
3562 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 12, DECEMBER 2022

TranSMS: Transformers for Super-Resolution
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Abstract— Magnetic particle imaging (MPI) offers
exceptional contrast for magnetic nanoparticles (MNP) at
high spatio-temporal resolution. A common procedure in
MPI starts with a calibration scan to measure the system
matrix (SM), which is then used to set up an inverse
problem to reconstruct images of the MNP distribution
during subsequent scans. This calibration enables the
reconstruction to sensitively account for various system
imperfections. Yet time-consuming SM measurements have
to be repeated under notable changes in system properties.
Here, we introduce a novel deep learning approach
for accelerated MPI calibration based on Transformers
for SM super-resolution (TranSMS). Low-resolution SM
measurements are performed using large MNP samples
for improved signal-to-noise ratio efficiency, and the
high-resolution SM is super-resolved via model-based deep
learning. TranSMS leverages a vision transformer module
to capture contextual relationships in low-resolution
input images, a dense convolutional module for localizing
high-resolution image features, and a data-consistency
module to ensure measurement fidelity. Demonstrations
on simulated and experimental data indicate that TranSMS
significantly improves SM recovery and MPI reconstruction
for up to 64-fold acceleration in two-dimensional imaging.

Index Terms— Magnetic particle imaging, calibration,
system matrix, reconstruction, transformer, deep learning.

I. INTRODUCTION

MAGNETIC particle imaging (MPI) is a recent imag-
ing modality to map in vivo distribution of mag-

netic nanoparticles (MNPs) with exceptional sensitivity and
speed [1], [2]. Preclinical studies have readily demonstrated
its potential in angiography, stem cell tracking, cancer imag-
ing, neuroimaging, and localized hyperthermia [3]–[11]. MPI
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Aselsan Research Center, 06800 Ankara, Turkey (e-mail:
dasoydan@aselsan.com.tr; cbtop@aselsan.com.tr).

Digital Object Identifier 10.1109/TMI.2022.3189693

acquires the nonlinear magnetization response of MNPs to an
oscillating drive field (DF) while a static selection field (SF)
creates a field-free region (FFR) for spatial encoding. Time-
domain signals are recorded on receive coils while the FFR is
traversed across a field-of-view (FOV). The forward mapping
from MNP concentration to recorded signals depends on
a system function that captures properties regarding MNP
dynamics, scan trajectories, and scanner hardware. Therefore,
MPI reconstruction relies on estimates of this system function
to infer the MNP distribution from time-domain signals.

Two fundamental approaches for MPI reconstruction differ
in their treatment of the system function: X-space and system
matrix (SM) methods. In X-space methods, a point spread
function is used to characterize the MPI signal, typically based
on an analytical model or alternatively based on measure-
ments [12]. In contrast, while analytical approaches have been
proposed [13], SM methods commonly measure the system
function using a calibration scan where a small MNP sample
spanning an imaging voxel is traversed on a spatial grid.
When the system function is directly measured on the imaging
system, SM methods offer improved immunity against system
imperfections [14], [15]. Yet, a time-consuming calibration
(e.g., ∼12 hours for a typical 32 × 32 × 32 grid) must be
repeated whenever the MNP type or scanning trajectory is
changed [16]. Pioneering studies in this domain have pro-
posed accelerating calibration based on compressed sensing
(CS) [17]–[21] and super-resolution (SR) [13], [22], [23].
However, calibration using a small MNP sample can manifest
low signal-to-noise ratio (SNR) efficiency, limiting the quality
of recovered SMs at high acceleration rates [21], [24].

Here we propose a novel deep learning (DL) method for
accelerated MPI calibration, named Transformers for SM
Super-resolution (TranSMS). For improved SNR efficiency,
TranSMS performs low-resolution (LR) SM measurements
using a larger MNP sample spanning across an LR voxel
as opposed to a high-resolution (HR) voxel. HR SM is
then recovered by a deep network that super-resolves LR
SM. SM rows follow spatial patterns that visually resemble
sinusoidal grating functions, windowed by an envelope whose
shape is linearly proportional to the receive coil sensitiv-
ity. Thus, pixel intensities in each SM intrinsically show
long-range correlations. Prior SR methods are predominantly
based on convolutional neural networks (CNNs) that improve
performance over traditional methods [22], [25]. How-
ever, due to their local kernels, CNNs cannot capture the
long-range contextual features in SM rows. To address this
limitation, we introduce a novel architecture that aggregates
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the localization power of CNNs with the contextual expres-
siveness of vision transformers. TranSMS leverages a novel
data-consistency module to ensure fidelity to LR SM mea-
surements based on the signal model between LR and HR
SM. Comprehensive demonstrations are performed on simu-
lated and experimental data from field-free point (FFP) and
field-free line (FFL) scanners, for up to 64-fold acceleration
during two-dimensional (2D) imaging. Our results indicate that
TranSMS offers substantial performance improvements in both
SM recovery and image reconstruction over the state-of-the-art
CS- and SR-based calibration methods. Our main contributions
are:

• We introduce a novel deep learning approach to
super-resolve MPI SMs for accelerated calibration.

• To our knowledge, we introduce the first vision trans-
former model for MPI.

• We introduce a novel data-consistency module to incor-
porate the physical signal model relating HR SM to LR
SM measurements.

II. RELATED WORK

Several successful approaches have previously been intro-
duced for accelerating MPI calibration. A hybrid approach
combines model- and measurement-based SM estimates [13].
An HR SM is analytically simulated while an LR SM is mea-
sured. This method was used to achieve 4-fold accelerated 2D
calibration by 2-fold increase of voxel dimensions in LR SM.
Reconstruction is then formulated as a weighted optimization
with terms reflecting the simulated and measured SMs. This
model-assisted SR approach derives HR information from an
analytical model. Thus, accuracy might be compromised by
system imperfections that are not captured by the model.

The CS framework instead exploits sparsity to recover
signals from undersampled measurements [17]–[19]. Each
SM row is a complex-valued spatial sensitivity map with
compressible representations in Fourier, cosine or Chebyshev
polynomial domains [17]. Thus, calibrations can be acceler-
ated by randomly undersampling the grid locations during
HR SM measurements (Fig. 1b). The full SM can then be
recovered by simultaneously enforcing consistency to avail-
able measurements, transform-domain sparsity, and additional
priors regarding the symmetry of sensitivity maps. For 3D FFP
imaging, accelerations up to 27-fold were demonstrated under
relatively limited noise [19]. Other optimization-based meth-
ods have exploited non-equispaced sampling and low-rank
approximations through higher-order singular value decom-
position [20], [26]. Yet, HR SM measurements using small
MNP samples spanning a single imaging voxel limit SNR effi-
ciency. Although calibration with multiple MNP samples per
measurement can improve efficiency [21], there are practical
challenges in positioning of a large calibration phantom.

