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Federated Learning of Generative Image Priors
for MRI Reconstruction
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Abstract— Multi-institutionalefforts can facilitate training
of deep MRI reconstruction models, albeit privacy risks
arise during cross-site sharing of imaging data. Feder-
ated learning (FL) has recently been introduced to address
privacy concerns by enabling distributed training without
transfer of imaging data. Existing FL methods employ
conditional reconstruction models to map from undersam-
pled to fully-sampled acquisitions via explicit knowledge of
the accelerated imaging operator. Since conditional mod-
els generalize poorly across different acceleration rates
or sampling densities, imaging operators must be fixed
between training and testing, and they are typically matched
across sites. To improve patient privacy, performance and
flexibility in multi-site collaborations, here we introduce
Federated learning of Generative IMage Priors (FedGIMP)
for MRI reconstruction. FedGIMP leverages a two-stage
approach: cross-site learning of a generative MRI prior, and
prior adaptation following injection of the imaging opera-
tor. The global MRI prior is learned via an unconditional
adversarial model that synthesizes high-quality MR images
based on latent variables. A novel mapper subnetwork
produces site-specific latents to maintain specificity in the
prior. During inference, the prior is first combined with
subject-specific imaging operators to enable reconstruc-
tion, and it is then adapted to individual cross-sections by
minimizing a data-consistency loss. Comprehensive exper-
iments on multi-institutional datasets clearly demonstrate
enhanced performance of FedGIMP against both centralized
and FL methods based on conditional models.

Index Terms— MRI, accelerated, reconstruction, genera-
tive, prior, federated learning, distributed, collaborative.
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I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) is a principal
radiological modality owing to its non-invasiveness and

exceptional soft-tissue contrast. Yet, an inevitable consequence
of its low signal-to-noise ratio (SNR) efficiency is prolonged
exams that hinder clinical use. Accelerated MRI methods
based on undersampled acquisitions improve efficiency by
recovering missing data via reconstruction algorithms that
incorporate additional prior information [1], [2]. Deep learning
models have been adopted for MRI reconstruction, given
their strong ability to capture data-driven priors for inverse
problems [3], [4], [5], [6], [7], [8], [9], [10], [11]. Deep
reconstruction models are typically trained to perform a condi-
tional mapping from undersampled acquisitions to images that
are consistent with respective fully-sampled acquisitions [12],
[13], [14], [15], [16], [17], [18], [19], [20]. Since these models
typically show poor generalization to features scarcely present
in the training set, learning of generalizable models involves
training on a large and diverse collection of MRI data [21].
Unfortunately, economic and labor costs along with patient
privacy concerns can prohibit compilation of comprehensive
datasets centralized at a single institution [22].

Aiming at this limitation, federated learning (FL) is a
promising framework that facilitates multi-institutional col-
laborations via decentralized training of learning-based mod-
els [23], [24], [25], [26], [27], [28]. An FL server period-
ically collects locally-trained models from individual sites
in order to obtain a shared global model across sites [29],
[30]. Following aggregation of local models, the global model
is then broadcast back onto individual sites for continual
training. This decentralized procedure allows a multi-site
model to be collaboratively trained without sharing of local
data, thereby mitigating privacy concerns [31]. A multi-site
model can improve generalization over single-site models
given the native diversity in multi-institutional data, which can
substantially benefit sites with relatively limited or uniform
training data. However, this comes at the potential expense
of lower site-specific performance due to data heterogeneity
across sites, lowering sensitivity to site-specific image features
particularly for non-adaptive architectures that are vulnerable
to domain shifts [27], [32].

Characteristics of acquired data are governed by two extrin-
sic factors in the context of accelerated MRI. At primary
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level, the spatial distribution of tissue magnetization (i.e., the
MR image distribution) is determined by the pulse sequence
and the scanner [21]. At secondary level, the MR image
distribution is further modulated by the accelerated imaging
operator, which captures the influences of undersampling in
k-space and reception by coil arrays [33]. As such, multi-
site MRI data can show substantial heterogeneity in the MR
image distribution (e.g., due to different sequences, scanners)
or the imaging operator (e.g., due to different acceleration
rates, sampling densities). In turn, multi-site models can suffer
from performance losses under significant domain shifts across
sites, or across the training and test sets [28], [34].

Few recent studies on FL-based MRI reconstruction have
considered domain shifts across sites. In [35], adversarial
alignment between source and target sites was proposed to
improve similarity of latent-space representations in recon-
struction models. In [36], reconstruction models were split
into a global encoder shared across sites, followed by local
decoders trained separately at each site. Despite improved
performance against across-site variability, both methods are
based on conditional models that assume explicit knowledge
of the imaging operator. Conditional models generalize poorly
under changes to the imaging operator [37], [38]. In turn,
matching acceleration rates and sampling densities must be
prescribed between the training and test sets, and similar pre-
scriptions are often utilized among sites [35]. This requirement
can restrict flexibility in multi-institutional collaborations and
necessitate model retraining under significant changes to the
desired imaging operator [34].

Here, we introduce a novel FL method for MRI recon-
struction, FedGIMP, to enhance patient privacy, performance
and flexibility in multi-site collaborations. Unlike previous
FL methods, we propose a two-stage reconstruction approach:
cross-site training of a generative MRI prior that captures the
MR image distribution (Fig. 1), and prior adaptation following
injection of the subject-specific imaging operator (Fig. 2).
To improve generalization, we train a global MRI prior oper-
ationalized as an unconditional adversarial model that synthe-
sizes high-quality MR images. Training images are derived
from coil-combined, fully-sampled acquisitions to decouple
the influence of the imaging operator from the prior. The
statistics of feature maps across the synthesizer are controlled
by latent variables produced by a mapper. To improve speci-
ficity, we propose a novel mapper that produces site-specific
latents given a site index. During inference, the global MRI
prior is combined with subject-specific imaging operators that
can vary flexibly across sites and between the training and
test sets. Reconstruction is then performed by adapting the
MRI prior to enforce consistency between synthesized and
acquired k-space data. This adaptation further boosts site
specificity by increasing conformity of the multi-site model
to the distribution of test data. Code for FedGIMP can be
found at: https://github.com/icon-lab/FedGIMP.

Contributions:

• We introduce a novel FL method for MRI reconstruction
that decentrally trains a generative MRI prior decoupled
from the imaging operator to improve patient privacy and
flexibility in multi-site collaborations.

• We operationalize the prior as an unconditional adver-
sarial model with a cross-site-shared generator to cap-
ture site-general representations, albeit with site-specific
latents to maintain specificity in synthesized MR images.

• We leverage prior adaptation to enhance specificity of the
multi-site model and improve reliability against domain
shifts across sites and across training and test sets.

