
Circuit Theory

Basic Circuit Analysis

• Skip to Sec. 2.2 → Connection Constraints → KCL, KCVL

• Kirchhoff’s Current Law (KCL) based on Nodes

• Kirchhoff’s Current Law : Algebraic sum of currents entering any

node is zero.

• Some books use leaving convention. Its essentially the same.

• Physical Reason : conservation of charge. → rate of change of total

charge at any node is zero → KCL

• Example on p. 21-22, Fig. 2-11

• A: −i1 − i2 = 0, B: i1 − i3 − i4 + i5 = 0, C: i2 + i3 + i4 − i5 = 0,

• Linear dependence : A set of equations are linearly dependent if a

linear combination of them is exactly zero. → some equations can be derived

from the others, hence unnecessary.

• Example : L1 : x1 + x2 = 1, L2 : 2x1 + 2x2 = 2 → 2L1 - L2= 0 →
L1 and L2 are linearly dependent. → One equation is redundant.

• In the above example, we have A+ B + C = 0.

• Conclusion : All node equations are linearly dependent
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• Question : Assume that there are n nodes. How many node KCL

equations are linearly independent ?

• Any n− 1 of KCL node equations are linearly independent.

• Exercise 2.1 on p. 23, Fig. 2-12

• A: −i1 − i2 = 0, B: i2 − i3 − i4 = 0, C: i4 − i5 − i6 = 0, D:

i1 + i3 + i5 + i6 = 0

• Check that A+ B + C + D = 0.

• Given i1 = −1 mA, i3 = 0.5 mA, i6 = 0.2 mA → i2 = 1 mA (from

A), i4 = 0.5 mA (from B), i5 = 0.3 mA (from C).

• An alternative view of KCL : Take any spherical volume, place it inside

the circuit. Algebraic sum of currents entering to the volume is zero.

• Physical Reason : conservation of charge in any volume.

• Place the volume around any node → KCL node equation.

• Matrix Formulation : KCL equations can be written in matrix form

as Ai = 0. Here, A is called incidence matrix, i is a vector containing all

currents.
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•




−1 −1 0 0 0

1 0 −1 −1 1

0 1 1 1 −1







i1

i2

i3

i4

i5




= 0

• Due to redundancy, we may delete any row of matrix A.

• Kirchhoff’s Voltage Law (KVL) based on Loops

• Loop : A closed path formed by tracing through an ordered sequence

of nodes without passing any node more than once.

• Closed path : starts and end at the same node.

• Closed node sequence : Same as loop, without the “passing any node

more than once” requirement → actually union of loops.

•Kirchhoff’s Voltage Law : Algebraic sum of voltages around any loop

(or any closed node sequence) is zero.

• Physical Reason : Due to conservative field, the potential difference

between point A nd A is zero...The work done by moving a unit charge from

point A to A is zero...

• Let A−B−C− ...−A be the nodes in the loop....wA−A = 0 → wA−A =

wA−B + wB−C + ... → dwA−A/dq = 0 → dwA−B/dq + dwB−C/dq + .... = 0 →
vA−B + vB−C + .... = 0
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• Example on p. 24, Fig. 2-13

• Loop 1 : −v1 + v2 + v3 = 0, Loop 2 : −v3 + v4 + v5 = 0, Loop 3 :

−v1 + v2 + v4 + v5 = 0

• Example 2-5 on p. 24, Fig. 2-13

• v1 = 5 V, v2 = −3 V, v4 = 10 V →

• Loop 1 → v3 = 8 V , Loop 2 → v5 = −2 V .

•Question : Do we need all of these loop equations ? → Are they linearly

independent?

• Loop 1 + Loop 2 − Loop 3 = 0.

• All loop equations are linearly dependent. → How many loop equations

do we need ?

• b : number of two terminal elements, n : number of nodes → There are

b− n + 1 linearly independent loop equations...→ Meshes ....

• Matrix Formulation : KVL equations can be written in matrix form

as Bv = 0. Here, B is called loop matrix, v is a vector containing all voltages.

•




−1 1 1 0 0

0 0 −1 1 1

−1 1 0 1 1







v1

v2

v3

v4

v5




= 0
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• Skip to Sec. 2.1 → Element Constraints

• Element constraints are algebraic or differential relations between ter-

minal voltage(s) and current(s) of the device in question.

• Resistors : Defined by an algebraic relation between terminal v and

i.

• Linear Resistor :algebraic relation is linear → av + bi = 0

i

v

i

R
(G)

+

−

v

+

−

v

i=0

−

v

+

=0

i

+

−

• a 6= 0 → v = Ri → R : Resistance → unit : Ohm Ω → Ohm = V/A.

• b 6= 0 → i = Gi → G : Conductance → unit : Siemens S → Siemens

= A/V .
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• if G 6= 0 → R = 1/G, if R 6= 0 → G = 1/R,

• a = 0, b 6= 0 → i = 0 ( v is arbitrary) → Open Circuit.

• a 6= 0, b = 0 → v = 0 ( i is arbitrary) → Short Circuit.

• Ideal Switch A switch which changes between open and short circuits...

• Practical Switch has a small resistance when short and large resistance

when open...

• RS =





Rs short

Ro open

R1
R2
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• Ideal Sources : Generates power for the circuit...

E

Rs

i

v

−

+

i

v

−

+
I Rp

E, vs

i

I,isv

−

+

• Ideal Current Sources : i = I (DC source), or i = is(t) ( a given time

function).

• Ideal Voltage Sources : v = E (DC source), or v = vs(t) ( a given

time function).