Recently, DL techniques have also been considered for
MPI calibration [22]. A previous study has proposed using
strided LR SM measurements, as shown in Fig. 1c, followed
by upsampling to recover an HR SM [22]. Upsampling is
performed via a CNN trained using paired sets of LR and
HR SMs. This SR approach was employed to recover HR SM
from 64-fold accelerated 3D calibration scans (analogously

Fig. 1. Overview of prior and proposed techniques for SM calibration.
(a) Conventional calibration samples all of the grid points in HR SM.
(b) CS calibration randomly subsamples HR SM and uses CS opti-
mization for recovery. (c) 2d-SMRnet uniformly subsamples HR SM in
a strided fashion and recovers HR SM via a CNN. (d) TranSMS performs
LR SM measurements with a larger MNP sample that fills an LR grid,
and recovers HR SM via a transformer.

16-fold acceleration for 2D calibration). That said, strided LR
SM measurements performed using an MNP sample spanning
a single HR voxel can potentially limit SNR efficiency.

Super-resolving HR SM in MPI is closely related to the
single-image super-resolution (SISR) problem in computer
vision [13], [22], [25]. DL methods have recently become
the gold standard in this domain. Successful SISR models
have been introduced for natural images based on convolu-
tional architectures, such as Super-Resolution Convolutional
Neural Network (SRCNN) [27], Very Deep Super-Resolution
(VDSR) [28], and Residual-Dense Network (RDN) [29]. That
said, characteristics of SM rows notably differ from natural
images. First, SM sizes are relatively compact compared
to natural images. Second, SMs contain a single broadly
distributed pattern whereas multiple nonoverlapping objects
can exist in natural images. Third, SMs are corrupted by
higher levels of noise compared to natural images. Due to
these differences, deep architectures with high-dimensional
feature maps can be suboptimal for SM recovery. Furthermore,
CNN models with compact filters have limited sensitivity to
long-range contextual features [30]. This has motivated the
adoption of hybrid CNN-transformer models for improved
contextual sensitivity in SISR [31], [32]. However, prior
models used serially-connected CNNs and vanilla vision trans-
formers [33]. In contrast, TranSMS uses parallel-connected
convolutional and transformer modules, and novel transformer
blocks with convolutional patch embedding. Few recent stud-
ies have introduced efficient transformers for medical imaging
tasks [34]–[37]. Yet, this is the first study to introduce a
vision transformer for MPI, and the first study to introduce
a model-based transformer for SR.

III. THEORY

A. Magnetic Particle Imaging

1) Signal Model: In MPI, excitation is performed via an
oscillating DF at a fundamental frequency, while spatial
encoding is enabled via a static SF that creates an FFR within
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the FOV. Voltage waveforms captured by receive coils reflect
MNP responses within the FFR. SM-based reconstruction is
performed by transforming the received time domain signal to
frequency domain. The signal model can be expressed as [1]:

Ax + n = y (1)

where A ∈ C M×N is the SM; x ∈ R
N , n ∈ C M and y ∈ C M

are the image vector, noise vector and frequency domain
signal, respectively. Here, M is the number of frequency
components and N is the number of voxels in the grid.
MPI data contain thermal noise that varies as a function of
frequency [38], and the overall signal intensity decreases with
increasing harmonic frequency [1]. Thus, the additive noise in
Eq. (1) can be taken as colored Gaussian [38], [39].

2) SM Calibration: The SM is affected by imperfections such
as system drift or inter-batch variability in MNP response [40],
and is spatially variant [41]. To account for such non-idealities,
SM calibration is performed by traversing a small MNP sample
across the imaging grid [16], as shown in Fig. 1a:

B = A + Ñ. (2)

Here, Ñ and B denote additive noise and the measured SM,
respectively. Measurements are typically taken with an MNP
sample size that matches the intended imaging voxel size. This
limits SNR efficiency in HR SM measurements.

3) Image Reconstruction: Once an SM estimate Â is
obtained from measurements B, image reconstruction can be
cast as an inverse problem to solve Eq. (1). Two common
optimization approaches are the Kaczmarz [42] and alternating
direction method of multipliers (ADMM) methods [14], [21].
Here, we consider the ADMM-based formulation [43], [44]:

arg min
x

α1�x�1 + αT V TV(x) s.t. � ˆAx − y�2 ≤ ε, (3)

where α1,T V are regularization weights. Eq. (3) promotes
sparsity in image and finite-differences (TV) domains, while
constraining fidelity of reconstructed image and acquired
signals with an ε bound based on noise level. To account
for varying noise levels across SM rows in Eq. (3), repeated
background measurements can be used for noise whitening,
and filtering out frequency components with low SNR [39],
[45]–[47]. For whitening, Â and y can be multiplied by a
diagonal matrix with elements Ei,i = 1/σi , where σi is the
standard deviation (std.) of noise for the i th SM row (i.e., std.
of noise in i th component in frequency domain) [39], [47].
Here, we pre-whiten all SM rows to unit std.

B. TranSMS

To improve SNR efficiency, TranSMS performs LR SM
measurements using larger MNP samples as opposed to
smaller samples used in strided LR SM measurements (Fig. 1).
To improve HR SM recovery, the SR problem is solved
via a novel transformer architecture. Code for TranSMS
will be available at https://github.com/icon-lab/
TranSMS.

1) Super-Resolution MPI Calibration: Inspired by recent
reports [13], [24], here we propose to measure LR SM with
MNP samples matching the LR SM voxel size. A large MNP
sample spans multiple voxels on the HR SM grid, so the
proposed measurements correspond to box-car downsampling
of the HR SM with a matrix D:

B = ADT + Ñ (4)

For each SM row, the sampling relationship is bi = Dai + ni ,
so recovery of HR SM row ai = (AH R)i given LR SM row
bi is an SR task. Since noise does not depend on the MNP
sample size, the proposed measurements yield improved SNR
efficiency. For instance, measurements with a 16-fold larger
MNP sample would result in a 16-fold SNR increase.