II. RELATED WORK

Deep MRI reconstruction is pervasively based on condi-
tional models that directly map undersampled acquisitions to
images consistent with fully-sampled acquisitions [4]. These
models are trained on large sets of paired input-output data
under a specific accelerated imaging operator. Heavy data
demand limits applicability since curating large datasets at
a single site is challenging [39], [40]. To facilitate curation,
unpaired [14], [41], [42], self-supervised [43], [44], [45],
[46], [47], [48], or transfer [6], [34] learning strategies were
proposed. However, these methods require centralized training
following cross-site data transfer that raises patient privacy
concerns [22].

FL is a decentralized framework for multi-institutional
collaborations that communicates model parameters instead of
raw data [31]. FL distributes costs related to the formation and
processing of datasets across sites, while mitigating concerns
regarding the data privacy [22]. FL methods have readily
been demonstrated on imaging tasks such as segmentation
and classification [23], [24], [26]. A major consideration is
the reliability against domain shifts in multi-site imaging data,
collected with varying imaging protocols and scanners. Data
harmonization was proposed to remove site-specific variations
while emphasizing shared variability across sites [49], [50],
[51]. Although harmonization can improve population-level
analysis, it can discard patient-level information of diagnostic
value. Episodic learning in frequency space was proposed to
improve generalization to unseen test domains for segmenta-
tion [28]. Adversarial alignment and network splitting methods
were also proposed for classification [27], [52], [53]. While
promising results were reported, it is nontrivial to directly
adopt image analysis models for MRI reconstruction that
requires image formation from raw data.

Domain shifts in MRI reconstruction involve heterogeneity
in the MR image distribution and in the imaging operator,
which can elicit performance losses when heterogeneity is
prominent across sites, or across the training-test sets [34].
Few recent FL studies on single-coil MRI reconstruction
have considered domain shifts across sites. In [35], cross-site-
shared latent-space representations were obtained by adver-
sarially aligning all sites to the targeted test site in each
communication round. In [36], a split reconstruction model
with a global encoder and unshared decoder was used to
maintain site-specific and site-general representations. While
demonstrating remarkable results, these recent methods are
based on conditional models that are explicitly informed on the
imaging operator. This can limit reconstruction performance
and necessitate model retraining under notable domain shifts in
the imaging operator [37], [38]. As such, previous studies have
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Fig. 1. FedGIMP performs federated learning of a generative image prior for MRI reconstruction. The prior is embodied as an unconditional
adversarial model that synthesizes high-quality MR images given site-specific latent variables. Cross-site-shared generators of parameters θG are
used along with site-specific discriminators of parameters θ1,..,KD . In each communication round, sites perform local updates to θG to minimize a
synthesis loss, and the server then aggregates updated models.

Fig. 2. FedGIMP’s MRI prior is embodied as a generator that synthesizes
a high-quality, coil-combined MR image (m̂). To perform reconstruction,
the trained generator is combined with the subject-specific imaging
operator at a test site (Atest) and adapted to minimize a data-consistency
loss on acquired k-space samples (LDC). LDC is expressed by projecting
m̂ onto individual coils, undersampling multi-coil images in k-space
(with the pattern Ω), and comparing synthesized and acquired k-space
samples. For each cross-section, inference optimization is conducted
over the synthesizer and mapper parameters (θS,M), normal variables
(z) and noise (n).

prescribed matching acceleration rates and sampling densities
between the training-test sets, and usually across sites.

Here, we propose an FL method that learns a genera-
tive MRI prior, and reconstructs images via prior adaptation
after combination with the subject-specific imaging operator.
Separation of the MRI prior from the imaging operator has
recently been considered for centralized reconstruction models

trained on single-site data [32], [54], [55], yet it has not been
studied in the context of FL. To our knowledge, FedGIMP is
the first FL method that decouples the MRI prior from the
imaging operator to train decentralized reconstruction models
on multi-site datasets, and the first FL method that reconstructs
multi-coil MRI data. Furthermore, FedGIMP includes several
unique design elements compared to previous centralized
methods. In [54], a non-adaptive MRI prior was proposed that
was kept static during inference. In [32], an adaptive MRI
prior was proposed that did not include latents, so no latent
optimization was performed during inference. In [55], an adap-
tive MRI prior was proposed that included mapper-produced
latents albeit no site index, and the mapper was removed from
the prior to directly optimize latents during inference. Unlike
previous methods, FedGIMP introduces a novel site-index in
its adaptive MRI prior to maintain site specificity, and it
updates the mapper to indirectly optimize latents. These unique
aspects enable FedGIMP to offer improved performance for
MRI reconstruction on heterogeneous datasets.

III. THEORY

A. Federated Learning of Conditional MRI Models

Accelerated MRI entails reconstruction of an underlying
MR image m from undersampled k-space acquisitions y:

Am = y, (1)

where A is the imaging operator that includes the effects
of coil sensitivities and partial Fourier transformation on
acquired k-space. As Eq. 1 is underdetermined, additional prior
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information is incorporated to regularize the reconstruction:
�m = argmin

m
�y − Am�22 + H (m), (2)

where H (m) enforces the prior [1]. Deep models have recently
become the predominant method for solving Eq. 2 by training
of data-driven priors on diverse datasets [4].

In FL, training is performed via communication between
multiple sites and a server [31]. The server retains a global
model (Cθ with parameters θ ), whereas each site retains a
local model of matching architecture (Ck

θ for site k, where
k ∈ {1, .., K }). In each communication round, local models
are initialized with the global model broadcast from the server,
θ k

C ← θC , and updated to minimize a local reconstruction loss:
Lk

Rec(Dk, Ak
tr ; θ k) = E(mk

tr ,yk
tr )

�
�mk

tr − Cθk (A†k
tr yk

tr )�2
�
, (3)

where E denotes expectation, Dk are local training data com-
prising undersampled acquisitions (yk

tr ) and reference images
obtained from fully-sampled acquisitions (mk

tr ), and Ak
tr , A†k

tr
are the imaging operator and its adjoint. C is a conditional
model with parameters θ k that receives zero-filled Fourier
reconstruction of yk

tr . At the end of each round, updated local
models are aggregated via federated averaging (FedAvg) [29]:

θ =
K�

k=1

αkθ k, (4)

where αk denotes the relative site weights.
The trained global model (Cθ∗) is then used for inference:

m̂k,s = Cθ∗(A†k
test yk,s

test), (5)

where m̂k,s is the reconstruction and yk,s
test is the undersampled

acquisition for the sth subject at the kth site, and A†k
test is the

adjoint imaging operator at site k. Since conditional models
generalize poorly against heterogeneity in the imaging oper-
ator, Ak

tr and Ak
test are typically matched across training-test

sets (i.e. across training and test subjects), and across sites.

