
Circuit Theory

Chapter 3 : Circuit Analysis Techniques

• Node Analysis: =⇒. Variables are node voltages.

• Choose a DATUM NODE (Ground) → Arbitrary node. Let us assume

that this node is node G.

• Let A be any other node. Then the node voltage of A, denoted as vA is

the potential difference between nodes A and G, + side being at node A, −
side being at G.

• Example : Fig. 3.2. Let A, B, G be arbitrary nodes, G being

ground. Let v1 be the voltage between nodes A and B, + side being at node

A, − side being at node B.

• KVL : v1 = vA − vB.

• Proof : Choose the loop between the nodes (sequence) A-B-G-A.

Loop equation → v1 + vB − vA = 0 → v1 = vA − vB.

• Remark 1 : vG = vG − vG = 0 according to this definition.

• Remark 2 : This form of KVL is equivalent to KVL for loops.
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• Basic Idea : We have Combined Constraint Equations : KCL + KVL

+ Element Relations.

• Use Node Voltages as basic variables (there are n − 1 of them). By

using KVL, express each element voltage in terms of node voltage. By using

Elemnet Relations, express element currents in terms of node voltages. Use

them in KCL equations (there are n− 1 of them).

• Result : If everything goes right, we will have n− 1 equations in terms

of n−1 node voltages. If something goes wrong, we will modify this technique

→ Modified Node Analysis.

• Simplest Case : Circuits with Independent Current Sources and Re-

sistors only.

• Basic Steps :

• Step 1 : Choose a Reference Node (Datum = Ground). Specify refer-

ence directions for element currents and hence voltages. Now we can write

each element voltage in terms of node voltages.

• Step 2 : Write KCL equations at all nodes except for the reference

node.

• Step 3 : Use element relations (i.e. i = Gv, i− I) to express currents

in terms of node voltages.
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• Step 4 : Substitute these in KCL equations.

• Result : We will have n− 1 equations in terms of n− 1 node voltages.

• Example : See Fig. 3-4.

• Step 1 : Choose G as the ground node. Choose the reference directions.

Then we have by KVL : v1 = vA, v2 = vA − vB, v3 = vB.

• Step 2 : KCL at A : −i1 − i2 − i0 = 0, at B : i2 − i3 = 0.

• Step 3 : Element Relations : i0 = −is, i1 = G1vA, i2 = G2(vA − vB),

• i3 = G3vB

• Step 4 : KCL at A : is − (G1 + G2)vA + G2vB = 0

• KCL at B : G2vA − (G1 + G2)vB = 0

• These equations can equivalently be written as :

• Step 4 : KCL at A : (G1 + G2)vA −G2vB = is

• KCL at B : −G2vA + (G2 + G3)vB = 0

•



(G1 + G2) −G2

−G2 (G2 + G3)







vA

vB


 =




is

0
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• Example : See Fig. 3-5.

• Step 1 : Choose G as the ground node. Choose the reference directions.

Then we have by KVL : v1 = vA − vB, v2 = vA − vC , v3 = vB, v4 = vC .

• Step 2 : KCL at A : −i1 − i2 + i0 = 0, at B : i1 + i5 − i3 = 0,

• at C : i2 − i4 − i5 = 0.

• Step 3 : Element Relations : i0 = is1, i1 = G1(vA − vB),,

• i2 = G2(vA − vC), i3 = G3vB, i4 = G4vC , i5 = is2

• Step 4 : KCL at A : is1 − (G1 + G2)vA + G1vB + G2vC = 0

• KCL at B : G1vA − (G1 + G3)vB + is2 = 0

• KCL at C : G2vA − (G2 + G4)vC − is2 = 0

• These equations can equivalently be written as :

• Step 4 : KCL at A : (G1 + G2)vA −G1vB −G2vC = is1

• KCL at B : −G1vA + (G1 + G3)vB = is2

• KCL at C : −G2vA + (G2 + G4)vC = −is2

•




(G1 + G2) −G1 −G2

−G1 (G1 + G3) 0

−G2 0 (G2 + G4)







vA

vB

vC




=




is1

is2

−is2
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• We can write these equations (in the simple case) in matrix form as :

• Gv = u

• G : Conductance (admittance matrix) It is n− 1× n− 1. v is the

vector of node voltages. u is the current source vector.