2) Network Model: We solve Eq. (4) to recover HR SM
from LR SM measurements. MPI SMs resemble sinusoidal
gratings with strong inter-voxel correlations over broad dis-
tances. The MPI signal also shows spatially-variant charac-
teristics due to coil inhomogeneities. Taken together, these
factors render CNN-based SR with local, translation-invariant
filters suboptimal for SM recovery. Instead, we propose a
hybrid architecture to super-resolve HR SM at an SR factor
of S, corresponding to S2-fold acceleration for 2D calibration,
leveraging transformer, convolutional, and data-consistency
modules. The transformer module captures contextual image
features, the convolutional module captures localized features,
whereas the data-consistency module enforces fidelity to LR
SM measurements. The network input is a reformatted row of
LR SM bi ∈ R

2×W×H , with two channels in the first dimen-
sion representing real/imaginary parts, W and H denoting the
width and height of the LR grid (i.e., W H = N/S2). An initial
convolutional layer Zinit (·) expands the channels to produce
Uinit = Zinit (bi ) ∈ R

C1×W×H (with C1 channels), which is
then fed to the transformer and convolutional modules.

a) Transformer module: The transformer module contains
a cascade of nT B submodules that capture contextual features
in SM rows (Fig. 2). Each submodule has a token-embedding
block (BT E, j (·)) followed by a transformer block (BT , j (·)),
where j denotes submodule index. Token-embedding is
achieved via a sequence of convolutional, reshaping and layer
normalization (LN) layers [48]. Assuming the input is UT , j−1
(where UT ,0 = Uinit ), the token-embedded feature map is:

uencoded, j = LN(Reshape1D(Conv2D(UT , j−1))), (5)

where Conv2D has 3 × 3 kernels with stride s j . Unlike
non-overlapping patch embeddings [33], overlapping token
embeddings in Eq. (5) can improve the capture of local and
global context [48]. uencoded, j ∈ R

W H/s2
j ×CT (CT denoting

number of channels) is processed via a convolutional trans-
former block comprising convolutional projection, multi-head
self-attention (MHSA) and multi-layer perceptron (MLP) sub-
blocks. The projection extracts query, key and value for each
token via depth-wise separable convolution (DWSC) [49]:

Q j , K j , V j = Flatten(DWSC(Reshape2D(uencoded, j )), (6)

where the reshape operator formats the dimensions to

R
CT ×W/s j×H/s j , Q j , K j , V j ∈ R

n A×W H/s2
j ×CT (with n A
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Fig. 2. (a) Schematic of the network architecture in TranSMS. After an initial convolutional layer, encoded feature maps are fed to parallel transformer
and convolutional modules. The transformer module extracts contextual representations over longer distances, while the convolutional module
captures localized representations. Contextual and localized feature maps are fused and upsampled to the resolution of the HR SM. Finally, a data-
consistency module enforces fidelity of recovered HR SM to input LR SM. (b) The transformer module contains a cascade of token-embedding and
convolutional transformer sub-blocks, and a final upsampler to restore dimensionality. (c) The transformer performs convolutional token projection,
followed by MHSA and MLP blocks to extract contextual features.

denoting the number of attention heads) are query, key and
value, respectively. DWSC is implemented as:

DWSC (v) = Conv1(BN(Conv2D(v))), (7)

where Conv1(·) is 1 × 1 convolution, BN is batch normaliza-
tion. The projected maps are then residually fed to MHSA:

uMHSA,j = MHSA(Q j , K j , V j ) + uencoded, j , (8)

where uMHSA,j ∈ R
W H/s2

j ×CT is the output and MHSA is:
MHSA = Lin

(
Reshape1D

(
SftMx

(
Q j KT

j

)
V j

))
, (9)

In Eq. (9), the linear layer (Lin) compresses the number of
channels from n ACT to CT . Finally, the feature maps are
projected with residual connection through an MLP:
uT , j+1 = Reshape2D(MLP(LN(uMHSA,j)) + uMHSA,j), (10)

where uT , j+1 ∈ R
CT ×W/s j×H/s j is the output map, and

MLP has a single hidden layer of size 2CT . A stride of
s j > 1 broadens the convolutional kernels to permit analysis
at a larger scale. Here, we used nT B = 3 submodules with
s j = [1, 1, 2]. Since the last submodule halved the image size,
an upsampler block (see Fusion Module for details) was used
to restore the original dimensions of W × H .

b) Convolutional module: The convolutional module is
composed of convolutional layers (ZC,0(·) & ZC,1(·)) fol-
lowed by a cascade of nR D B Residual-Dense Blocks (RDBs).
Convolution layers project Uinit to feature map u0 ∈
R

CC×W×H .

u−1 = ZC,0(Uinit ), u0 = ZC,1(u−1) (11)

Then, the RDBs sequentially process the feature maps as:
ud = Bd(ud−1) (12)

where Bd(·) is the projection through the dth RDB with
nC L convolutional layers each performing a projection Zd,k(·).

Each layer concatenates all feature maps from previous layers:
ud,k = Zd,k([ud−1; ud,1; ud,2; · · · ; ud,k−1]) (13)

where ud,k has nG R channels denoting the growth-rate of the
block across a layer. The last layer implements Zd,out(·) to
reduce the number of channels to CC via a 1 ×1 convolution:

ud = Zd,out([ud−1; ud,1; · · · ; ud,r ]) + ud−1 (14)

Finally, the output of all RDBs are concatenated through a
1 × 1 convolution operator ZC,ct as:

uct = ZC,ct ([u1; u2; · · · ; unRDB ]) (15)

The output is then combined with a global residual from the
initial layer using a final convolutional layer ZC,last(·) as:

UC = ZC,last(uct ) + u−1 (16)

where UC denotes the output of the convolutional module.
c) Fusion module: The fusion module first aggregates

localized and contextual representations, UC and UT , respec-
tively from the convolutional and transformer modules via a
convolutional layer (Zcat (·)) to generate Ucat ∈ R

Ccat×H×W :

Ucat = Zcat ([UC ; UT ]) (17)

The fused map is then processed via a cascade of 2-fold
upsampling blocks. Assuming that S is a power of 2, a feature
map Uups ∈ R

Ccat×S H×SW is generated:
Uups = Upsampler2×(· · · (Upsampler2×(Ucat ))) (18)

The upsampling blocks consist of convolutional layers that
expand the number of channels 4-fold, and a pixel shuffler
to map channels onto higher resolution tensors [50]. A final
convolutional layer (Z f in(·)) produces ãi ∈ R

2×S H×SW , the
i th row of SM super-resolved by a factor of S:

ãi = Z f in(Uups) (19)
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Fig. 3. (a) In-house open-sided FFL scanner. (b) The imaging phantom
used to acquire in-house MPI data. Cylindrical tubes were prepared with
Perimag (Micromod GmbH, Germany) MNPs at a dilution ratio of 1:20
(405 µg/ml Fe). The length, inner radius and outer radius of the tubes
were 20 mm, 2 mm and 4 mm, respectively.

d) Data-consistency module: DL methods for SR tasks
typically perform a direct mapping between LR and HR
images without observing a signal model, posing a risk for
inconsistency between measured LR and predicted HR images.
Although the training loss can implicitly satisfy consistency
on the training set, it offers no guarantees on the test set.
To obtain consistent LR-HR SMs, we introduce a novel data-
consistency (DC) module in TranSMS to enforce fidelity
between recovered and measured data as inspired by recent
MRI methods [51], [52]. Based on the signal model in Eq. (4),
DC can be enforced by comparing box-car downsampled HR
SM with measured LR SM. Receiving as input ãi :

âi = arg mina �a − ãi�2
2 s.t. �Da − bi�2 ≤ √

mσi (20)

where âi is the estimated HR SM row, m = W H . This
projection enforces HR SM to be consistent with measured LR
SM within an error bound determined by noise levels. Here,
we implement the DC projection efficiently by a closed-form
analytical solution (see Appendix):

b̃i = bi − Dãi (21)

âi =
{

ãi , if �b̃i�2 ≤ √
mσi

ãi +
(

1 −
√

mσi

�b̃i �2

)
DT b̃i , otherwise.