B. Federated Learning of Generative MRI Priors

To improve flexibility in multi-site collaborations, we pro-
pose a novel FL method based on decentralized learning of
generative MRI priors. A global MRI prior is trained using
an unconditional adversarial model with shared generator and
local discriminator networks (Fig. 1). During inference, the
prior is combined with subject-specific imaging operators and
adapted to the reconstruction task (Fig. 2). The proposed
architecture and learning procedures are described below.

1) Unconditional Adversarial Model: FedGIMP employs an
unconditional architecture to learn a generative prior for
high-quality MR images. Training images are derived from
coil-combined, fully-sampled acquisitions to obtain a prior
that is agnostic to k-space undersampling and individual coil
sensitivities. Here, we propose a style-generative model as
inspired by the success of this model family in natural image
synthesis [56]. Our proposed model has a generator that
synthesizes realistic MR images, wherein the statistics of
feature maps at each stage are controlled via latent variables.

These statistics are expected to be different across sites given
the native heterogeneity of MR images collected in separate
sites. Our model introduces a novel mapper with a site index
to produce site-specific latent variables, thereby increasing
specificity in synthesized feature maps. Finally, a discriminator
differentiates between synthetic and actual MR images.

a) Generator (G): The generator uses mapper (M) and
synthesizer (S) subnetworks to transform low-dimensional ran-
dom variables onto high-dimensional MR images. M receives
i.i.d. normal variables z ∈ R

1×J concatenated with a one-hot
encoding vector for site index v ∈ R

1×K . Given an input in
R

1×(J+K ), it computes latent variables w ∈ R
1×J :

w = MθM (z ⊕ v), (6)

where ⊕ denotes concatenation. At the i th layer of M with
L M layers, latent variables zi are mapped onto zi+1 as:

zi+1 = FCM,i (zi ), (7)

where FCM,i is a fully-connected layer with parameters
θM,i ∈ R

(J+K )×J if i = 1;RJ×J if i �= 1. Dimensionality
is reduced from J + K to J in the first layer, and retained in
remaining layers. Receiving w from M , S generates an MR
image progressively across LS layers. In the i th layer, feature

maps from the preceding layer (X0
i ∈ R

h1
2 × h2

2 ×q ) are two-fold
upsampled. The upsampled maps (X1

i ∈ R
h1×h2×q ) are then

processed through a cascade of blocks: Conv1
S (convolution),

N I 1 (noise injection), Ada I N1 (adaptive instance normaliza-
tion), Conv2

S , N I 2, Ada I N2. The first block extracts local
features, X2

i = Conv1
S(X1

i ):

X2
i =

⎡
⎢⎢⎣

	
c X1,c

i � θ c,1
S,i

...	
c X1,c

i � θ c,u
S,i

⎤
⎥⎥⎦ , (8)

where θ1
S,i ∈ R

j× j×q×u are convolution kernels, u is the
number of output feature channels, c is the channel index,
and � denotes convolution. In Eq. 8, X2

i is a 3D tensor
and matrix rows span the 3rd dimension of X2

i . Next, the
noise-injection block introduces pixel-level intensity modula-
tions in the feature maps. Recent computer vision studies have
reported that introducing noise variables across the synthesizer
improves details in synthetic natural images [56]. Accordingly,
scaled noise variables are added onto feature maps to control
low-level structural details, X3

i = N I 1(X2
i ):

X3
i =

⎡
⎢⎣

ϕ(X2,1
i + �1,1

i n1
i

...

ϕ(X2,u
i + �1,u

i n1
i )

⎤
⎥⎦ , (9)

where n1
i ∈ R

h1×h2 is multiplied with the scalar �1,c
i and

added onto the cth channel of X2
i ∈ R

h1×h2×u , ϕ is an
activation function. To control high-level style features, adap-
tive instance normalization modulates feature maps given
intermediate latent variables, X4

i = Ada I N1(X3
i , w) [57]:

X4
i = γ 1

i (w)
(X3

i − μ(X3
i ))

σ (X3
i )

+ β1
i (w), (10)
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Algorithm 1 FedGIMP Training

Input: D = {D1, . . . ,DK }: datasets from K sites.
L: number of communication rounds.
I : number of local epochs.
{G1, . . . , GK }: local generators of params.
{θ1

G, . . . , θ K
G }.

{D1, . . . , DK }: local discriminators of params.
{θ1

D, . . . , θ K
D }.

{α1, . . . , αK }: weighting coefficients of K sites.
G: global generator of params. θG .
Opt (): optimizer that computes parameter updates.
Output: G trained global model of params. θ∗G .

1 Initialize parameters
2 for l = 1 : L do
3 for k = 1 : K do
4 θ k

G ← θG (receive global generator)
5 for i = 1 : I do
6 Calculate ∇θk

G
Lk

G(θ k
G) based on Eq. 13

7 θ k
G ← θ k

G − Opt (∇θk
G
Lk

G)

8 Calculate ∇θk
D
Lk

D(Dk
i ; θ k

D) based on Eq. 14

9 θ k
D ← θ k

D − Opt (∇θk
D
Lk

D)

10 θG ←	K
k=1 αkθ k

G (aggregate local generators)

11 return θ∗G = θG

where γ 1
i ∈ R

u×1 and β1
i ∈ R

u×1 are learnable affine
transformations of w that control the scale and bias of each
feature channel respectively. μ and σ are mean and variance
along the channel dimension of X3

i . Note that the cascade
of convolution, noise injection and adaptive instance nor-
malization is repeated a second time to yield the mappings
X5

i = Conv2
S(X4

i ), X6
i = N I 2(X5

i ), X0
i+1 = Ada I N2(X6

i , w).
The parameters of these repeat blocks are distinct from those
in the initial blocks, except for tied intermediate latents input
to Ada I N1,2. Overall, the mapping through the generator is:

x̂ = GθG (z ⊕ v, n) = SθS (MθM (z ⊕ v), n), (11)

where x̂ is the synthesized image, the generator parameters
θG={θM , θS} include mapper and synthesizer parameters.

b) Discriminator (D): The discriminator attempts to dis-
criminate between actual or synthetic MR image inputs.
D contains L D − 1 layers cascading two-fold downsam-
pling and convolution blocks (ConvD), followed by a final
fully-connected layer (FCD). The overall mapping is:

xD = DθD (x), (12)

where x is an actual (xr ) or synthetic image (x̂), xD ∈ R
1 is

the output, and DθD is parametrized by θD.
2) Training of the Global MRI Prior: To learn a global MRI

prior, FedGIMP performs federated training of the uncondi-
tional adversarial model (Alg. 1). The training lasts a total
of L communication rounds between the sites and the server.
A shared generator (G) and K local generator copies (Gk)
are maintained. Meanwhile, K local discriminators (Dk) are
not exchanged to limit communication load and augment data

Algorithm 2 FedGIMP Inference

Input: yk,s
test : Undersampled data for kth site, sth subject.