• Basic Properties : Writing by inspection

• Gii : + (sum of conductances connected to node i)

• Gij, i 6= j : - (sum of conductances connected directly between

nodes i and j)

• Result : Since Gij = Gji, i 6= j, G is a symmetric matrix.

• u(i) : + (sum of independent current sources entering to node i)

• Example : See Fig. 3-6.

•



(G1 + G2) −G2

−G2 (G2 + G3 + G4)







vA

vB


 =




is1 − is2

is2




• Example : See Fig. 3-7.

•




2.5G −0.5G −2G

−0.5G 3G −0.5G

−2G −0.5G 3.5G)







vA

vB

vC




=




is

0

0
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• What happens when we have voltage sources as well ? → modify

the same idea.

• Example : See Fig. 3-11.

•Case 1 : If a voltage source is in series with a resistor→ use equivalence

(see previous lecture notes)

• Example : See Fig. 3-12.

• After the equivalence transformation→ (G1+G2+G3)vA = G1vs1+G2vs2

• → vA = v0 =
G1vs1+G2vs2
G1+G2+G3

• → Can find any remaining voltage/current by KCL/KVL. e.g. v1 =

vs − v0, i1 = G1v1, etc...

• Case 2 : If a voltage source is not in series with a resistor → We may

choose one end of the voltage source as Reference Node...

• Do not write Node equation at node A. There remains n−2 nodes, write

Node Equations for these as usual. → We get n− 2 equations + vA = vs →
We can find all the node voltages....

• Example : See Fig. 3-13.

• Do not write KCL at A. We have vA = vs

• KCL at B : −0.5GvA + 3GvB − 0.5GvC = 0

• KCL at C : −2GvA − 0.5GvB + 3.5GvC = 0
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•



3G −0.5G

−0.5G 3.5G







vB

vC


 =




0.5Gvs

2Gvs


 →




vB

vC


 =




0.2683vs

0.6098vs




• iin = 0.5G(vA − vB) + 2G(vA − vC)

= G(0.5− 0.2683 + 2− 2× 0.6098)vs = 1.1463Gvs

• Rin = vs
iin

= 0.8724R

• Case 3 : If a voltage source is not in series with a resistor and we

cannot (or don’t want) choose one end of the voltage source as Reference

Node...

• Sum the KCL equations for both nodes of voltage source → Current of

the voltage source cancels → Supernode .....

• Example : See Fig. 3-14.

• Call the current of the voltage source vs1 as ix.

• KCL at A : −i1 − i2 − ix = 0, KCL at C : ix − i3 − i4 = 0

• -A -B : i1+ i2+ i3+ i4 = 0 (Could also be obtained by using the Gaussian

Volume ..)

• G1vA + G2(vA − vB) + G3(vC − vB) + G4vC = 0

• vB = vs2, → (G1 + G2)vA + (G3 + G4)vC = (G2 + G3)vs2

• KVL at A and C → vA − vC = vs1

• Two equations and two unknowns.....
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• Mesh Analysis: =⇒. Variables are mesh currents.

• Planar Circuit : A circuit which can be drawn on a plane such that

two elements only cut themselves at nodes.

• Mesh : Given a planar circuit, a mesh is a loop which does not contain

any element inside. See Fig. 2.16.

• Fact : Given a planar circuit which has b two terminal elements, n

nodes, there are exactly b− n + 1 meshes.

• Mesh Current : In each mesh, define a circulation direction, necessary

to write KVL equation. To this direction, assign a circulating current, which

is called mesh current.

• Note that mesh current is conceptually dual of node voltages. But they

are not as natural, because node voltages can be measured easily, whereas

mesh current is basically a variable which simplifies analysis. In most of the

cases, they cannot be measured directly, but computed by using some element

currents.

• Mesh currents are either element currents, or can be written in terms of

element currents. Conversely, each element current can be written in terms

of mesh currents.
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• As a convention, we will choose clockwise circulation direction for defin-

ing mesh currents. It will simplify the analysis.

• If a branch current ix is common between mesh A and mesh B, and its

reference direction is in the same direction for mesh current A : iA and hence

necessarily in the opposite direction for the mesh current B : iB ( due to

clockwise direction convention) −→ ix = iA − iB

• Hence any element current, therefore KCL equations can be written in

terms of mesh currents.