(22)

e) Network loss: The overall network can be cast as a
feed-forward function fθ (bi ) = âi , where θ denotes the set
of learnable parameters. The network is trained using �1-norm
loss between the recovered and reference HR SM rows:

arg min
θ

∑
i

� fθ (bi ) − ai�1 (23)

IV. METHODS

A. Datasets

As experimental datasets are inherently noisy and of prac-
tically limited size, we first conducted controlled analyses on
a simulated dataset. These analyses included ablation studies
to demonstrate the components of the network architecture,
ablation studies to assess the influence of the size and diversity
of the training set, as well as comparisons to competing
methods in noisy and noise-free settings. Next, we con-
ducted analyses on two experimental datasets to demonstrate
TranSMS on both FFP and FFL scanners. These analyses

TABLE I
IMAGING PROTOCOLS FOR HR SM IN ANALYZED DATASETS

aimed to examine reliability against variability in SF strength,
FOV position and MNP tracer type, as well as variability over
time. In this section, we describe the details regarding the
calibration measurements (Table I). The voxel size of each
LR SM is S × S times larger compared to the respective HR
SM.

1) Simulated Dataset: We used an in-house MPI simula-
tor modeling the open-sided FFL scanner topology in [39].
A 32 × 32 mm2 FOV was scanned with a sample of size
1 × 1 mm2 by rotating the FFL in the x-y plane. MNP
saturation magnetization and temperature were 0.55 T/μ0 and
300 ◦K. A sinusoidal DF with varying amplitude (depend-
ing on the SF gradient and FOV size) was applied in the
z-direction. The received signal was sampled at 5 MS/s for
a receive coil with homogeneous sensitivity in the z-direction.
Following Fourier transformation of time-domain signals, the
components corresponding to harmonics 2-to-9 were captured.
Finally, imaging data were generated for a numerical phantom.

Simulated SMs were split to use 66 for training, 30 for
validation and 34 for testing. The validation set contained
SF gradients [0.70:0.265:1.03] T/m, and MNP diameters
[15.17:2.145:34.47] nm. For the training and test sets, 100 SMs
were generated with SF gradients of [0.40:0.075:1.00] T/m,
MNP diameters of [14.10:2.145:33.40] nm. For the test set,
we exclusively reserved 19 of these SMs with SF gradi-
ent 1 T/m or MNP diameter 33.40 nm, and 15 additional
randomly selected SMs were added for improving diversity.

2) Open MPI Dataset: Open MPI is a public dataset with
calibration and imaging measurements on a preclinical FFP
scanner (Bruker, Ettlingen) [53]. We analyzed calibration data
collected at 37×37×18.5 mm3 and 66×66×27 mm3 FOVs,
a sample of size 2 ×2 ×1 mm3 and a 3D Lissajous sequence.
Signals from 3 coils were sampled at 2.5 MS/s. SM rows
with high-SNR responses were selected (SNR>5) [13], [47],
[54], and whitened based on the noise power computed
using the provided SNR levels. Noise was estimated to
induce an intrinsic 3.38% normalized root-mean-squared-error
(nRMSE), serving as a performance bound for SM recovery.
Imaging data collected from a Perimag-filled resolution phan-
tom for [−0.5, −0.5, 1] T/m gradients were used. To assess
generalizability across time, longitudinally measured SMs with
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TABLE II
AVERAGE NRMSE (�) IN HR SM RECOVERY FOR ABLATION STUDIES

PERFORMED UNDER NOISY SETTING AT �×-�× SR

identical imaging protocols albeit spatially-misaligned FOVs
were used to construct the training (#8, #9) and test (#10)
sets. To assess generalizability across MNP type and SF gra-
dients, an SM sampled using Synomag-D (Micromod GmbH,
Germany) and [−1, −1, 2] T/m SF gradients was reserved
for training (#7), and another SM using Perimag (Micromod
GmbH, Germany) and [−0.5, −0.5, 1] T/m SF gradients was
reserved for testing (#10). SM volumes were split into separate
slices.

3) In-House MPI Dataset: Data were collected on the
open-sided ASELSAN FFL scanner (Fig. 3a) [39]. A 32 ×
64 mm2 FOV was scanned with an undiluted Perimag sample,
with a sample of size 2 × 2 mm2 by rotating the FFL in
the x-y plane. SF gradients of [0.3, 0.4, 0.5, 0.6] T/m were
applied, with 9 mT DF amplitude for 10 ms per angle.
A 10% duty cycle was used to prevent drive coil overheating.
The received signal was amplified (gain = 5) and filtered
(cutoffs: 10-300 kHz) on an SR-560 pre-amplifier (SRS, MA,
USA), and sampled at 5 MS/s. Frequency components around
harmonics 2-to-11 were selected with a 500 Hz bandwidth.
High-SNR rows were selected (SNR>5) and whitened. Noise
was estimated to induce an intrinsic 4.36% nRMSE. For
retrospective analyses that assessed generalizability across
SF gradient strength, the training set contained 3 SMs at
[0.3, 0.4, 0.6] T/m, the test set contained 1 SM at 0.5 T/m.
To improve reconstruction quality, SMs were cropped to the
sensitive region of the receive coil (13 × 23 grid size). For a
prospective analysis to demonstrate the full SNR benefits of
TranSMS, we separately measured an LR SM using a larger
4 × 4 mm2 MNP sample, and super-resolved HR SM using
the retrospectively trained model. Imaging data were collected
by applying a 0.5 T/m SF gradient to cylindrical tube (inner
radius: 2 mm, outer radius: 4 mm) phantoms filled with diluted
Perimag (Fig. 3b). In retrospective experiments, a phantom
with two 20-mm-long tubes with 8-12 mm inter-tube spacing
was used. In prospective experiments, a 23-mm-long tube, and
a 21-mm-long tube with a 5-mm-long central stenosis region
of 1-mm inner radius with 6-7 mm inter-tube spacing was
used.

B. TranSMS Implementation

Hyperparameters including number of network layers, num-
ber of channels, and learning rate were selected via one-fold
cross-validation on the simulated dataset. Non-overlapping
training, validation and test sets were constructed. Parameters
were optimized separately for each SR factor (2×, 4×, 8×)
to maximize validation performance in terms of nRMSE.
The common set of parameters among SR factors included

nR D B = 4, CC = 24, nG R = 6, CT = 64, n A = 4, Ccat = 48.
Meanwhile, C1 = [24, 24, 64] and nC L = [5, 8, 9] were
selected for 2×, 4×, and 8× SR, respectively. The transformer
module contained nT B = 3 stages, where the first two used
convolutions of stride 1, and the last stage used stride 2.
MLP blocks used Gaussian error linear unit (GELU) activation
functions, RDBs used rectified linear unit (ReLU) activation
functions, and upsampler blocks used leaky ReLU.