Ak,s
test : subject-specific imaging operator for yk,s

test .
G = {M, S}: global generator with params.
θ∗G = {θ∗M , θ∗S }.
v: site-specific one-hot encoding vector.
z: i.i.d normal variable.
n: randomly initialized noise variable.
E : number of iterations for inference.
Output: m̂k,s : reconstructed image.

1 θ1
S ← θ∗S , θ1

M ← θ∗M , z1 ← z, n1 ← n (initialize)
2 for e = 1 : E do
3 Calculate ∇θe

S,θe
M ,ze,neLk,s

DC(yk,s
test, Ak,s

test; θ e
S, θ

e
M , ze, ne)

based on Eq. 16
4 θ e+1

S ← θ e
S − Opt (∇θe

S
Lk,s

DC)

5 θ e+1
M ← we − Opt (∇θe

M
Lk,s

DC)

6 ze+1 ← ze − Opt (∇zeLk,s
DC)

7 ne+1 ← ne − Opt (∇neLk,s
DC)

8 m̂k,s = Sθ E
S
(Mθ E

M
(zE ⊕ v), nE )

9 return m̂k,s

privacy. In the first round, G and Dk are randomly initialized.
At the start of each round, local generators are initialized with
the global generator broadcast from the server, θ k

G ← θG .
In each round, I local epochs are performed to update local
models. The local generator updates are calculated to minimize
a non-saturated logistic adversarial loss (Lk

G ):

Lk
G(θ k

G) = −Ep(z)

�
log( f (Dk(Gk

θk
G
(z ⊕ v, n))

�
, (13)

where Ep(.) is expectation with respect to probability distrib-
ution p. The local discriminator updates are calculated to also
minimize a non-saturated logistic adversarial loss (Lk

D), along
with a gradient penalty according to the learned distribution
of actual MR images p(xk

r ) [56]:

Lk
D(Dk; θ k

D) = −Ep(z)

�
log(1− f (Dk

θk
D
(G(z ⊕ v, n)))

�
−Ep(xk

r )

�
log( f (Dk

θk
D
(xk

r ))
�

+ δ

2
Ep(xk

r )

���∇Dk
θk

D
(xk

r )
���2

�
, (14)

where Dk are training data from site k, i.e. coil-combined MR
images derived from fully-sampled acquisitions (xk

r ). After
I iterations of updates according to Eqs. 13 and 14, local
generators are sent to the server for aggregation [29]:

θG =
K�

k=1

αkθ k
G (15)

Here, αk is set to Nk

N , where N is the total number of training
samples across all sites and Nk is the number of training
samples at the kth site.
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3) Inference at a Test Site: FedGIMP trains an unconditional
prior that randomly generates high-quality, coil-combined,
synthetic MR images. Synthetic images do not carry informa-
tion on coil sensitivities or k-space sampling patterns, and they
lack anatomical correspondence to the actual subject. Thus,
a dedicated inference procedure is required for reconstruction.
Synthetic images define a constraint reflecting the learned
image distribution, whereas the subject’s undersampled acqui-
sitions define an anatomical constraint in accordance with the
imaging operator. The two constraints do not necessarily have
an intersection (e.g., a prior trained on brain images used to
reconstruct knee images). For reconstruction, FedGIMP adapts
its prior to refine the associated constraint and intersect it with
the anatomical constraint. This adaptation enforces the prior to
generate an image whose undersampled k-space data matches
acquired data.

During inference, FedGIMP first combines the trained MRI
prior with the subject-specific imaging operator at a test site
(Ak,s

test). To do this, the prior can be included in the opti-
mization problem for various model-based reconstructions [8],
[9], [13], [58]. Here, we follow a straightforward approach
where the prior is adapted to minimize a data-consistency loss
between synthesized and acquired k-space data (Alg. 2):

Lk,s
DC(yk,s

test, Ak,s
test; θS, θM , z, n) =

���Ak,s
test SθS (w, n) − yk,s

test

���
2

+ η
��∇SθS (w, n)

�� , (16)

where w = MθM (z ⊕ v), and a gradient penalty is included
with weight η to prevent noise amplification [59]. To compute
Eq. 16, FedGIMP estimates synthetic k-space data by project-
ing the synthetic image SθS (w, n) through the imaging oper-
ator Ak,s

test = �k,sFB
k,s

, which embodies multiplication with
coil sensitivities (B

k,s
), Fourier transformation (F ), and under-

sampling with the prescribed sampling pattern (�k,s) [55].
Anatomical correspondence between synthetic and actual data
is then achieved by minimizing Lk,s

DC . For each cross-section,
the optimization is performed over θS , θM , z and n. Given
the trained global generator Gθ∗G , synthesizer and mapper
parameters are initialized as θ1

S ← θ∗S and θ1
M ← θ∗M , whereas

instance-specific variables are randomly initialized as z1← z
and n1 ← n. Following a total of E iterations, the adapted
prior is used to compute the final reconstruction:

m̂k,s = Sθ E
S
(Mθ E

M
(zE ⊕ v), nE ) (17)

Thus, the synthetic image produced by the generator at the end
of the optimization yields the final reconstructed image. Note
that the values of zE and nE are not random but optimized.

IV. METHODS

A. Architectural Details

The unconditional adversarial model in FedGIMP used a
mapper with 8 FC layers receiving a standard normal vector
and a one-hot binary encoding vector of site index as inputs,
while outputting 32 intermediate latent variables. A synthe-
sizer with 8 layers was used, where each layer contained a
bilinear upsampling block for 2-fold increase of feature map
resolution, followed by two serial cascades of Conv, NI and

AdaIN blocks. The first layer received a 4×4 map of learnable
constant values, initialized with ones, as input. The learnable
noise variable was randomly initialized from a standard normal
distribution. A discriminator with 8 layers was used, each
containing a bilinear downsampling block for 2-fold reduction
in resolution, and a convolution block with 3× 3 kernel size.
Leaky ReLU activation functions were used. Two separate
channels at the generator’s output and the discriminator’s input
were used to represent real and imaginary parts of complex
MR images. During training, images were zero-padded to
match the resolution of the output layer if needed. During
inference, synthesized images were centrally cropped based
on the size of the acquisition matrix prior to calculation of
data-consistency loss. The synthesizer and discriminator were
trained non-progressively, with all layers intact.