• Basic Idea : We have Combined Constraint Equations : KCL + KVL

+ Element Relations.

• Use Mesh currents as basic variables (there are b − n + 1 of them).

By using KCL, express each element current in terms of mesh currents. By

using Element Relations, express element voltages in terms of mesh currents

(e.g. v = Ri). Use them in KVL equations (there are b− n + 1 of them).

• Result : If everything goes right, we will have b− n−+1 equations in

terms of b − n + 1 mesh currents. If something goes wrong, we will modify

this technique → Modified Mesh Analysis.

• Simplest Case : Circuits with Independent Voltage Sources and Re-

sistors only.
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• Basic Steps :

• Step 1 : Choose meshes. Specify reference directions for element cur-

rents and hence voltages. Now we can write each element current in terms of

mesh currents.

• Step 2 : Write KVL equations at all meshes.

• Step 3 : Use element relations (i.e. v = Ri, v = E to express voltages

in terms of mesh currents.

• Step 4 : Substitute these in KVL equations.

• Result : We will have b − n + 1 equations in terms of b − n + 1 mesh

currents.

• Example Fig. 3-18

• Step 1 : Choose meshes A and B as given in the figure and assign the

mesh currents iA and iB. Now we have i1 = iA, i2 = iB, i3 = iA − iB.

• Step 2 : KVL at mesh A : v1 +v3−v0 = 0, at mesh B : v2 +v4−v3 = 0.

• Step 3 : Element Relations : v0 = vs1, v1 = R1iA, v2 = R2iB,

• v3 = R3(iA − iB) , v4 = vs2

• Step 4 : KVL at mesh A : −vs1 + (R1 + R3)iA −R3iB = 0

• KVL at mesh B : −R3iA + (R1 + R3)iB + vs2 = 0
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• These equations can equivalently be written as :

• Step 4 : KVL at mesh A : (R1 + R3)iA −R3iB = vs1

• KVL at B : −R3iA + (R1 + R3)iB = −vs2

•



(R1 + R3) −R3

−R3 (R3 + R2)







iA

iB


 =




vs1

−vs2




• Example Fig. 3-24

• Step 1 : Choose meshes A and B as given in the figure and assign the

mesh currents iA and iB. Now we have i3 = iA, i4 = i5 = iB, i6 = iA − iB.

• Step 2 : KVL at mesh A : v3 + v6 + v2 − v1 = 0, at mesh B : v4 + v5 −
v2 − v6 = 0.

• Step 3 : Element Relations : v3 = 2RiA, v4 = RiB, v5 = 2RiB,

• v6 = 2R(iA − iB)

• Step 4 : KVL at mesh A : 4RiA − 2RiB = v1 − v2

• KVL at mesh B : −2RiA + 5RiB = v2

•



4R −2R

−2R 5R







iA

iB


 =




v1 − v2

v2




• 8RiB = v1 + v2 → v0 = 2RiB =
v1+v2

4
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• We can write these equations (in the simple case) in matrix form as :

• Ri = u

• R : Resistance (impedance matrix) It is b− n + 1× b− n + 1. i is

the vector of mesh current vector. u is the voltage source vector.

• Basic Properties : Writing by inspection

• Rii : + (sum of resistances in the mesh i)

• Rij, i 6= j : - (sum of resistances connected directly between

meshes i and j)

• Result : Since Rij = Rji, i 6= j, R is a symmetric matrix.

• u(i) : Algebraic sum of independent voltage sources in the mesh

i; if first − terminal is encountered in clockwise direction, that source enters

the sum with + sign; otherwise with − sign.

• Example : See Fig. 3-19.

•




R1 + R2 0 −R2

0 R3 + R4 −R3

−R2 −R3 R2 + R3







iA

iB

iC




=




−vs2

vs2

−vs1
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• Mesh Equations with Current Sources :

• We have 3 different cases :

• Case 1 : If a current source is in series with a resistor→ simplify....

• Case 2 : If a current source is in only one mesh → that mesh

current is already known. Hence write the remaining mesh equations.