C. Competing Methods

TranSMS was comparatively demonstrated against several
state-of-the-art techniques for SM calibration including tradi-
tional, CS-based and SR-based methods.

1) Bicubic & Strided Bicubic: As a traditional method, bicu-
bic interpolation was used to upsample LR SM [24]. Two
variants were implemented based on LR SM measurements
with large MNP sample size versus strided subsampling of
HR SM measurements with small MNP sample size. Real and
imaginary parts of SM were treated separately.

2) Compressed Sensing: HR SM measurements were
randomly undersampled in 2D, and data were assumed to
be sparse in the Fourier domain [19]. An ADMM-based
algorithm was used to solve the CS optimization problem [21].
To prevent edge artifacts, the FOV was extended by 4 pixels
in all directions, the original FOV was retained in recovered
SM.

3) SRCNN: For SR-based recovery, LR SM rows were
upsampled with the popular SRCNN model [27], [55].
SRCNN performs bicubic upsampling followed by projection
through 3 cascaded convolutional layers. Real and imaginary
parts of SM were provided as separate channels at input and
output.

4) VDSR: As another SR method, LR SM rows were upsam-
pled with VDSR [28]. VDSR performs bicubic upsampling
followed by 20 cascaded convolution layers to better preserve
high-frequency information. Real and imaginary parts of SM
were provided as separate channels at input and output.

5) 2d-SMRnet: Finally, the 3d-SMRnet model in [22] was
adapted for 2D SR-based calibration by converting convolu-
tion kernels from 3D to 2D. During calibration, 2d-SMRnet
performs strided LR SM measurements with a small MNP
sample. Real and imaginary parts of SM were provided as
separate channels at the model input and output.

D. Analysis Procedures

1) SM Recovery: DL models were implemented using
the PyTorch framework, and trained via the Adam opti-
mizer. For TranSMS, the learning rate was halved at every
Nepoch /5 epochs, where Nepoch is number of epochs. For
2d-SMRnet, SRCNN and VDSR, learning rate schedules
proposed in the respective manuscripts were adopted [22],
[27], [28]. The weight decay parameter was set to 10−8 for
simulated, and to 0 for experimental datasets as in [22]. The
learning rate was selected for each dataset and SR factor via
cross-validated search across the range [10−8, 1]. Bicubic and
CS methods were implemented in MATLAB (MathWorks,
Natick USA). Bicubic interpolation assumed default settings
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in the imresize function. In CS, intensity of each whitened
SM row was normalized separately for numerical stability,
and restored to its original scale following recovery. Step size
μ = 1 and # of iterations = 1000 were selected via cross-
validation. The bound on the noise level for the constrained
problem was estimated from background measurements.

Methods were compared in super-resolving LR SM. Back-
ground measurements were used to estimate σi in Eq. (20), and
to perform background subtraction. In the simulated dataset,
LR SM was simulated for a large MNP sample spanning
an LR voxel. Gaussian noise was added to maintain 30 dB
SNR [39]. Networks were trained to estimate noise-free HR
SM given noisy LR SM. We assessed performance at 2×–8×
SR, reducing calibration time by 4-64-fold, respectively.

In experimental datasets, independent LR and HR SM mea-
surements can carry inconsistencies due to nuisance variability
in the system (e.g., sample misalignment, temperature drift),
biasing trained models and degrading recovery performance.
To alleviate this issue, LR SMs were generated retrospec-
tively using the linearity of the MPI signal, through box-car
downsampling of HR SMs to permit unbiased reporting of
performance metrics. Training sets were expanded via data
augmentation by horizontal and vertical flipping of SM rows.
Networks were trained to estimate measured HR SM given
LR SM, considering 2×-8× SR. To prospectively demonstrate
TranSMS, an LR SM measured on the in-house scanner using
a large MNP sample spanning an LR voxel was super-resolved
using the retrospectively trained model.

2) Image Reconstruction: Recovered HR SMs were used to
perform image reconstruction. Among advanced methods [47],
[54], [56], we opted for an ADMM-based algorithm with fast
convergence implemented in PyTorch [14], [44]. Data were
whitened using background measurements prior to reconstruc-
tion, so ε was set to

√
M where M is the number of HR SM

rows. Reconstruction using the reference HR SM was taken as
as a benchmark for performance evaluations. Hyperparameters
were selected via cross-validated search to optimize quality
of the reference image in the simulated dataset. The selected
parameters were α1 = 0.95, αT V = 0.05, step size of μ = 10,
and 5000 iterations.

E. Quantitative Assessments

Performances in HR SM recovery and image reconstruction
were assessed via quantitative metrics. Assuming Â is the
recovered HR SM and A is the reference HR SM, the
data-consistency constraint in Eq. (3) can be expressed as:

�Âx − y�2
2 = �Rx�2

2 + �Ax − y�2
2 + 2xT RT (Ax − y) (24)

where R = Â − A denotes the residual error in HR SM
recovery. Given zero-mean measurement noise, the expected
value of Ax − y is 0. Data-fidelity error is then proportional
to the Frobenius norm of the residual error, �R�2

F . Thus,
we measured the quality of HR SM recovery via nRMSE:

n RM SE(Â) = �Â − A�F/�A�F (25)

Fig. 4. Validation performance of TranSMS with (red curve) and
without (blue curve) the data-consistency (DC) module. The HR SM
recovery performance is reported as nRMSE across training epochs.
The upper-right panel displays a zoomed-in portion of nRMSE curves
during the initial stages of training.

For image reconstruction, we adopted the popular peak Signal-
to-Noise-Ratio (pSNR). Assuming xre f is the reference image:

pSN R(x) = 20 log10

(√
N�xre f �∞/�x − xre f �2

)
(26)

V. RESULTS

A. Ablation Studies

1) Network Ablation: We first demonstrated the role of
each network component in TranSMS. Analyses were per-
formed on the simulated dataset where a noise-free ground
truth is available for absolute performance evaluation. First,
we compared TranSMS against variants where the con-
volutional transformer (CT) module was ablated (residual-
dense super-resolution; RDSR) or the residual-dense (RD)
convolutional module was ablated (convolutional transformer
super-resolution; CTSR). Second, we evaluated the specific
implementations of transformer and convolutional modules.
To evaluate the benefit of CT blocks, we implemented a variant
containing vanilla vision transformer (ViT) modules (residual-
dense vision transformer; RD-ViT). To evaluate the benefit
of RD blocks, we implemented a variant with vanilla CNN
modules (CNN with convolutional transformer, CNN-CT). The
combination of vanilla CNN and vanilla transformer was also
considered (CNN with vision transformer, CNN-ViT). Table II
lists performance for TranSMS and its variants. Overall,
TranSMS yields higher performance than both RDSR and
CTSR, indicating the importance of its transformer and convo-
lutional modules. TranSMS outperforms outperforms RD-ViT
indicating the benefit of CT over ViT, and it also outperforms
CNN-CT indicating the benefit of RD over CNN. Finally,
we evaluated the benefit of the DC module by comparing
TranSMS variants with and without DC projection. Fig. 4 plots
nRMSE for 4× SR, showing that the DC module enables faster
and more stable convergence.