B. Competing Methods

FedGIMP was demonstrated against a traditional reconstruc-
tion (LORAKS), non-federated models (GANcond/GIMP), and
federated conditional models (FL-MRCM, FedGAN, LG-Fed,
FedMRI). Hyperparameter selection was performed based on
validation performance. For each method, a single set of
learning rate, number of epochs (non-federated), number of
communication rounds and epochs (federated), and loss term
weights were selected that yielded near-optimal performance
across tasks. All models were trained via the Adam optimizer.
A learning rate of 2×10−3 and δ=10 was selected for uncon-
ditional models; a learning rate of 2×10−4 was selected for
conditional models. Decay rate parameters for the optimizer
were adopted from previous studies as β1=0.0, β2=0.99 for
unconditional [56], and β1=0.5, β2=0.99 for conditional
models [18]. Training lasted 100 epochs for non-federated
models, L=100 rounds and I=1 epochs for federated models.
During inference, unconditional models enforced anatomical
consistency to a test subject by minimizing a data-consistency
loss. No notable improvement was observed in conditional
models subjected to inference optimization based on data-
consistency loss, so they used a strict data-consistency pro-
jection following a forward pass. Strict data consistency was
enforced on all reconstructions prior to reporting. To ensure
adherent implementation of competing methods, we utilized
libraries from the public repositories shared by the originally
proposing authors. Accordingly, we implemented LORAKS in
Matlab,1 conditional models in PyTorch.2,3,4 Unconditional
models were implemented in TensorFlow to adopt libraries
from a style-generative architecture for natural image synthe-
sis.5 Models were executed on a system with four Nvidia RTX
3090s.

FedGIMP: The proposed model was trained to synthe-
size coil-combined MR images. The model output magni-
tude images for single-coil experiments, and complex images
with real and imaginary components as separate channels

1https://mr.usc.edu/download/LORAKS2
2https://github.com/icon-lab/ProvoGAN
3https://github.com/guopengf/FL-MRCM
4https://github.com/chunmeifeng/FedMRI
5https://github.com/NVlabs/stylegan
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for multi-coil experiments. Inference was performed via the
Adam optimizer, with optimized parameters transferred across
consecutive cross-sections in a volume to improve conver-
gence [55]. A learning rate of 10−2, η=10−4 and E=1200
iterations were selected via cross validation. Reconstruction
performance improves for higher E , yet the benefits become
marginal beyond a certain level. Thus, we exercised early
stopping based on the L-curve criterion to maintain a favorable
compromise between performance and inference time [55].

LORAKS: A traditional autocalibrated low-rank recon-
struction was performed [60]. The k-space neighborhood
radius and the rank of LORAKS matrix were selected as
(2,6) for single-coil reconstruction and (2,30) for multi-coil
reconstruction.

GANcond: A non-federated conditional model was trained to
map zero-filled (ZF) reconstruction of undersampled acquisi-
tions to reference images of fully-sampled acquisitions [18].
Weights of (pixel-wise, adversarial, perceptual) losses were
set as (100, 1, 100). Centralized training was performed
following dataset aggregation across sites, albeit an unshared
discriminator was used to process data coming from different
sites as in FedGIMP. GANcond serves as a privacy-violating
benchmark for conditional reconstruction.

GIMP: A non-federated unconditional model was trained
based on the architecture and loss functions in FedGIMP.
Centralized training was performed, other training and infer-
ence procedures were identical to FedGIMP. GIMP serves as a
privacy-violating benchmark for unconditional reconstruction.

FL-MRCM: A federated conditional model was trained
with adversarial alignment of latent representations across
sites [35]. For fair comparison among FL methods, architecture
and loss functions were adopted from GANcond. Latent rep-
resentations from the residual backbone were passed through
a convolution layer and provided to a domain-alignment net-
work. Weights of (pixel-wise, adversarial, perceptual, recon-
struction, domain-alignment) losses were set as (100, 1, 100,
0.5, 0.5).

FedGAN: A federated conditional model was trained with a
shared encoder and decoder across sites [61]. The architecture
and loss functions followed GANcond. Weights of (pixel-wise,
adversarial, perceptual) losses were set as (100, 1, 100).

LG-Fed: A federated conditional model was trained with
site-specific encoders and a shared decoder [62]. The archi-
tecture and losses followed GANcond. Weights of (pixel-wise,
adversarial, perceptual) losses were set as (100, 1, 100).

FedMRI: A federated conditional model was trained with a
shared encoder and site-specific decoders [36]. The architec-
ture and losses followed GANcond, albeit an added contrastive
loss was included [36]. Weights of (pixel-wise, adversarial,
perceptual, contrastive) losses were set as (100, 1, 100, 10).

C. Experiments

1) Datasets: FL experiments were conducted using an
in-house dataset acquired at Bilkent University along with
three public datasets (IXI http://brain-development.org/ixi-
dataset/), fastMRI [33], BRATS [63]). We describe the

in-house imaging protocol below (see related references for
public datasets). Acquisitions were retrospectively undersam-
pled using variable- (VD) and uniform-density (UD) patterns
at acceleration rates R = (3×, 6×) [1]. There was no subject
overlap between training, validation, and test sets. Each FL
site corresponded to a distinct dataset, and all examined FL
setups had 3 sites. The training set in each site aggregated MR
images across multiple different contrasts. Training samples
were randomly drawn from this aggregated set, without any
special procedures for handling different contrasts. While
modeling each contrast separately could enhance performance,
we reasoned that training on mixed contrasts is a more realistic
scenario given the ubiquity of multi-contrast protocols in
clinical practice [34].

In-House: T1-, T2- and PD-weighted scans were performed
in 10 subjects on a 3T Siemens Tim Trio scanner located
at Bilkent University using a 32-channel coil. An MP-RAGE
sequence was used for T1-weighted scans with TE/TI/TR =
3.87/1100/2000 ms, 20o flip angle; and an FSE sequence
was used for T2-/PD-weighted scans with TEP D/TET 2/TR =
12/118/1000 ms, 90o flip angle. All scans were performed with
192×256x176 mm3 field-of-view and 1×1x2 mm3 voxel size.
Ethics approval was obtained from the local ethics committee,
and all participants gave written-informed consent.

2) Single-Coil Reconstruction: Experiments were performed
on IXI, fastMRI, and BRATS. Coil-combined magnitude
images in each dataset were treated as single-coil data,
so their analyses omitted the channel dimension of coil arrays.
T1-, T2-, PD-weighted acquisitions in IXI and BRATS, T1c-,
T2-, FLAIR-weighted acquisitions in fastMRI were consid-
ered. For each dataset, multi-contrast acquisitions of (40,5,10)
subjects were reserved as (training, validation, test) sets,
with 21 cross-sections per contrast randomly selected in each
subject. As such, the training, validation and test sets within
each dataset (i.e., each site) contained (840,105,210) cross-
sections.