• Practical Current Sources : An ideal current source parallel to a

linear resistor i = v/Rp + is

• Practical Voltage Sources : An ideal voltage source series to a linear

resistor v = Rsi + vs
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• Skip to Sec. 2.3 → Combined Constraints

• When we write KCL + KVL + Element constraints → Combined con-

straints.

• Assume that we have n nodes and b elements. Each element has its v and

i as unknowns → 2b unknowns. Need that many linearly independent

equations.

• How many equations do we have ?

• KCL equations → n− 1

• KVL equations → b− n + 1

• Element Constraints : b

• Total Equations : 2b.

• If all of these equations are linearly independent → circuit has a unique

solution.

• Example 2.8 on p. 29-30, Fig. 2-21

• unknowns → vA, iA, v1 , i1, v2, i2 → 6.

• KCL equations → A : −iA − i1 = 0, B : i1 − i2 = 0

• KVL equations → Loop 1 −vA + v1 + v2 = 0

• Element Constraints : D1 : vA = V0, D2 : v1 = R1i1, D3 : v2 = R2i2,
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• V0 = 10 V , R1 = 2 KΩ, R2 = 3 KΩ

• KCL equations → −iA = i1 = i2 = i

• KVL + Element Constraints →
• V0 = (R1 + R2)i → i = V0/(R1 + R2) = 2 mA

• Can find the rest of the variables by using i.

• Tableau Equations

• Write KCL+ KVL + Element Constraints in matrix form...

• KCL → Ai = 0

• KVL → Bv = 0

• Element Constraints → Mv + Ni = u → M and N depends on

resistors, u depends on sources.

•




B 0

0 A

M N







v

i


 =




0

0

u




→ Tx = us

• If T is invertible → x = T−1us.

• If T is not invertible → circuit either has no solution, or have infinitely

many solutions...
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• Sec. 2.4 → Equivalent circuits

• Two circuits are said to be equivalent if they have identical i−v relation

between a specified pair of terminals.

• Result : The electrical behaviour inside the rest of the circuit will

not change if we replace two identical circuits connected to it.

• Equivalent Resistance : Series Combination : (Fig. 2.25 and Fig

2.35).

• KCL : i = i1 = i2 = i3, KVL : v = v1 + v2 + v3,

• Elements : vj = Rjij, j = 1, 2, 3

• → v = (R1 + R2 + R3)i → v = Reqi, Req = R1 + R2 + R3

• Equivalent Resistance : Parallel Combination : (Fig. 2.26 and

Fig. 2.41).

• KCL : i = i1 + i2 + i3, KVL : v = v1 = v2 = v3,

• Elements : vj = Rjij, → ij = Gjvj j = 1, 2, 3

• → i = (G1 + G2 + G3)v → i = GeqV, Geq = G1 + G2 + G3

• → 1
Req

= 1
R1

+ 1
R2

+ 1
R3
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• j = 2 → 1
Req

= 1
R1

+ 1
R2
→ Req = R1R2

R1+R2
(Fig. 2.26)

• Voltage Sources in series : (Fig. 2.34)

• KCL : i = i1 = i2, KVL : v = v1 + v2, Elements : v1 = V1, v2 = V2

• → v = Veq = V1 + V2

• Current Sources in parallel : (Fig. 2.34)

• KCL : i = i1 + i2, KVL : v = v1 = v2, Elements : i1 = I1, i2 = I2

• → i = Ieq = I1 + I2

• Equivalence of practical sources : (Fig. 2.29)

• Practical Current Source :i = v/Rp + is, Practical Voltage Source :

v = Rsi + vs

• Equivalence when Rp = Rs, vs = −Rpis

• → Thevenin-Norton equivalent circuits

• A Voltage source parallel to a resistor case : (Fig. 2.32)

• v = vs → Resistance can be omitted !

• A Current source series to a resistor case : (Fig. 2.33)
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• i = is → Resistance can be omitted !

• Sec. 2.5 → Voltage and Current Division :

• Voltage Division : (Fig. 2.35)

• → v = Reqi, Req = R1 + R2 + R3, i = i1 = i2 = i3,vj = Rjij

• → vj = Rj

R1+R2+R3
v (Note that v = vs).

• Current Division : (Fig. 2.41)

• → i = Geqv, Geq = G1 + G2 + G3, i = i1 + i2 + i3,ij = Gjvj

• → ij = Gj

G1+G2+G3
i (Note that i = is).

• → For 2 resistors →, i1 = G1

G1+G2
i = R2

R1+R2
i (Fig. 2.42)

• → For 2 resistors →, i2 = G2

G1+G2
i = R1

R1+R2
i

• Sec. 2.6 → Circuit Reduction

• Sometimes, by replacing certain parts of a given circuits by their equiv-

alent circuits, by using series/parallel combinations, we may simplify a given

circuit. This is called circuit reduction technique. Works in some simple cir-
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cuits, and some parts of complicated circuits, but may not be applicable to

some complex circuits. Typical application → ladder circuits, see Fig. 2.48.

• Example 2.22, p. 49-50

• Note that not all resistors are linear. A typical example is a diode, which

is a nonlinear resistor. (i = Is(e
v/vT − 1)). This model can be simplified

(piecewise linear-switch)

• A resistor is called passive if we have p = vi ≥ 0 for all possible cases.

Otherwise, it is called active.

• A resistor is called time varying, if its i − v behaviour changes with

time.

• A resistor is called bilateral, if nothing changes when we replace the

terminal connections → its i − v relation is symmetric with respect to the

origin.
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