2) Training Set Ablation: Next, we assessed the influence of
the number and diversity of the SMs in the training set on
model performance. These analyses were conducted on the
simulated dataset. First, we varied the number of SMs used
for training in the range [6 66] via random selection, while the
original test set was maintained. Figure 5 shows nRMSE in SM
recovery as a function of the number of training SMs. Near-
optimal results are achieved around 15 SMs with diminishing
returns for larger training sets. Second, we compared two
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Fig. 5. SM recovery performance of TranSMS as a function of the number
of SMs included in the training set for SR factors of 2×-8×.

TABLE III
AVERAGE NRMSE (�) IN HR SM RECOVERY FOR THE SIMULATED

DATASET UNDER (NOISELESS/NOISY) SETTINGS AT 2×-8× SR

training sets with 6 SMs each, where one was restricted to a
narrow range of SF and MNP parameters (gradient strength in
T/m, diameter in nm): (0.3, 18.39), (0.3, 20.53), (0.3, 24.82),
(0.7, 16.24), (0.7, 22.67), (0.7, 24.82). The other training set
was randomly selected. We find that the restricted and random-
ized training sets yield moderate performance differences, with
an average nRMSE of 2.54% for randomized and 3.42% for
restricted sets.

B. Analyses on Simulated Dataset

1) SF & MNP Tracer Variability: We first demonstrated
TranSMS on the simulated dataset for HR SM recovery at
2×-8× SR. We assessed reliability against variability in SF
gradients and MNP diameter between training and test sets,
under both noise-free and noisy settings. Table III lists nRMSE
of recovered HR SMs. TranSMS yields superior performance
against competing methods in all cases, with 21.96% lower
nRMSE over the second-best method on average in noisy
settings. Representative SM rows are displayed in Fig. 6 for
4× SR. Bicubic interpolation and VDSR have visible blurring,
CS shows prominent artifacts and noise, and SRCNN shows
edge artifacts and blurring. While 2d-SMRnet is often the top
contender, it has a high error rate at 8× in the noisy setting.
This could be attributed to the relatively high complexity of
2d-SMRnet rendering it more susceptible to overfitting with
noisy training data.

We then investigated the effects of recovered HR SMs
on image reconstruction performance. Table IV lists pSNR
for data simulated at 30 dB SNR. TranSMS outperforms
all competing methods with 6.04 dB higher pSNR over
the second-best method on average. Representative phantom
images at 4× SR are shown in Fig. 7. DL methods outperform
CS in terms of residual artifacts, and bicubic interpolation in
terms of visual acuity. Among DL models, TranSMS offers
the reconstruction with the highest similarity to the reference

TABLE IV
AVERAGE PSNR (DB) IN IMAGE RECONSTRUCTION FOR THE

SIMULATED DATASET UNDER NOISY SETTING AT 2×-8× SR

Fig. 6. HR SM recovery in the simulated dataset for 4× SR using noisy
measurements. SF gradient strength and MNP size differed between the
training and test sets. SM rows corresponding to different harmonics at
45◦ are shown. (a) Recovered HR SMs are displayed along with the input
LR SM, and input strided (str) LR SM. Strided bicubic (BC) interpolation
and 2d-SMRnet receive as input the strided LR SM. (b) Respective error
maps (see colorbar).

image, whereas 2d-SMRnet is the second best with occasional
intensity errors. Methods successful in SM recovery generally
yield higher downstream reconstruction performance.

2) Super-Resolving Higher Grid-Size: To assess the perfor-
mance of TranSMS in recovering a higher grid size than the
reference HR SM it has been trained to recover, we trained
TranSMS to estimate 32 × 32 HR SM given 16 × 16 LR SM.
We then used the trained model to super-resolve a 64 × 64
HR SM by processing overlapping 16 × 16 patches in a given
32×32 SM. Representative results for recovered SMs at 30 dB
SNR are shown in Fig. 8. TranSMS yields highly similar
SM estimates to the reference HR SM although it has not
been trained using data at the target SM resolution. Note that
prominent block artifacts are evident when the DC module is
ablated, suggesting the importance of explicit DC projections
for out-of-domain generalization.

C. Analyses on Open MPI Dataset

1) Temporal & FOV Variability: Next, we demonstrated
TranSMS for HR SM recovery in Open MPI using two
separate analyses with different training sets albeit a common
test set. First, we assessed reliability against variability across
time and FOV positioning between the training and test SMs.
Table V lists nRMSE when the training and test sets contained
SMs measured with the same protocol albeit at different time
points and with unaligned FOVs. TranSMS yields superior

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 05,2023 at 20:25:07 UTC from IEEE Xplore.  Restrictions apply. 



3570 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 12, DECEMBER 2022

Fig. 7. Phantom images from the simulated dataset at 1 T/m SF gradient
strength reconstructed with recovered HR SMs at 4×SR are displayed
along with the reference reconstruction using the reference HR SM (top
row). Error maps for each method are also displayed (bottom row). The
phantom comprised two 22-mm long tubes, the right tube’s width fixed
at 6 mm, and the left tube’s width ranging in 2-6 mm. Inter-tube spacing
varied in 8-12 mm.

Fig. 8. A pre-trained TranSMS model was used to super-resolve
a 64 × 64 HR SM by processing overlapping 16 × 16 patches in the
input 32 × 32 LR SM. SM rows for different harmonics at 45◦ are shown.
Recovered HR SMs are shown under 30 dB measurement SNR, along
with the input LR SM and the reference HR SM.

TABLE V
AVERAGE NRMSE (�) IN HR SM RECOVERY FOR OPEN MPI AT

2×-8× SR. CALIBRATION SCANS WERE PERFORMED AT DIFFERENT

TIMES AND WITH UNALIGNED FOVS FOR SMS IN

TRAINING AND TEST SETS

TABLE VI
AVERAGE NRMSE (�) IN HR SM RECOVERY / PSNR (DB) IN IMAGE

RECONSTRUCTION FOR OPEN MPI AT 2×-8× SR. SF GRADIENT

STRENGTH AND MNP TRACER DIFFERED FOR SMS

IN TRAINING AND TEST SETS

performance against competing methods, with 8.81% lower
nRMSE on average over the closest competitor.

