 360 images) and ImageNet-trained network 
(Ntrain = 2000 and Nend-to-end = 360 multi-coil natural im-
ages, and Ntune ∊ [0, 100] T2-weighted images). Supporting 
Information Figure S10 displays the number of fine-tuning 
samples required for the ImageNet-trained network to con-
verge. Averaged across R, ImageNet-trained networks re-
quire Ntune = 28 for convergence. Supporting Information 
Figure S11 shows representative reconstructions obtained 
via the ImageNet-trained network, T2-trained network, and 
SPIRiT for R = 10. The ImageNet-trained network pro-
duces images of similar visual quality to the T2-trained 
network while outperforming SPIRiT in terms of residual 
artifacts. Meanwhile, Supporting Information Table S5 lists 
quantitative assessments of reconstruction quality across  
R = 4-10. Following fine-tuning, the average differences in 
(PSNR, SSIM) between ImageNet and T2-trained networks 
diminish from (2.33 dB, 0.70%) to (0.37 dB, 0.05%). On 
average across R, the ImageNet-trained network improves 

performance over SPIRiT by 1.53 dB PSNR and 1.07% 
SSIM.

We also computed percentage change in coefficients of 
convolution kernels in CNN layers for R = 4-10. Supporting 
Information Figure S12 demonstrates percentage change in 
network weights as a function of network depth for multi-coil 
ImageNet to T1 and T2 domain transfer, averaged across R. 
Overall, the percentage change in weights is higher for earlier 
versus later layers of the network. For ImageNet to T1 domain 
transfer, percentage change varies from 2.27% to 0.56%, and for 
ImageNet to T2 domain transfer percentage change varies from 
3.28% to 0.47%. The difference in the level of weight change 
across layers can be attributed to the level of residual artifacts 
present in inputs to each layer. Because the inputs to earlier layers 
contain more domain-specific residual artifacts, they might un-
dergo greater change during fine-tuning compared to later layers.

3.3 | Single-coil complex data

3.3.1 | T1-domain transfer

Next, we demonstrated the proposed approach on single-
coil complex T1-weighted images, obtained by combining 

F I G U R E  4  Reconstruction performance was evaluated for undersampled T1-weighted acquisitions. Average PSNR values across  
T1-weighted validation images were measured for the T1-trained network (trained on 4k images and fine-tuned on 100 images), ImageNet-trained 
networks (trained on 500, 1000, 2000, or 4000 images), and T2-trained network (trained on 4000 images). Results are plotted as a function of 
number of fine-tuning samples for acceleration factors (A) R = 4, (B) R = 6, (C) R = 8, and (D) R = 10. Without fine-tuning, the T1-trained 
network outperforms all domain-transferred networks. As the number of fine-tuning samples increases, the PSNR differences decay gradually to a 
negligible level. Domain-transferred networks trained on fewer samples require more fine-tuning samples to yield similar performance consistently 
across R. PSNR, peak SNR

(A) (B)

(C) (D)
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multi-coil images via coil sensitivity maps estimated using 
ESPIRiT. Supporting Information Figure S13 displays 
average PSNR values for the T1-trained network (trained 
and fine-tuned on 360 images) and ImageNet-trained net-
work (Ntrain = 2000 and Nend-to-end = 360 single-coil natu-
ral images, and Ntune ∊ [0, 100] T1-weighted images); and 
Supporting Information Figure S14 displays the number 
of fine-tuning samples required for the ImageNet-trained 
network. Averaged across R, ImageNet-trained networks 
require Ntune = 29 for convergence. Quantitative assess-
ment for the ImageNet-trained network and T1-trained net-
work across R = 4-10 are listed in Supporting Information 
Table S6. Following fine-tuning, the average differences in 
(PSNR, SSIM) across R between ImageNet and T1-trained 
networks diminish from (4.23 dB, 5.95%) to (1.65 dB, 
1.25%).