3) Multi-Coil Reconstruction: Experiments were performed
on fastMRI brain, fastMRI knee, and In-House brain datasets,
which all contained multi-coil k-space data. For fastMRI
brain, T1-, T2-, FLAIR-weighted acquisitions from (36,6,9)
subjects were reserved, with 8 cross-sections per con-
trast randomly selected in each subject. For fastMRI knee,
PD-, PDFS-weighted acquisitions from (48,8,12) subjects were
reserved, with 9 cross-sections per contrast. For In-House,
T1-, T2-, PD-weighted acquisitions from (6,1,3) subjects were
reserved, with 48 cross-sections per contrast in the training
and validation sets, and with 24 cross-sections per con-
trast in the test set. As such, the training, validation and
test sets within each dataset contained (864,144,216) cross-
sections. Coil compression was performed onto 5 virtual
coils [64]. Conditional models mapped multi-coil, complex
ZF reconstructions of undersampled data to reference images
derived from fully-sampled data. GIMP and FedGIMP syn-
thesized complex coil-combined MR images during train-
ing [58]. The imaging operator was only injected during
inference to enforce data consistency based on multi-coil
k-space data.
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TABLE I
SINGLE-COIL RECONSTRUCTION PERFORMANCE WITH THE IMAGING

OPERATOR MATCHED ACROSS SITES, AND ACROSS THE

TRAINING-TEST SETS. BOLDFACE INDICATES THE

TOP-PERFORMING FL METHOD

D. Quantitative Assessments

Reconstructed images were compared against Fourier recon-
struction of fully-sampled acquisitions as reference. Peak
signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) were measured, following normalization of images to
[0 1]. Tables list mean and standard deviation of performance
metrics across test subjects. Statistical significance of perfor-
mance differences was assessed via Wilcoxon sign-rank tests.

V. RESULTS

A. Single-Coil Reconstruction

1) Domain Shifts in the MR Image Distribution: Multi-site
datasets of multi-contrast MRI data contain intrinsic domain
shifts in the image distribution within and across sites [35].
To assess the influence of these intrinsic shifts, we examined
performance when the imaging operator was matched across
sites and across the training-test sets (Table I). FedGIMP out-
performs all competing methods (p<0.05), except on BRATS,
R=6× where the privacy-violating benchmark GIMP performs
similarly. On average across sites and R, FedGIMP yields
3.7dB PSNR, 3.0% SSIM improvement over the second-best
FL method, demonstrating the efficacy of FedGIMP against
heterogeneity in the MR image distribution.

2) Domain Shifts in the Imaging Operator: We then examined
reconstruction performance under additional domain shifts due
to the imaging operator. First, we considered homogeneous
imaging operators across sites, while either acceleration rates
(e.g., training at 3×, testing at 6×) or sampling densities
(training with VD, testing with UD patterns) were mismatched
across the training and test tests (Table II). FedGIMP is the top
performer among all methods (p<0.05), except for GIMP that
performs similarly. Compared to the second-best FL method,
FedGIMP offers 4.8dB PSNR, 4.0% SSIM improvement under
mismatched R, and 4.5dB PSNR, 4.8% SSIM improvement
under mismatched sampling density. Representative recon-
structions under mismatched sampling density are shown in
Fig. 3. Federated conditional models and LORAKS yield

TABLE II
SINGLE-COIL RECONSTRUCTION PERFORMANCE WITH THE IMAGING

OPERATOR MISMATCHED ACROSS THE TRAINING-TEST SETS, A→ B
DENOTES THE DOMAIN SHIFT IN R (UPPER PANEL) / SAMPLING

DENSITIES (LOWER PANEL)

prominent aliasing artifacts and blurring, whereas FedGIMP
achieves high visual acuity and improved artifact suppression
due to its enhanced generalization performance.

Next, we considered heterogeneous imaging operators
across sites for improved flexibility in collaborations. We sep-
arately examined performance when the heterogeneous opera-
tors were matched or mismatched between the training-test
sets (Table III). When the training-test operators match,
FedGIMP achieves the highest performance among competing
methods (p<0.05), except for GIMP that performs similarly,
and in BRATS where LG-Fed performs slightly better and
GANcond, FedGAN, FedMRI perform similarly. When the
training-test operators mismatch, FedGIMP achieves the high-
est performance among competing methods (p<0.05), except
GIMP that performs similarly. Compared to the second-best
FL method, FedGIMP offers 1.3dB PSNR and 2.7% SSIM
improvement under matched operators, and 5.1dB PSNR,
3.0% SSIM improvement under mismatched operators.

B. Multi-Coil Reconstruction

1) Domain Shifts in the MR Image Distribution: We first eval-
uated reconstruction performance when the imaging operator
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Fig. 3. Representative reconstructions of a T2-weighted acquisition in IXI, a T1c-weighted acquisition in fastMRI, and a T1-weighted acquisition
in BRATS datasets at R=3× based on uniform-density patterns. Results are shown for ZF, LORAKS, FL-MRCM, FedGAN, LG-Fed, FedMRI, and
FedGIMP along with the reference images. Conditional models were trained on variable-density patterns at R=3×.

Fig. 4. Representative reconstructions of a FLAIR acquisition of the brain in fastMRI, a fat suppressed PD-weighted acquisition of the knee in
fastMRI, and a T1-weighted acquisition of the brain in In-House datasets at R=6×. Results are shown for ZF, LORAKS, FL-MRCM, FedGAN, LG-Fed,
FedMRI and FedGIMP along with the reference images. Conditional models were trained at R=3×.

was matched across sites and training-test sets to assess
intrinsic domain shifts due to the image distribution. Differing
from single-coil experiments, multi-coil FL experiments were
conducted on datasets containing two separate anatomies, i.e.
the knee and the brain (Table IV). FedGIMP outperforms
all competing methods (p<0.05), except GIMP that performs
similarly. On average, FedGIMP achieves 6.3dB PSNR, 4.2%
SSIM improvement over the second-best FL method. These
results corroborate the efficacy of FedGIMP in multi-coil
settings, and its efficiency in coping with heterogeneity in the
image distribution due to diverse anatomy.