2) SF & MNP Tracer Variability: We also assessed reliability
against variability in SF gradients and MNP tracer. Table VI
lists respective nRMSE in HR SM recovery when the training

Fig. 9. HR SM recovery in Open MPI for 4× SR. Both the SF gradient
strength and MNP tracer differed for SMs in training and test sets. The SM
rows corresponding to the center slice at different frequency components
and receive channels (Ch) are shown (k denotes the respective SM
row index). (a) Recovered HR SMs and (b) respective error maps are
displayed along with the input LR SM, input strided LR SM and reference
HR SM.

Fig. 10. Image reconstruction in Open MPI for 4× SR. Phantom
images reconstructed with recovered HR SMs are displayed along with
the benchmark reconstruction using the reference HR SM (top row).
Respective error maps are also displayed (bottom row).

and test SMs differed in their SF and MNP parameters.
TranSMS performs better than competing methods, except for
8× SR where all methods perform poorly and bicubic inter-
polation yields the lowest nRMSE. TranSMS lowers nRMSE
by 0.60% over the second-best method across 2×-4× SR.

Recovered HR SMs at 4× SR are displayed in Fig. 9.
TranSMS generates a more similar estimate to the refer-
ence HR SM than competing methods. Bicubic interpola-
tion suffers from visible blurring, and CS shows artifacts.
SRCNN performs poorly with visible boundary artifacts.
While 2d-SMRnet achieves high spatial acuity, it shows some
geometric warping. VDSR yields a geometrically accurate
estimate with some intensity errors. In contrast, TranSMS
yields an HR SM of high spatial acuity and consistency to the
reference HR SM. Table VI lists pSNR for subsequent image
reconstructions except for SRCNN that did not converge and
returned an empty image at 8× SR. On average, TranSMS
outperforms the closest competitor by 1.67 dB pSNR. A rep-
resentative cross-section from the reconstructed phantom at
4× SR is shown in Fig. 10, where methods with successful
SM recovery demonstrate improved reconstruction results.

D. Analyses on In-House MPI Dataset

1) SF Variability: Next, we demonstrated TranSMS on the
in-house MPI dataset acquired on an FFL scanner. We first
assessed reliability against variability in SF gradients between
SMs in the training versus test sets. Table VII lists nRMSE in
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Fig. 11. HR SM recovery in the in-house MPI dataset for 4× SR.
The SM rows corresponding to different harmonics at 81◦ are shown.
(a) Recovered HR SMs and (b) respective error maps for each competing
method are displayed along with the input LR SM, input strided LR SM
and reference HR SM.

Fig. 12. Phantom images in the in-house dataset reconstructed with
recovered HR SMs at 4× SR and respective error maps are displayed,
along with the benchmark reconstruction using the reference HR SM. The
length, inner radius and outer radius of the tubes were 20 mm, 2 mm and
4 mm, respectively.

TABLE VII
AVERAGE NRMSE (�) IN HR SM RECOVERY / PSNR (DB) IN IMAGE

RECONSTRUCTION FOR THE IN-HOUSE DATASET AT 2×-8× SR

SM recovery. TranSMS outperforms competing methods, with
elevated benefits at higher SR factors. On average, it yields
3.99% lower nRMSE than the second-best method. Recovered
SMs are displayed in Fig. 11 at 4× SR. TranSMS yields the
closest estimates to the reference HR SM, while 2d-SMRnet
offers the second-best performance. Table VII lists pSNR
for image reconstruction using recovered HR SMs. TranSMS
yields the highest pSNR, outperforming the closest competitor
by 1.59 dB pSNR on average. Reconstructions at 4× SR
are shown in Fig. 12 for the phantom in Fig. 3b. TranSMS
produces a reconstruction with a high degree of similarity to
the reference phantom image.

2) Prospective Experiment: Finally, we demonstrated
TranSMS on an LR SM prospectively measured using a
large MNP sample spanning an LR voxel. The model trained
on retrospectively downsampled LR SMs was used for
inference. HR SMs recovered from retrospectively versus
prospectively sampled LR SMs are displayed in Fig. 13
at 2× SR. As expected, HR SM based on prospectively
sampling shows lower noise levels. Reconstructions using
recovered HR SMs are shown in Fig. 14. Reconstructions
based on prospective sampling better preserve the stenosis
in the phantom compared to retrospective sampling.
A quantitative metric cannot be reported for prospective

Fig. 13. Prospective versus retrospective HR SM recovery in the
in-house dataset for 2× SR. Real and imaginary parts of the SM rows
corresponding to different harmonics ((a) – (c)) at 0◦ are shown.

sampling due to absence of ground truth. The theoretical
improvement in measurement SNR with prospective sampling
is 6dB at 2× SR. Based on simulation analyses, a crude
expectation is that this improvement will translate onto 1-2dB
difference in reconstruction performance (results not shown).

VI. DISCUSSION

To accelerate MPI calibration, here we proposed to recover
HR SM via a vision transformer model given LR SM measured
with large MNP samples. Clear benefits were observed over
strided or randomly undersampled measurements with small
MNP samples [13], [23], [24]. In the simulated dataset,
LR SMs were obtained by prospective downsampling of HR
SMs by a factor of S in each dimension. Signal power
increases S4-fold while the noise power remains constant,
improving SNR by 10 log10(S4), e.g., ∼24 dB at 4× SR.
In experimental datasets, we trained TranSMS on LR SMs
obtained by retrospective downsampling of HR SMs to miti-
gate potential biases due to nuisance variability between SM
measurements. In that case, noise power increases S2-fold,
limiting the SNR improvement to 10 log10(S2), e.g., ∼12 dB
at 4× SR. In prospective demonstrations with an LR SM
measured using a large MNP sample, further benefits were
observed due to improved SNR. An imaging system with
robust mechanical positioning might further permit prospec-
tively sampled LR SMs to be used for model training. Alter-
natively, a hybrid SM calibration can be performed to measure
the MNP response via a magnetic particle spectrometer (MPS)
where sample position is emulated using an offset field [16],
or physical movement of the sample can be avoided via
homogeneous focus fields to move the FFR [57]. Such SM
measurements might also be super-resolved with TranSMS for
further increasing the achievable resolution in HR SM.