3.3.2 | T2-domain transfer

Finally, we demonstrated the proposed approach when the 
testing domain contained single-coil complex T2-weighted 
images. Supporting Information Figure S15 displays av-
erage PSNR values for the T2-trained network (trained 
and fine-tuned on 360 images) and ImageNet-trained net-
work (Ntrain = 2000 and Nend-to-end = 360 single-coil natu-
ral images, and Ntune ∊ [0, 100] T2-weighted images); and 
Supporting Information Figure S16 displays the number 

of fine-tuning samples required for the ImageNet-trained 
network. Averaged across R, ImageNet-trained networks 
require Ntune = 42 for convergence. Quantitative assess-
ment for the ImageNet-trained network and T2-trained net-
work across R = 4-10 are listed in Supporting Information  
Table S7. Following fine-tuning, the average differences in 
(PSNR, SSIM) across R between ImageNet T2-trained net-
works diminish from (2.48 dB, 2.00%) to (0.79 dB, 0.50%).

4 |  DISCUSSION

Neural networks for MRI reconstruction involve many free pa-
rameters to be learned; thus, an extensive amount of training 
samples is typically needed.57 In theory, network performance 
should be optimized by drawing the training and testing sam-
ples from the same domain acquired under a common MRI 
protocol. In practice, however, compiling large public datasets 
can require coordinated efforts among multiple imaging cent-
ers; therefore, such datasets are rare. As an alternative, several 
recent studies trained neural networks on a collection of multi-
contrast images.25 When needed, data augmentation procedures 
were used to further expand the training dataset.11,12 Although 
these approaches gather more samples for training, it remains 
unclear how well a network trained on images acquired with a 
specific type of tissue contrast generalizes to images acquired 
with different contrasts. Thus, variability in MR contrasts can 
lead to suboptimal reconstruction performance.

F I G U R E  5  Number of fine-tuning samples required for the PSNR values for ImageNet-trained networks (trained on single-coil magnitude 
images) to converge. Average PSNR values across T1-weighted validation images were measured for the ImageNet-trained networks trained on  
(A) 500, (B) 1000, (C) 2000, and (D) 4000 images. Convergence was taken as the number of fine-tuning samples where the percentage change in 
PSNR by incrementing Ntune fell below 0.05% of the average PSNR for the T1-trained network (see Figure 4). Domain-transferred networks trained 
on fewer samples require more fine-tuning samples for the PSNR values to converge. Furthermore, at higher values of R, more fine-tuning samples 
are required for convergence

(A) (B)

(C) (D)
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T A B L E  1  Reconstruction quality for single-coil magnitude T1-weighted images undersampled at R = 4, 6, 8, 10. Reconstructions were 
performed via ImageNet-trained, T1-trained, T2-trained, and limited networks. PSNR and SSIM values are reported as mean ± SD across test 
images. Results are shown for raw networks trained on 2000 training images (raw) and fine-tuned networks tuned with tens of T1-weighted images 
(tuned)

 

ImageNet-Trained T1-Trained T2-Trained

PSNR SSIM PSNR SSIM PSNR SSIM

R = 4 Raw 34.92 ±3.57 0.96 ± 0.02 36.01 ± 3.17 0.97 ± 0.02 34.11 ± 3.64 0.95 ± 0.03

Tuned 36.06 ± 3.10 0.97 ± 0.01 36.47 ± 3.27 0.97 ± 0.01 36.22 ± 3.13 0.97 ± 0.02

  Limited

  PSNR SSIM

  29.79 ± 3.95 0.93 ± 0.03

R = 6 Raw 31.97 ± 3.33 0.94 ± 0.02 33.49 ± 3.29 0.95 ± 0.02 31.27 ± 3.78 0.93 ± 0.04

Tuned 33.53 ± 3.02 0.95 ± 0.02 33.99 ± 3.29 0.96 ± 0.02 33.71 ± 3.15 0.96 ± 0.02

  Limited

  PSNR SSIM

  27.02 ± 4.35 0.90 ± 0.05

R = 8 Raw 29.78 ± 3.75 0.92 ± 0.03 31.64 ± 3.37 0.94 ± 0.03 29.72 ± 3.75 0.91 ± 0.05

Tuned 32.56 ± 3.15 0.95 ± 0.02 32.32 ± 3.36 0.95 ± 0.03 32.39 ± 3.45 0.95 ± 0.02

  Limited

  PSNR SSIM

  24.02 ± 4.46 0.85 ± 0.07

R = 10 Raw 28.52 ± 3.86 0.91 ± 0.04 30.50 ± 3.37 0.93 ± 0.03 28.70 ± 3.70 0.90 ± 0.05

Tuned 30.37 ± 3.34 0.93 ± 0.03 31.12 ± 3.38 0.94 ± 0.03 30.78 ± 3.14 0.93 ± 0.03

  Limited

  PSNR SSIM

  21.45 ± 4.52 0.79 ± 0.08

Abbreviations: PNSR, peak SNR; SSIM, structural similarity index.