2) Domain Shifts in the Imaging Operator: We also evaluated
reconstruction performance under additional domain shifts due
to mismatched imaging operators with different acceleration
rates across the training-test sets (Table V). FedGIMP is the
top performer among competing methods (p<0.05), except for
GIMP that performs similarly. FedGIMP offers 6.9dB PSNR,
4.5% SSIM improvement over the second-best FL method.
Representative reconstructions are shown in Fig. 4. LORAKS
suffers from noise amplification, and conditional models yield
notable blur and artifacts. In contrast, FedGIMP achieves high
visual acuity while mitigating noise amplification.
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TABLE III
SINGLE-COIL RECONSTRUCTION PERFORMANCE WITH

HETEROGENEOUS IMAGING OPERATORS ACROSS SITES. THE

OPERATORS WERE EITHER MATCHED (UPPER PANEL) OR

MISMATCHED (LOWER PANEL) ACROSS THE TRAINING-TEST SETS

TABLE IV
MULTI-COIL RECONSTRUCTION PERFORMANCE WITH THE IMAGING

OPERATOR MATCHED ACROSS SITES, AND THE TRAINING-TEST SETS

C. Heterogeneity of MRI Data

FL of a multi-site model on homogeneous datasets would
correspond to training on more samples from a common
distribution, and model performance would solely reflect the
influence of prolonged training. To rule out this nuisance
explanation, we first measured the intra-site and inter-site
heterogeneity of cross-sectional images in the training set. For
intra-site heterogeneity, the image distributions were compared
among individual subjects within a given site. For inter-site
heterogeneity, the image distributions were compared among
individual subjects from separate sites. Frechet inception dis-
tance (FID) was used to measure dissimilarity of distributions.
As shown in Fig. 5, we find varying albeit notable levels of

TABLE V
MULTI-COIL RECONSTRUCTION PERFORMANCE WITH THE IMAGING

OPERATOR MISMATCHED ACROSS TRAINING-TEST SETS

heterogeneity in each site. Importantly, inter-site heterogeneity
is significantly higher than intra-site heterogeneity for all sites
(p<0.05). The increase from intra-site to inter-site FID score
is 9.2 for single-coil (a 94.1% increase) and 5.0 for multi-coil
(a 105.0% increase) settings. We then examined the influence
of this apparent heterogeneity on single-site models trained on
local data from individual sites. Specifically, we assessed the
loss incurred in single-site models due to domain shifts in the
image distribution between training and test sites. To do this,
we measured the within-site and across-site reconstruction per-
formances of GANcond and GIMP while the imaging operator
was matched across sites and training-test sets. We find that
across-site performance is lower than within-site performance
for both models (p<0.05). On average, GANcond suffers from
1.9dB PSNR, 2.0% SSIM loss in single-coil, and 2.5dB PSNR,
1.8% SSIM loss in multi-coil reconstruction. In contrast,
GIMP shows relatively lower 1.5dB PSNR, 0.6% SSIM loss
in single-coil, and 0.8dB PSNR, 0.2% SSIM loss in multi-coil
reconstruction. Taken together, these findings indicate that our
results cannot be attributed to a lack of data heterogeneity
across sites. Furthermore, the adaptive GIMP model shows
higher reliability against data heterogeneity compared to the
non-adaptive GANcond model.

D. Ablation Studies

Several lines of ablation studies were conducted to demon-
strate the individual design elements in FedGIMP. To assess
the contribution of using an adaptive prior, we built a
static-prior variant that optimized model inputs but kept model
weights fixed as in [54]. To assess the federated training of the
prior, we built an untrained variant where inference adaptation
was performed on a randomly initialized generator. To assess
the mapper, we built a mapper-ablated variant that only used
a synthesizer as in [32]. To assess the site index, we built
a site-index-ablated variant that used a mapper producing
site-general latent variables. To assess the mapper adapta-
tion to indirectly optimize latents, we built a static-mapper
variant that directly optimized latents as in [55]. Table VI
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Fig. 5. Heterogeneity of MRI datasets were examined by measuring
FID between respective image distributions, reported as mean±se (error
bars) across subjects. Intra-site (blue) and inter-site (orange) hetero-
geneity is shown for each dataset examined for (a) single-coil, (b) multi-
coil reconstruction.

demonstrates that FedGIMP outperforms all ablated variants
consistently across sites. These results indicate the importance
of prior adaptation, learning of a high-quality prior, inclu-
sion of the mapper, inclusion of the site index, and indirect
optimization of latents for improving MRI reconstruction
performance. In particular, utilizing a site-index in the mapper
achieves 1.1dB PSNR and 0.5% SSIM improvement, and in
theory the benefits of the site index should increase further for
growing number of sites and data heterogeneity.

Next, we evaluated the influence of the site index on
practicality when a site joins or leaves training abruptly. Note
that an additional site can join training by designating spare
digits in the site-index vector, and an existing site can easily
abstain from training given that its digit in the site-index
vector is not reassigned to a different site. Thus, we examined
FedGIMP’s performance under scenarios where an initially
held-out site joined the training halfway, and where an initially
included site left the training halfway. In both scenarios,
FedGIMP was compared against the site-index-ablated variant,
and against the original model trained with all sites intact.
Performance metrics are listed in Table VII. FedGIMP with
joining or abstaining sites outperforms the ablated variant by
1.2dB PSNR, 0.6% SSIM on average; and it offers similar
performance to the original FedGIMP trained with all sites
intact. These results suggest that the site index does not limit
practicality of model training, and it rather introduces a degree
of reliability against joining or abstaining sites.

Lastly, we examined the utility of local discriminators
in FedGIMP. A primary benefit of unshared discrimina-
tors is theoretical improvements in privacy against inference
attacks [65]. Local discriminators also reduce communication
load by 46.7% for FedGIMP, given that the discrimina-
tor and generator have comparable complexity (23.0 versus
26.3 million parameters). Beyond these theoretical benefits,
we assessed the influence of local discriminators on model
performance. First, we inspected the training losses for the
generator (unreported). The loss curves showed smooth behav-
ior across training epochs, with no apparent signs of mode col-
lapse [56]. Second, we compared FedGIMP against a variant
with shared discriminators across sites. Metrics in Table VII
indicate on par performance with both models. These results

TABLE VI
RECONSTRUCTION PERFORMANCE OF FEDGIMP AND ABLATED

VARIANTS AT R=3×, WITH MATCHED IMAGING OPERATORS

ACROSS SITES

TABLE VII
RECONSTRUCTION PERFORMANCE AT R=3× WITH MATCHED IMAGING

OPERATORS. RESULTS LISTED FOR FEDGIMP WITH ALL SITES,
A JOINING SITE (FEDGIMP-JOIN), AND AN ABSTAINING SITE

(FEDGIMP-ABS); FOR THE SITE-INDEX-ABLATED VARIANT WITH A

JOINING SITE (NSI-JOIN) AND AN ABSTAINING SITE (NSI-ABS); AND

FOR A VARIANT WITH SHARED DISCRIMINATORS. THE JOINING AND

ABSTAINING SITES WERE TAKEN AS BRATS

TABLE VIII
AVERAGE INFERENCE TIME IN SECS PER CROSS-SECTION FOR

SINGLE-COIL AND MULTI-COIL RECONSTRUCTIONS

suggest that there are no apparent performance drawbacks to
using local discriminators.