Here, we observe that HR SM recovery performance is
higher in simulated versus experimental data, likely due to sev-
eral factors. First, retrospective sampling of LR SM limits SNR
benefits on experimental data. While non-stationary system
parameters between separate measurements including spatial
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Fig. 14. Phantom images for the in-house dataset based on prospec-
tively versus retrospectively recovered HR SMs are shown along with the
benchmark reconstruction using the reference HR SM. The upper tube
is 23-mm long, the lower tube is 21-mm long with a 5-mm-long central
stenosis region of 1-mm inner radius (1 pixel : 2 mm).

misalignment render quantitative evaluations of prospective
sampling challenging, our preliminary results suggest further
improvements in this case. Second, the training sets are
relatively compact for experimental datasets due to practical
limitations regarding SM measurement, whereas the simulated
dataset compiles a diverse collection of SMs that helps boost
performance of learning-based models. The ablation study on
training set size suggests diminishing returns beyond a certain
number of training samples, yet future work is warranted
to find the precise number of SMs needed for near-optimal
performance in experimental datasets. Third, our simulations
do not consider nonidealities such as relaxation that can lower
task difficulty. Other influential factors include SF gradient
strength that controls the spatial rate of change in SM, and
MNP diameter that alters sensitivity to magnetic field and
broadening of the response from FFR. In this work, we find
elevated SM recovery errors at relatively high frequency
components that show high spatial frequency information. This
observation implies that factors that increase spatial resolution
would also elicit increased task difficulty. Thus, in theory, task
difficulty should elevate with higher SF gradients and larger
MNP diameters.

All methods naturally show performance degradation
towards higher SR factors as the spatial information in input
measurements is constrained. For each method, performance
becomes notably poor (e.g., >50% nRMSE, <10dB PSNR)
beyond an SR factor, which inevitably depends on the char-
acteristics of SM measurements and varies across datasets.
Yet, TranSMS generally shows higher resilience than compet-
ing methods against high SR factors. CS theory guarantees
signal recovery for a near-isometric sampling matrix, and the
recovery error depends critically on the number of measure-
ments and SNR level. Here, we observe that CS performs
competitively at 2× SR (i.e., 4-fold acceleration), albeit poorly
at 4×-8× SR (i.e., 16-fold to 64-fold acceleration). Our
results are aligned with a recent study that assumes similar
measurement SNRs for 2D imaging [21]. While performant
recovery using CS has been reported for 3D imaging under
higher SNRs [19], [26], different imaging scenarios are con-
sidered here. In Open MPI, we observed that 2d-SMRnet
shows relatively higher performance differences between the
two analyses that examine SF and MNP variability versus
temporal variability compared to other methods. This could
reflect an interaction between the sampling scheme and the
training set. 2d-SMRnet uses strided LR SMs, and other
methods use box-car downsampled LR SMs. In Open MPI,
the training and test sets that we used for temporal variability

analysis were collected under matching system parameters.
In contrast, the training set that we used for SF and MNP
variability analysis were collected with half-pixel shifts in the
sampling grid, differing from the data that we used for the
test set. The half-pixel shift during SM acquisition generates
spatially overlapping measurements in the latter case, which
does not strictly obey the downsampling model that TranSMS
assumes. In contrast, these overlaps are not a concern for
the strided measurements used by 2d-SMRnet. These differ-
ences likely contribute to the relative performance boost for
2d-SMRnet.

Prior CS methods for accelerated MPI calibration perform
randomly undersampled HR SM measurements with a small
MNP sample, and recover SM by enforcing sparsity in a
transform domain [17], [19]. In contrast, TranSMS performs
LR SM measurements with a large MNP sample to improve
measurement SNR, and a data-driven recovery is performed
between LR and HR SM instead of relying on sparsity
assumptions. An alternative for accelerated calibration is based
on SR. In [22], HR SM measurements are uniformly sub-
sampled in a strided fashion, and HR SM is then recovered
via a CNN. In [13], an LR SM is supplemented via an
analytically-simulated HR SM, and a nonlinear optimization
problem is solved to directly reconstruct an MPI image.
Instead, we perform LR SM measurements with large MNP
samples to improve SNR efficiency, we rely solely on mea-
sured SMs for reliability against system imperfections, and we
leverage a novel vision transformer for SM recovery.

It is possible to adopt the sampling strategy of TranSMS
in previous CS- and SR-based methods. Note, however, that
CS relies on measurements with incoherent interference in
the sparsifying-transform domain. Large MNP samples would
result in more structured spatial sampling, elevating coherence
and degrading recovery. On the other hand, learning-based SR
methods such as 2d-SMRnet can benefit from improved SNR
efficiency due to large MNP samples similar to TranSMS.

Voxel-sized undiluted MNP samples help improve SNR
during calibration. Instead, clinically admissible intravenous
administration of MNPs result in notably lower concentration
per voxel during imaging. Particle interactions may alter
MPI signal characteristics for highly concentrated samples,
eliciting a discrepancy between calibration and imaging exper-
iments [58]. Because TranSMS enables SNR benefits due to
larger MNP sample spanning an LR voxel, it might mitigate
this issue by allowing calibration with diluted MNP samples.

Several developments can improve performance of
TranSMS. TranSMS can be trained to perform SR on
multiplexed LR SM measurements with multiple MNP
samples to further calibration efficiency [21]. Instead of using
a uniformly filled LR voxel, optimizing the spatial distribution
within an LR voxel could also increase the level of spatial
information captured during calibration, and thereby improve
SM recovery. Furthermore, measuring HR SM with larger
MNP samples can increase SNR of reference images used
to train TranSMS. However, the measured HR SM would
be blurred due to box-car downsampling, so the DC module
would have to be modified and deconvolution would be
required to resolve HR SM at the intended resolution.
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VII. CONCLUSION

In this work, we introduced a novel MPI calibration
approach that captures an LR SM with up to 64-fold larger
MNP sample that spans across an LR voxel for improving
measurement SNR. A novel transformer model is then lever-
aged to sensitively recover HR SM. TranSMS achieves lower
error in SM recovery and higher quality in image recon-
struction compared to state-of-the-art CS and SR methods.
Therefore, it is a promising candidate to improve practicality
of MPI.

APPENDIX

Proof: Let us first define εi = √
mσi , ci = a − ãi and

b̃i = bi − Dãi . The associated Lagrangian is,

L(ci , λ) = �ci�2
2 − λ

(
ε2

i − �Dci − b̃i�2
2

)
. (27)

Considering the Lagrangian function, we get two conditions.
In the first case, if �b̃i�2 ≤ εi , then ci = 0 and âi = ãi . In the
second case, we get the optimality conditions as:

0 = ci + λDT
(

Dci − b̃i

)
, ε2

i = �Dci − b̃i�2
2 (28)

Now using Eq. (28),

λDT b̃i =
(
λDT D + I

)
ci , (29)

ci = λ
(
λDT D + I

)−1
DT b̃i . (30)

Using the Woodbury matrix identity and DDT = I:

ci = λ/(λ + 1)DT b̃i . (31)

Now, let us put ci back into Eq. (28):

ε2
i = �λ/(λ + 1)DDT b̃i − b̃i�2

2, (32)

λ/(λ + 1) = 1 − ε/�b̃i�2 (33)

Finally, the result becomes:
ci =

(
1 − εi/�b̃i�2

)
DT b̃i , (34)

âi = ãi +
(

1 − √
mσi/�b̃i�2

)
DT b̃i . (35)
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