F I G U R E  6  Reconstruction 
performance was evaluated for 
undersampled multi-coil T1-weighted 
acquisitions. Average PSNR values 
across T1-weighted validation images 
were measured for the T1-trained network 
(trained and fine-tuned on 360 images) and 
ImageNet-trained network trained on 2000 
images. Results are plotted as a function 
of number of fine-tuning samples for 
acceleration factors (A) R = 4, (B) R = 6, 
(C) R = 8, and (D) R = 10. Without fine-
tuning, the T1-trained network outperforms 
the domain-transferred network. As the 
number of fine-tuning samples increases, 
the PSNR differences decay gradually to a 
negligible level
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Here, we first questioned the generalizability of neural net-
work models across different contrasts. We find that a network 
trained on MR images of a given contrast (e.g., T1-weighted) 
yields suboptimal reconstructions on images of a different con-
trast (e.g., T2-weighted). This confirms that the best strategy is 
to train and test networks in the same domain. Yet, it may not 
be always feasible to gather a large collection of images from 
a desired contrast. To address the problem of data scarcity, we 
proposed a transfer-learning approach for accelerated MRI. The 

proposed approach trains neural networks using training sam-
ples from a large public dataset of natural images. The network 
is then fine-tuned end to end using only tens of MR images. 
Reconstructions obtained via the ImageNet-trained network 
are of nearly identical quality to reconstructions obtained by 
networks trained directly in the testing domain using thou-
sands (upto 4 thousand) of MR images.

In the current study, we proposed an explicit domain transfer 
approach in which networks are initially trained using a large 
number of images in a source domain and then fine-tuned using 
fewer samples in the target domain. If the source and target 
domains were structurally dissimilar, the domain-transferred 
networks would not be expected to perform successfully in the 
target domain. Note that previous studies reported natural and 
MR images to have similar early-to-intermediate visual fea-
tures40 and similar energy spectrums in the Fourier domain.2,58 
Thus, the comparable performance of domain-transferred and 
target-domain networks here can be attributed to such shared 
visual features. In T1 reconstructions, we observed that the 
ImageNet-trained and T2-trained networks performed sim-
ilarly at R = (8, 10); however, the ImageNet-trained network 
was superior at relatively low R = (4, 6). At high R, high- 
spatial-frequency samples in the target domain are largely 
missing, and the networks aim to synthesize missing samples 
primarily based on low-frequency samples. Thus, the general 
similarity of energy spectrums between natural and MR images 
might lead to similar performance for ImageNet- and T2-trained 
networks. At low R, however, additional high-frequency infor-
mation is available in the target domain, and success of implicit 

F I G U R E  7  Number of fine-tuning samples required for the 
PSNR values for ImageNet-trained networks (trained on multi-coil 
complex images) to converge. Average PSNR values across  
T1-weighted validation images were measured for the ImageNet-
trained network trained on 2000 images. Convergence was taken as the 
number of fine-tuning samples where the percentage change in PSNR 
by incrementing Ntune fell below 0.05% of the average PSNR for the 
T1-trained network (see Figure 6). At higher values of R, more fine-
tuning samples are required for convergence

F I G U R E  8  Representative reconstructions of a multi-coil T1-weighted acquisition at acceleration factor R = 10. Reconstructions were 
performed via ZF, ImageNet-trained and T1-trained networks, and SPIRiT (top row). Corresponding error maps are also shown (see color bar; 
bottom row) along with the fully sampled reference (top row). Network training was performed on a training dataset of 2000 images and fine-tuned 
on a sample of 20 T1-weighted images. The ImageNet-trained network maintains similar performance to the T1-trained network trained directly 
on the images from the test domain. Furthermore, the domain-transferred network outperforms conventional SPIRiT in terms of residual aliasing 
artifacts. SPIRiT, iterative self-consistent parallel imaging reconstruction
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domain transfer might rely more critically on the similarity of 
high-frequency structure between source and target domains. In 
the datasets reported here, natural and T1-weighted images have 
sharper object boundaries, whereas T2-weighted images have 
broadened tissue transitions. This difference might have con-
tributed to the superior performance of the ImageNet-trained 
network at low R. Please also note that in T2 reconstructions 
the T1-trained networks were superior to ImageNet-trained 
network at all acceleration factors. These results suggest that  
T2-weighted images are structurally closer to T1-weighted  
images than to natural images.