• Case 3 : If a current source is between two meshes → We can

combine these two mesh equations into a single mesh equation → supermesh

• See Fig. 3.20. Let vx be the voltage of the branch of the current

source

• Mesh A : .... + vx + .... = 0, Mesh B : ....− vx + .... = 0

• Mesh A + mesh B : vx is eliminated ...Supermesh equation...

• We need one more equation → iA − iB = is...

• We again get b− n + 1 equations and that may unknowns...

• Example 3.8: Fig. 3.21

• Regular Way: Note that iC = −2 mA

• Use resistors as KΩ, voltages as Volts → Currents as mA ...

• Mesh A : 6iA − 2iB = 5, Mesh B : −2iA + 11iB − 4iC = 0

• → −2iA + 11iB = 4iC = −8
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• Two equations, two unknowns....

• By circuit reduction: Replace Current source and resistor parallel

combination with the voltage source series with the resistor one as shown in

Fig. 3.21b

• Mesh A : 6iA − 2iB = 5, Mesh B : −2iA + 11iB = −8

• Same equations ...Solve them ...iA = 0.6290 mA, iB = −0.6129 mA

• → i0 = iA − iB = 1.2419 mA.

• Example 3.9: Fig. 3.22

• Note that iA = is1, is2 forms a supermesh between meshes B and C.

•Mesh B + Mesh C : Supermesh : R1(iB−iA)+R2iB+R4iC+R3(iC−iA) =

0

• Mesh B + Mesh C : −(R1 + R3)iA + (R1 + R2)iB + (R3 + R4)iC = 0

• → (R1 + R2)iB + (R3 + R4)iC = (R1 + R3)is1

• iB − iC = is2 −→ iB = iC + is2

• (R1 + R2 + R3 + R4)iC = (R1 + R3)is1 − (R1 + R2)is2

• v0 = R4iC = R4
(R1+R3)is1−(R1+R2)is2

(R1+R2+R3+R4)
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• Linear Circuits: =⇒ Superposition, Thevenin, Norton equivalent Cir-

cuits.

• A circuit is called linear if it contains linear elements + independent

sources...

• Circuit equations : Combined Constraints

KCL : Ai = 0

KVL : Bv = 0

Element : Mv + Ni = u

−→




0 A

B 0

M N







v

i


 =




0

0

u




• Resulting equations are linear : −→ Tw = us

• T : An 2b × 2b matrix which depends on circuit elements. but not on

independent sources, w: a 2b vector of unknowns, us : a 2b vector which

depends only on the independent sources.

• Consequences of linearity :

• Homogeneity : f(αx) = αf(x) , α ∈ R

• Additivity : f(x1 + x2) = f(x1) + f(x2)

• Typical Example : Linear Functions : → f(x) = Ax in our case

f(w) = Tw
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• Homogeneity : us → w ⇒ αus → αw

• Proof : us → w ⇒ Tw = us

• αTw = αus = Tαw ⇒ αus → αw

• Circuit interpretation

a ix

a vx

a is2

a vs1

−

+

vs1

is2

ix

vx

−

+

• Note that all independent sources must be multiplied by the same con-

stant.

• Additivity : us1 → w1, us2 → w2 ⇒ us1 + us2 → w1 + w2,

• Proof : us1 → w1, us2 → w2 ⇒ Tw1 = us1, Tw2 = us2

Tw1 + Tw2 = T (w1 + w2) = us1 + us2 ⇒ us1 + us2 → w1 + w2,
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• Circuit interpretation

is1+is2

vs1+vs2

is2

vs2

is1

vs1

ix2

ix1+

vx2
vx1+

−

+

ix2

vx2

−

+

ix1

vx1

−

+
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• Superposition :

• is a consequence of linearity and hence the ideas given above. Assume

that the source vector us is given as below (for simplicity, we assume that we

have only one voltage source vs1 and one current source is1) :

• us =




0

...

vs1

is1




=




0

...

vs1

0




+




0

...

0

is1




= us1 + us2 −→ Tw = us

• Note that for us1, only vs1 is operational → is1 = 0 → is1 is OPEN

CIRCUIT.

• Similarly, for us2, only is1 is operational → vs1 = 0 → vs1 is SHORT

CIRCUIT.