E. Inference Times

Inference times of competing methods are listed in
Table VIII. Matching architectures yield near identical
inference time, so results are reported for LORAKS, non-
adaptive models (GANcond, FL-MRCM, FedGAN, LG-Fed,
FedMRI), and adaptive models (GIMP, FedGIMP). Inference
time for adaptive models is high compared to non-adaptive
models that use a single forward pass, and it is relatively
more proximate to LORAKS. Yet, this computational load
enables substantial benefits in reconstruction performance.
For instance, FedGIMP achieves 10.4dB PSNR, 14.7% SSIM
improvement over LORAKS, and 6.0dB PSNR, 3.1% SSIM
improvement over the top-contending non-adaptive model
across single- and multi-reconstruction tasks at R=3× with
matched imaging operators across sites and training/test sets.
Furthermore, FedGIMP enhances tissue depiction visually
with lower artifacts and higher acuity than competing
methods. Note also that FedGIMP’s performance increases
across inference iterations, so the number of iterations can
be adjusted to maximize performance per available compute
time in specific applications. Thus, FedGIMP offers a flexible
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trade-off between reconstruction quality and compute time,
which might facilitate practical use.

VI. DISCUSSION

Multi-site imaging data collected under diverse proto-
cols/devices can contain heterogeneity in the image distri-
bution and the imaging operator across sites, as well as
across the training-test sets [51]. Recent studies have proposed
latent-space alignment or split-network approaches based on
conditional reconstruction models to address across-site het-
erogeneity [35], [36]. Yet, conditional models are suscepti-
ble to domain shifts in the imaging operator pertained to
undersampled data [55]. In contrast, FedGIMP decouples the
undersampling characteristics from the prior to improve reli-
ability against heterogeneity in the imaging operator. Experi-
ments on multi-site datasets demonstrate that FedGIMP yields
superior performance against federated conditional models
under various imaging scenarios with varying acceleration
rates, sampling density across sites, and across the training-test
sets. Therefore, FedGIMP can improve flexibility in multi-site
collaborations by permitting heterogeneous protocols.

A practical concern for MRI reconstruction is the compu-
tational cost of training and inference. Here, we primarily
considered adversarial architectures for competing methods.
Previous conditional methods additionally compute either a
cross-site alignment loss on latent-space representations [35],
or a weighted-contrastive loss across sites based on local
encoder weights [36]. Furthermore, while conditional models
are retrained for each configuration of acceleration rate and
sampling density, FedGIMP trains a single MRI prior to recon-
struct with various different imaging operators. Thus, FedG-
IMP offers a simpler training procedure. During inference,
conditional models offer fast processing in a single forward-
pass, whereas FedGIMP uses an iterative prior adaptation
that elevates computational burden. Still, FedGIMP’s inference
time is generally compatible with clinically-adopted imple-
mentations of traditional reconstruction methods, implying
practical feasability [60], [66]. To improve efficiency in time-
critical applications, prior adaptation across an MRI volume
can be accelerated by parallel computation via distributing
cross-sections across multiple GPUs.

GAN models are commonly trained to generate new image
samples from low-dimensional random variables [56]. While
the stochasticity of generated images may be undesirable for
reconstruction, previous studies have employed GAN-based
methods to recover MRI images without notable hallucina-
tions [14], [16], [18], [32], [41], [42]. To prevent artificial
structures, these methods have incorporated data-consistency
modules. Similarly in FedGIMP, the subject-specific prior
adaptation based on data-consistency constrains the recon-
struction by incorporating information regarding coil sensi-
tivities, sampling patterns and measured k-space data from
the actual subject. Under this control procedure, we have not
encountered artificial structures based on our visual inspec-
tions, as also indicated by high performance metrics across
various datasets. Multi-site data analyzed here for single- and
multi-coil reconstructions generally contained a considerable

number of subjects. While the In-House dataset had rela-
tively fewer subjects, we analyzed it given the scarcity of
public datasets providing multi-coil, multi-contrast MRI data.
It remains important future work to systematically validate the
proposed method and its anatomical fidelity on broader patient
cohorts.

FL methods transfer model weights across sites instead
of MRI data to lower privacy risks. Still, security con-
cerns can arise from backdoor attacks where an adver-
sary poisons training updates to corrupt models and elicits
diagnostically-inaccurate reconstructions [22]. Previously pro-
posed non-adaptive models freezing model weights following
training can be more sensitive to model corruption. In contrast,
FedGIMP adapts its MRI prior to each test sample, so it
can potentially alleviate corruption during inference [59].
Learning-based models can also be vulnerable to inference
attacks on models aiming to leak sensitive information about
training data [22]. Differential privacy between training and
synthetic samples in adversarial models substantially improves
for large and diverse training datasets as encountered in FL
settings [67]. Furthermore, FedGIMP uses a shared genera-
tor without direct access to data and unshared discrimina-
tors that are not communicated [68]. Nonetheless, resilience
against inference attacks can be improved by adopting
differential-privacy procedures [69], [70]. Future studies are
warranted to systematically characterize the privacy-preserving
abilities of FedGIMP, including the benefits of local discrim-
inators.

Here we aggregated local models using the relatively com-
mon and simple FedAvg algorithm, which has been success-
fully employed in many previous FL studies [29]. Model
aggregation was performed via a weighted linear combination,
where the weight for each site is taken as the ratio of the
number of local training samples to the number of all training
samples across sites. Performance improvements might be
possible with data-driven combination based on model com-
parisons [71] or neural networks [72]. However, data-driven
model combination typically involves storage and computation
of additional models, and transfer of additional model updates.
Future work is warranted to examine the comparative benefits
of unlearned versus learned aggregation of local models in
MRI reconstruction.

FedGIMP trains an MRI prior over the distribution of
high-quality MR images, uninformed regarding the recon-
struction task. Several lines of development can be consid-
ered for improved performance. First, multi-supervised net-
works concurrently operating in image and k-space domains
have recently been introduced for MRI reconstruction [11],
[15]. FedGIMP might also benefit from a hybrid of image
and k-space MR priors. Second, self-supervised training of
parallel networks based on contrastive learning has been
proposed [46], [48]. Contrastive learning strategies might
alleviate the need for fully-sampled acquisitions for training
the MRI prior in FedGIMP. In principle, the federated prior
can be adapted for other inverse problems such as MRI
super-resolution or synthesis. A simple approach would be to
train task-specific models using a synthetic dataset generated
via the MRI prior. Alternatively, the trained prior can serve
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as a non-adaptive plug-and-play regularizer in optimization
problems [54]. To adapt the prior during inference, the imaging
operator for the reconstruction task would have to be replaced
with corresponding operators in target tasks.

VII. CONCLUSION

Here, we introduced a novel MRI reconstruction based on
federated learning of a generative MRI prior and inference
adaptation via injection of subject-specific imaging operators
onto this prior. Benefits over state-of-the-art federated and
traditional methods were demonstrated in multi-site MRI
datasets. Improved generalization against domain shifts ren-
ders FedGIMP a promising candidate for multi-site collabo-
rations in accelerated MRI. FedGIMP might also be used for
physics-based reconstruction in other modalities such as CT,
PET, or ultrasound by modifying its imaging operator.
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