Here, we demonstrated successful domain transfer from 
natural images to brain MR images. A future research direc-
tion is to examine the success of this approach for domain 
transfer between MR images of different organs. In these im-
ages, the anatomy of interest might occupy different portions 
of the FOV due to inherent shape and size differences among 
organs. These differences might in turn limit reconstruction 
performance of domain-transferred networks. That said, our 
domain-transfer experiments from natural to MR images in-
dicate that such performance loss is not significant. In the  
single-coil magnitude case, we demonstrated successful do-
main transfer with ImageNet-trained networks that were 
trained on natural images spanning across the entire FOV. This 
result implies that the proposed transfer learning approach 
should generalize well between images of different organs.

An important concern for complex models trained on rel-
atively restricted datasets is overfitting. Several precautions 
were employed here to minimize potential bias due to over-
fitting. First, a limited learning rate was used to fine-tune  
domain-transferred networks in the target domain to limit the 
range of parameter updates. Second, early stopping based 
on validation errors were used during both the training and 
fine-tuning phases. Lastly, a cross-validation procedure was 
used with a 3-way split of training/validation and test data 
for which test data are exclusively reserved for assessment 

of model performance. Note that the high performance of  
domain-transferred networks reported here imply that  
networks are not unduly biased by overfitting.

Another important concern is characteristic failures of  
domain-transferred networks such as hallucination of features 
from the source domain. Hallucination poses an important 
limitation particularly for generative network architectures 
designed to draw new samples of data from a learned distri-
bution.59,60 Unlike generative models, the deterministic CNN 
architectures are considered less prone to hallucination, and 
no significant hallucination was observed in the reconstruc-
tions reported here. However, reconstruction artifacts were 
visible for networks under implicit domain transfer, and these 
artifacts were alleviated following fine-tuning in the target 
domain.

Several recent studies have considered domain trans-
fer to enhance performance in NN-based MRI reconstruc-
tion.14,15,24,40,61 A group of studies have aimed to perform 
implicit domain transfer across MRI contrasts without 
fine-tuning. One proposed method was to train networks on 
MR images in a given contrast and then to directly use the 
trained networks on images of different contrasts.24 Although 
this method yields successful reconstructions, our results 
suggest that network performance can be further boosted 
with additional fine-tuning in the testing domain. Another 
method to enhance generalizability was to compound datasets 
containing a mixture of distinct MRI contrasts during net-
work training.14 This approach enforces the network to better 
adapt to variations in tissue contrast. Yet, in the absence of 
contrast-specific fine-tuning, networks may deliver subop-
timal performance for some individual contrasts. A recent 
study proposed implicit domain transfer from natural images 
to MR images.61 Our study differs from Ref. 61 in several 
ways: First, we propose explicit domain transfer via end-to-
end fine-tuning in the target domain, which is shown to sig-
nificantly enhance success of domain-transferred networks. 

T A B L E  2  Reconstruction quality for multi-coil complex T1-weighted images undersampled at R = 4, 6, 8, 10. Reconstructions were 
performed via ImageNet-trained and T1-trained networks as well as SPIRiT. PSNR and SSIM values are reported as mean ± SD across test images. 
Results are shown for raw networks trained on 2000 training images (raw) and fine-tuned networks tuned with tens of T1-weighted images (tuned)

 

ImageNet-Trained T1-Trained SPIRiT

PSNR SSIM PSNR SSIM PSNR SSIM

R = 4 Raw 43.48 ± 1.89 0.984 ± .006 45.36 ± 1.75 0.989 ± .004 44.60 ± 1.75 0.987 ± .004

Tuned 44.82 ± 1.77 0.989 ± .004

R = 6 Raw 39.77 ± 1.84 0.968 ± .010 42.06 ± 1.85 0.981 ± .006 40.62 ± 1.73 0.975 ± .007

Tuned 41.72 ± 1.87 0.980 ± .007

R = 8 Raw 36.64 ± 1.66 0.951 ± .014 39.14 ± 1.75 0.971 ± .009 37.11 ± 1.71 0.961 ± .012