• us1 → w1, us2 → w2 ⇒ Tw1 = us1, Tw2 = us2

Tw1 + Tw2 = T (w1 + w2) = us1 + us2 = us

⇒ us = us1 + us2 → w = w1 + w2,
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• Circuit interpretation

vx=vx1+vx2

ix=ix1+ix2

(vs1=0)

(is1=0)
ix

vx

is1

is1

vs1

vs1

−

+

ix2

vx2

−

+

ix1

vx1

−

+
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• Example Fig. 3.31, p. 98..

• Direct Way : Use any method (node, mesh analysis)

• Node Eqn. at A : is = G2vA + G1(vA − vs) → (G1 + G2)vA = is + G1vs

• vA = v0 = 1
G1+G2

is + G1
G1+G2

vs = R1R2
R1+R2

is + R2
R1+R2

vs

• Superposition :

• Step 1 : Set is = 0 → OPEN CIRCUIT...

• Voltage Divider → v01 =
R2

R1+R2
vs

• Step 2 : Set vs = 0 → SHORT CIRCUIT...

• Current Divider → i02 =
R1

R1+R2
is → v02 = R2i02 =

R1R2
R1+R2

is

• Step 3 : v0 = v01 + v02 =
R1R2

R1+R2
is + R2

R1+R2
vs

• Example Find v2, node voltage 2, for the following circuit..

43

R1

R R

R
2

1

2 3v
s1

vs2

−+ + |
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• Superposition :

• Step 1 : Set vs2 = 0 → SHORT CIRCUIT...

• Result : R1 ‖ R2, R3 ‖ R4

•Voltage Divider→ v01 =
R3‖R4

(R1‖R2)+(R3‖R4)
vs1 = R3R4(R1+R2)

R1R2(R3+R4)+R3R4(R1+R2)
vs1

• Step 2 : Set vs1 = 0 → SHORT CIRCUIT...

• Result : R1 ‖ R3, R2 ‖ R4

•Voltage Divider→ v02 =
R1‖R3

(R1‖R3)+(R2‖R4)
vs2 = R1R3(R2+R4)

R1R3(R2+R4)+R2R4(R1+R3)
vs2

• Step 3 : v0 = v01 + v02 = K1vs1 + K2vs2

• In general, if we have a linear circuit with n independent voltage sources

vs1, . . . , vsn and m independent current sources is1, . . . , ism, if y denotes an

arbitrary branch voltage or current...

• y = K1vs1 + . . . + Knvsn + H1is1 + . . . + Hmism

• Here Ki and Hj are constants which depends only on the circuit elements

but not on the independent sources themselves...
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• Thévenin and Norton Equivalent Circuits :

• Here N is any circuit (which may be nonlinear, L is any linear circuit.

The total circuit is assumed to have unique solution.

N
I

N
G

i

v
−

+ N

TV
TR

i

v
−

+
N

NL +

−
v

i

• vT : Thévenin equivalent voltage source, RT : Thévenin equivalent re-

sistance, iN : Norton equivalent current source, GN : Norton equivalent con-

ductance.

• v = RT i + VT , i = GNv − iN → i = v/RT − VT/RT

• Hence Thévenin and Norton equivalent circuits are equivalent to each

other if RN = RT , iN = VT/RT
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• Proof of Thévenin equivalent circuit :

T= Voc

=0

TR

i

v
−

+

i

v
−

+
i

v
−

+L

• Because of unique solvability, we can replace N by a current source

(this is called substitution). This circuit is uniquely solvable. Hence apply

superposition :

• v = K1i+( contribution of sources inside L)

• K1 = RT , VT = contribution of sources inside L.

• How to find RT ? Set VT = 0 → all sources inside L to zero (voltage

sources OPEN, current sources SHORT), then v = K1i → K1 = RT = v/i

• How to find VT ? Set i = 0 → OPEN CIRCUIT L. Find voc We have

VT = voc.

• Hence Thévenin equivalent circuit is a direct consequence of superposi-

tion and unique solvability....
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• Proof of Norton equivalent circuit :

N
i

sci

v = 0

NG

−

+

i

v
−

+
i

v
−

+L

• Because of unique solvability, we can replace N by a voltage source

(this is called substitution). This circuit is uniquely solvable. Hence apply

superposition :

• i = H1v+( contribution of sources inside L)

• H1 = GN , iN = − contribution of sources inside L.