Tuned 38.50 ± 1.77 0.969 ± .010

R = 10 Raw 34.46 ± 1.59 0.941 ± .016 36.19 ± 1.85 0.960 ±.012 34.23 ± 1.72 0.948 ± .017

Tuned 35.24 ± 1.82 0.957 ± .013

Abbreviation: SPIRiT, iterative self-consistent parallel imaging reconstruction.
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Second, we introduce pretraining and domain-transfer ap-
proaches capable of reconstructing multi-coil MRI data. 
Third, unlike Ref. 61, where the number of training samples 
was 118k in the natural-image domain versus 0.3k to 1k in 
the MRI domain, we here maintain comparable sizes of train-
ing data across different domains with the ratio of natural to 
MR images ranging in [1 5.5]. Fourth, unlike Ref. 61, which 
that reports domain-transferred networks to occasionally out-
perform networks trained in the target domain, networks ob-
tained via implicit domain transfer perform suboptimally in 
all cases examined here. This apparent contradiction might 
be attributed to the differences in the relative size of training 
data between the natural image and MRI domains.

A second group of studies have attempted explicit domain 
transfer across training and testing domains via fine-tuning. 
A recent proposed method trained a deep residual network to 
remove streaking artifacts from CT images, and the trained 
network was then used to suppress aliasing artifacts in projec-
tion-reconstruction MRI.15 This method leverages the notion 
that the characteristic structure of artifacts due to polar sam-
pling should be similar in CT and MRI. Here, we considered 
random sampling patterns on a Cartesian grid; therefore, the 
domain transfer method proposed in15 is not directly applica-
ble to our reconstructions that possess incoherent artifacts. 
Another recent, independent effort examined the reliability 
of reconstructions from a variational network to deviations 
in undersampling patterns and SNR between the training and 
testing domains.40 Mismatch in patterns or SNR between the 
2 domains caused suboptimal performance even for modest 
acceleration factors. They also assessed the generalization 
capability by performing implicit domain transfer between 
PD-weighted knee images with and without fat suppression. 
A network trained on PD-weighted knee images without fat 
suppression was observed to yield relatively poor recon-
structions of images with fat suppression and vice versa. 
Consistent with these observations, we also find that, without 
fine-tuning, networks trained on MR images of a given con-
trast (e.g., T1-weighted) do not generalize well to images of 
a different contrast (e.g., T2-weighted). That said, a distinct 
contribution of our work was to address the issue of data scar-
city by training a network in a domain with ample data and 
transferring the network to a domain with fewer samples.

An alternative approach proposed to train neural net-
works for MRI reconstruction with small datasets is robust  
artificial-neural-networks for k-space interpolation (RAKI).13 
RAKI aims to train a neural network for each individual sub-
ject that learns to synthesize missing k-space samples from 
acquired data. Unlike traditional k-space parallel imaging 
methods,45,62 RAKI estimates a nonlinear interpolation ker-
nel from central calibration data. Such nonlinear interpola-
tion was shown to boost reconstruction performance beyond 
linear methods. However, RAKI might yield suboptimal 
performance when the optimal interpolation kernel shows 

considerable variation across k-space. Our proposed archi-
tecture for multi-coil reconstructions leverages a linear inter-
polation kernel; thus, the output of calibration-consistency 
blocks in our network can manifest similar reconstruction 
errors. Yet, the remaining CNN blocks are trained to recover 
fully sampled reference images given images with residual 
artifacts at the output of CC blocks.

5 |  CONCLUSION

Here, we demonstrated domain transfer based on a cascade 
architecture with multiple CNNs interleaved with data- and 
calibration-consistency blocks. The proposed approach might 
facilitate the use of neural networks for MRI reconstruction in 
applications in which data are relatively scarce. It might also 
benefit other types of architectures that have been proposed 
for accelerated MRI,22,25,39 in particular architectures that re-
quire extensive datasets for adequate training.12,42 Here, the 
calibration-consistency projections were based on the SPIRiT 
method. These projections can also be replaced with other 
k-space methods for parallel imaging such as GRAPPA or 
RAKI. Note that the current study examined the generali-
zation capability of networks trained on natural images to 
T1-weighted and T2-weighted images of the brain. ImageNet-
trained networks could also be beneficial for reconstruction 
of MR images acquired with more specialized contrasts such 
as angiograms, and images acquired in other body parts.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

FIGURE S1 Demonstration of (A) convolutional neural 
network (CNN), (B) calibration consistency (CC) and (C) 
data consistency (DC) blocks given a multi-coil image x as 
an input. (A) The CNN block first combines undersampled 
multi-coil images using coil-sensitivity maps A, estimated 
via ESPIRiT. Real and imaginary parts of the coil-combined 
image are then reconstructed using two separate networks. The 
outputs of the real and imaginary networks are joined to form 
a complex image, which is then back projected onto individual 
coils again using the coil sensitivity maps. (B) The CC block 
transforms the input image into Fourier domain, applies the 
interpolation operator on multi-coil k-space data, and converts 
the image back into image domain. (C) The DC block performs 
a weighted combination of samples recovered by the previous 
block (CNN or CC) and the originally-acquired samples
FIGURE S2 Representative synthetic complex multi-coil 
natural images. Complex multi-coil natural images were sim-
ulated from magnitude images in ImageNet (see Methods for 
details). Magnitude and phase of two simulated multi-coil 
natural images (A and B) are shown along with their refer-
ence magnitude images
FIGURE S3 Percentage change in validation error as a func-
tion of number of epochs for T2 to T1 domain transfer at accel-
eration factor R = 4. Results are shown for sequential training 
of individual CNN blocks (A-E), end-to-end training of the 
complete network (F) and fine-tuning of the complete net-
work (G). Initial CNN block training was performed on 2000 
T2-weighted images, end-to-end training was performed on 
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100 T2-weighted images, and fine-tuning was performed on 
20 T1-weighted images
FIGURE S4 Percentage change in validation error as a func-
tion of number of epochs for ImageNet to T1 domain transfer 
at acceleration factor R = 4. Results are shown for learning 
rates (lr) equal to (A) 10−4, (B) 10−5 and (C) 10−6. Initial 
CNN block training was performed on 2000 ImageNet im-
ages, end-to-end training was performed on 100 ImageNet 
images, and fine-tuning was performed on 20 T1-weighted 
images. Learning rate equal to 10−5 facilitates convergence 
while preventing undesirable oscillations in the validation 
error. A learning rate of 10−5 ensures both stable fine-tuning 
and faster convergence. In contrast, a higher learning rate of 
10−4 leads to oscillatory behavior in validation error, poten-
tially suggesting overfitting to fine-tuning samples. While 
fine-tuning is relatively stable for a lower learning rate of 
10−6, network convergence is noticeably slower
FIGURE S5 Representative reconstructions of a T2-weighted 
acquisition at acceleration factor R = 4. Reconstructions 
were performed via the Zero-filled Fourier method (ZF), 
and ImageNet-trained, T2-trained, and T1-trained networks.  
(A) Reconstructed images and error maps for raw networks 
(see colorbar). (B) Reconstructed images and error maps for 
fine-tuned networks. The fully-sampled reference image is 
also shown. Network training was performed on a training 
dataset of 2000 images and fine-tuned on a sample of 20  
T2-weighted images. Following fine-tuning, ImageNet-
trained and T1-trained networks yield reconstructions of 
highly similar quality to the T2-trained network
FIGURE S6 Reconstructions of a T2-weighted acquisition 
with R = 4 via ZF, conventional compressed-sensing (CS), 
and ImageNet-trained, T1-trained and T2-trained networks 
along with the fully-sampled reference image. Error maps for 
each reconstruction are shown below (see colorbar). Networks 
were trained on 2000 images and fine-tuned on 20 images ac-
quired with the test contrast. The domain-transferred networks 
maintain nearly identical performance to the networks trained 
directly in the testing domain. Furthermore, the domain- 
transferred networks reconstructions outperform conventional 
CS in terms of image sharpness and residual aliasing artifacts
FIGURE S7 Reconstruction performance was evaluated for 
undersampled T2-weighted acquisitions. Average PSNR val-
ues across T2-weighted validation images were measured for 
the T2-trained network (trained on 4k images and fine-tuned 
on 100 images), ImageNet-trained networks (trained on 500, 
1000, 2000, or 4000 images), and T1-trained network (trained 
on 4000 images). Results are plotted as a function of num-
ber of fine-tuning samples for acceleration factors (A) R = 4,  
(B) R = 6, (C) R = 8, and (D) R = 10. As the number of 
fine-tuning samples increases, the PSNR differences decay 
gradually to a negligible level. Domain-transferred networks 
trained on fewer samples require more fine-tuning samples to 
yield similar performance consistently across R