• How to find GN ? Set iN = 0 → all sources inside L to zero (voltage

sources OPEN, current sources SHORT), then i = H1v → H1 = GN = i/v

• How to find iN ? Set v = 0 → SHORT CIRCUIT L. Find isc We have

iN = −isc.

• Hence Norton equivalent circuit is a direct consequence of superposition

and unique solvability....
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• Example : Fig 3.39, p.104

• Direct Way :

• Node eqn a X : (vX − 15)/5 + (vX − v)/15 + (vX)/10 = 0

• ⇒ (11vX)/30 = 3 + v/15 ⇒ vX = (2v + 90)/11

• ⇒ v = 15i + vX ⇒ v = 18.3i + 10

• ⇒ RT = 18.3 Ω, VT = 10 V, iN = VT/RT = 545 mA

• Indirect Way :

• To find RT : Set 15 V source to ZERO ⇒ SHORT. Then the equivalent

resistance is : RT = (5 Ω ‖ 10 Ω) + 15 = 18.3 Ω

• To find VT : OPEN CIRCUIT N

• ⇒ Voltage Divider ⇒ VT = 10
1515 = 10 V

• To find iN : SHORT CIRCUIT N

• ⇒ REQ = 15 Ω ‖ 10 Ω = 6 Ω ⇒ iX = 15/(5 + 6) = 1.36 A

• ⇒ Current Divider iX = 10
10+15iX = 545 mA

• Example : Fig 3.40, p.106
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• Example : Fig 3.42, p.107

• Direct Way :

• Note that iC = −2 A. Also note the direction of our i which is the

opposite of what is used in the book. Hence we have iB = −i

• Mesh Eqn. at A : 240iA − 180iB − 60iC = 40,

• Mesh Eqn. at B :−180iA + 195iB − 15iC + v = 0

• 240iA + 180i = −80, −180iA − 195i + v = −30

• Eliminate iA ⇒ −240i + 4v = −360 ⇒ v = 60i− 90

• RT = 60 Ω, VT = −90 V, iN = VT/RT = −1.5 A

• Indirect Way :

• To find RT : Set sources to ZERO. Then the equivalent resistance is :

RT = (60 Ω ‖ 180 Ω) + 15 = 60 Ω

• To find VT : OPEN CIRCUIT N

• Note that iC = −2 A, iB = 0. Mesh A : 240iA − 60iC = 40 ⇒ 240iA =

−80 ⇒ iA = −80/240 A ⇒ VT = voc = 15iC + 180iA = −90 V

• To find iN : SHORT CIRCUIT N

• Note that iC = −2 A, iB = iN

• Mesh Eqn. at A : 240iA − 180iB − 60iC = 40,

• Mesh Eqn. at B :−180iA + 195iB − 15iC = 0
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• 240iA − 180iN = −80, −180iA + 195iN = −30

• Eliminate iA ⇒ 240iN = −360 ⇒ iN = −1.5 A

• Typical Application : when N is a nonlinear device (e.g. a diode).

See Figure 3.48, p. 111

• L : vT = RT i + v, NLE : v = f(i)

• Analytical solution : vT = RT i + f(i) ⇒ F (i) = 0

• Nonlinear Equation ⇒ Finding solution is usually difficult.

• Graphical solution : Draw the equation for L and NLE on the same i−v

plane ⇒ Intersection point will be the solution for v and i.

• In this case, the line representing L is called the load line for NLE.

• Maximum Power Transfer :

L +

−
v

i

Load

• Here, L is a linear circuit, Load represents a linear resistor. Aim is given

L, find a load such that L transfers maximum power to Load.
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• By taking the Thévenin equivalent circuit of L, and representing the

Load as a resistor RL we obtain :

LR
TV

TR

i

v
−

+

• Question : Given VT and RT , find RL so that p = vi is maximum.

• v =
RL

RT +RL
VT , i = 1

RT +RL
VT

• ⇒ p = vi =
RL

(RT +RL)2
V 2

T

• For maximum ⇒ dp
dRL

= 0 must hold

• dp
dRL

=
RT−RL

(RT +RL)3
V 2

T = 0 ⇒ RT = RL

• This is called impedance matching.

• pmax =
RT
4R2

T
V 2

T =
V 2

T
4RT
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