FIGURE S8 Number of fine-tuning samples required for 
the PSNR values for ImageNet-trained networks to con-
verge. Average PSNR values across T2-weighted validation 
images were measured for the ImageNet-trained networks 
trained on (A) 500, (B) 1000, (C) 2000, and (D) 4000 im-
ages. Convergence was taken as the number of fine-tuning 
samples where the percentage change in PSNR by incre-
menting Ntune fell below 0.05% of the average PSNR for the 
T2-trained network (see Supporting Information Figure S7). 
Domain-transferred networks trained on fewer samples re-
quire more fine-tuning samples for the PSNR values to con-
verge. Furthermore, at higher values of R, more fine-tuning 
samples are required for convergence
FIGURE S9 Reconstruction performance was evaluated for 
undersampled multi-coil T2-weighted acquisitions. Average 
PSNR values across T2-weighted validation images were 
measured for the T2-trained network (trained and fine-tuned 
on 360 images), and ImageNet-trained network trained on 
2000 images. Results are plotted as a function of number 
of fine-tuning samples for acceleration factors (A) R = 4,  
(B) R = 6, (C) R = 8, and (D) R = 10. Without fine-tuning, 
the T2-trained network outperforms the domain-transferred 
network. As the number of fine-tuning samples increases, the 
PSNR differences decay gradually to a negligible level
FIGURE S10 Number of fine-tuning samples required for 
the PSNR values for ImageNet-trained networks (trained 
on multi-coil complex images) to converge. Average PSNR 
values across T2-weighted validation images were measured 
for the ImageNet-trained network trained on 2000 images. 
Convergence was taken as the number of fine-tuning samples 
where the percentage change in PSNR by incrementing Ntune 
fell below 0.05% of the average PSNR for the T2-trained net-
work (see Supporting Information Figure S9). At higher values 
of R, more fine-tuning samples are required for convergence
FIGURE S11 Representative reconstructions of a multi-
coil T2-weighted acquisition at acceleration factor R = 10. 
Reconstructions were performed via ZF, ImageNet-trained and 
T2-trained networks, and SPIRiT (top row). Corresponding 
error maps are also shown (see colorbar; bottom row) along 
with the fully-sampled reference (top row). Network training 
was performed on a training dataset of 2000 images and fine-
tuned on a sample of 20 T2-weighted images. The ImageNet-
trained network maintains similar performance to the T2-trained 
network trained directly on the images from the test domain. 
Furthermore, the domain-transferred network outperforms 
conventional SPIRiT in terms of residual aliasing artifacts
FIGURE S12 Percentage change in network weights as a 
function of network depth for multi-coil ImageNet to (A) 
T1 and (B) T2 domain transfer averaged across acceleration 
factors (R = 4-10). Red dots correspond to the percentage 
change, and blue dashed lines correspond to a linear least 
squares fit to the percentage change. Overall, the percentage 
change in weights is higher for earlier versus later layers of 
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the network. For ImageNet to T1 domain transfer, percent-
age change varies from 2.27% to 0.56%, and for ImageNet to 
T2 domain transfer percentage change varies from 3.28% to 
0.47%. Note that the layer number ranges from 1 to 25. This 
is because the CNN architecture used in this study consists of 
5 cascades and each cascade consists of 5 layers
FIGURE S13 Reconstruction performance was evaluated for 
undersampled single-coil complex T1-weighted acquisitions. 
Average PSNR values across T1-weighted validation images 
were measured for the T1-trained network (trained and fine-
tuned on 360 images), and ImageNet-trained network trained 
on 2000 images. Results are plotted as a function of number 
of fine-tuning samples for acceleration factors (A) R = 4,  
(B) R = 6, (C) R = 8, and (D) R = 10. Without fine-tuning, 
the T1-trained network outperforms the domain-transferred 
network. As the number of fine-tuning samples increases, the 
PSNR differences decay gradually to a negligible level
FIGURE S14 Number of fine-tuning samples required for 
the PSNR values for ImageNet-trained networks (trained on 
single-coil complex images) to converge. Average PSNR 
values across T1-weighted validation images were measured 
for the ImageNet-trained network trained on 2000 images. 
Convergence was taken as the number of fine-tuning samples 
where the percentage change in PSNR by incrementing Ntune 
fell below 0.05% of the average PSNR for the T1-trained net-
work (see Supporting Information Figure S13) 
FIGURE S15 Reconstruction performance was evaluated for 
undersampled single-coil complex T2-weighted acquisitions. 
Average PSNR values across T2-weighted validation images 
were measured for the T2-trained network (trained and fine-
tuned on 360 images), and ImageNet-trained network trained 
on 2000 images. Results are plotted as a function of number 
of fine-tuning samples for acceleration factors (A) R = 4,  
(B) R = 6, (C) R = 8, and (D) R = 10. Without fine-tuning, 
the T2-trained network outperforms the domain-transferred 
network. As the number of fine-tuning samples increases, the 
PSNR differences decay gradually to a negligible level
FIGURE S16 Number of fine-tuning samples required for 
the PSNR values for ImageNet-trained networks (trained on 
single-coil complex images) to converge. Average PSNR 
values across T2-weighted validation images were measured 
for the ImageNet-trained network trained on 2000 images. 
Convergence was taken as the number of fine-tuning samples 
where the percentage change in PSNR by incrementing Ntune 
fell below 0.05% of the average PSNR for the T2-trained net-
work (see Supporting Information Figure S15)
TABLE S1 Reconstruction quality for single-coil magni-
tude T1-weighted images undersampled at R = 4, 6, 8, 10. 
Reconstructions were performed via ImageNet-trained, T1-
trained, T2-trained and limited networks, as well as conven-
tional CS. PSNR and SSIM values are reported as mean ± 
standard deviation across test images. Results are shown for raw 
networks trained on 2000 training images (raw), and fine-tuned 
networks tuned with tens of T1-weighted images (tuned)

TABLE S2 Reconstruction quality for single-coil magni-
tude T2-weighted images undersampled at R = 4, 6, 8, 10. 
Reconstructions were performed via ImageNet-trained,  
T1-trained, T2-trained and limited networks, as well as con-
ventional CS. PSNR and SSIM values are reported as mean 
± standard deviation across test images. Results are shown 
for raw networks trained on 2000 training images (raw), and 
fine-tuned networks tuned with tens of T2-weighted images 
(tuned)
TABLE S3 Reconstruction quality for single-coil magni-
tude T1-weighted images undersampled at R = 4, 6, 8, 10. 
Reconstructions were performed via ImageNet-trained,  
T1-trained, T2-trained and limited networks, as well as con-
ventional CS. PSNR and SSIM values are reported as mean ± 
standard deviation across test images. Results are shown for 
raw networks trained on 2000 training images (raw), and fine-
tuned networks tuned with 100 T1-weighted images (tuned)
TABLE S4 Reconstruction quality for single-coil magni-
tude T2-weighted images undersampled at R = 4, 6, 8, 10. 
Reconstructions were performed via ImageNet-trained,  
T1-trained, T2-trained and limited networks, as well as con-
ventional CS. PSNR and SSIM values are reported as mean ± 
standard deviation across test images. Results are shown for 
raw networks trained on 2000 training images (raw), and fine-
tuned networks tuned with 100 T2-weighted images (tuned)
TABLE S5 Reconstruction quality for multi-coil com-
plex T2-weighted images undersampled at R = 4, 6, 8, 10. 
Reconstructions were performed via ImageNet-trained and 
T1-trained networks as well as SPIRiT. PSNR and SSIM 
values are reported as mean ± standard deviation across test 
images. Results are shown for raw networks trained on 2000 
training images (raw), and fine-tuned networks tuned with 
tens of T2-weighted images (tuned)
TABLE S6 Reconstruction quality for single-coil com-
plex T1-weighted images undersampled at R = 4, 6, 8, 10. 
Reconstructions were performed via ImageNet-trained and  
T1-trained networks. PSNR and SSIM values are reported as 
mean ± standard deviation across test images. Results are shown 
for raw networks trained on 2000 training images (raw), and fine-
tuned networks tuned with tens of T2-weighted images (tuned)
TABLE S7 Reconstruction quality for single-coil com-
plex T2-weighted images undersampled at R = 4, 6, 8, 10. 
Reconstructions were performed via ImageNet-trained and  
T2-trained networks. PSNR and SSIM values are reported as 
mean ± standard deviation across test images. Results are shown 
for raw networks trained on 2000 training images (raw), and fine-
tuned networks tuned with tens of T2-weighted images (tuned)
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