
Circuit Theory

Chapter 7 : First and Second Order Circuits

• Here, order refers to the number of capacitors and inductors

• First Order Circuits : The circuits which contain only one capacitor

or only one inductor.

• First Order RC Circuits : Such circuits contain independent and

dependent sources, resistors + one capacitor.
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• KVL : vT = RT iC + vC iC = C
dvC
dt ⇒ vT = RTC

dvC
dt +vC

• dvC
dt + 1

RT C vC = 1
RT CVT

• Result is a first order ODE
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• vC = vs, iC = C dvs
dt iC = is, vC = vC(t0)+

1
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is(τ)dτ
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• First Order RL Circuits : Such circuits contain independent and

dependent sources, resistors + one inductor.
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• KCL : iN = GNvL + iL vL = L
diL
dt ⇒ iN = GNL

diL
dt +iL

• diL
dt + 1

GNLiL = 1
GNLiN GN = 1

RN

• Result is a first order ODE
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vs(τ)dτ iL = is, vL = Ldis
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• Step Response of First Order RC / RL Circuits :

• Here we have DC sources, i.e. VT and iN are constants

• dvC
dt + 1

RT C vC = 1
RT CVT

diL
dt + 1

GNLiL = 1
GNLiN

• These two equations can be combined into a single equation :

• dx
dt +

1
τ x = 1

τ x∞

• For RC circuits, x = vC , τ = RTC, x∞ = VT

• For RL circuits, x = iL, τ = GNL = L
RN

, x∞ = iN

• τ : Time Constant.

• Unit : [τ ] = Ωsec
Ω (for RC case) =Ωsec

Ω (for RL case) = sec

• Solution of the ODE : Since x∞ is constant, dx∞
dt = 0

• d(x−x∞)
dt +1

τ (x− x∞) = 0

• Define a new variable y(t) = x(t)− x∞ ⇒ dy
dt +1

τ y = 0

• Solution is : y(t) = y(t0)e
− t−t0

τ

• x(t)− x∞ = (x(t0)− x∞)e−
t−t0

τ

• For RC Case : vC(t)− VT = (vC(t0)− VT )e
− t−t0

RT C

• For RL Case : iL(t)− iN = (iL(t0)− iN)e
− t−t0

GN L
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• Why x∞ ? assume that τ > 0 and take limit as t →∞

• limt→∞ x(t) = x∞ + limt→∞(x(t0)− x∞)e−
t−t0

τ = x∞
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• Question : Practically, how long should we wait till we safely assume

that x(t) ≈ x∞. This is called the steady state

• Practically, we have x(t) ≈ x∞, for t− t0 > 5τ

• x(t)− x∞ ≈ (x(t0)− x∞)e−5 ≈ 0.006(x(t0)− x∞)

• In the above figure, we have τ = 1 sec.
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• For RC Case : limt→∞ vC(t) = VT ⇒ limt→∞ iC(t) = 0

• In the steady state, capacitor behaves like an open circuit.

• For RL Case : limt→∞ iL(t) = iN ⇒ limt→∞ vL(t) = 0

• In the steady state, inductor behaves like a short circuit.

• Example 1 : Example 7.8. p. 300.

• Since the switch is open for a long time, we may assume that inductor

reaches its steady state → short circuit!

• By shorting the inductor → iL(0) =
VA

R1+R2

• This shows a way to set up the initial condition for inductors.

• For t > 0, the switch is closed. If we wait long enough, we may assume

that inductor reaches its steady state → short circuit!

• iL(∞) = x∞ = iN =
VA
R1

• For t > 0, the switch is closed → τ = G1L = L
R1

• iL(t) =
VA
R1

+(
VA

R1+R2
−VA

R1
)e−

t−t0
G1L =

VA
R1

+(
VA

R1+R2
−VA

R1
)e−

R1(t−t0)
L

• vL(t) = L
diL(t)

dt = − 1
G1

(
VA

R1+R2
−VA

R1
)e−

t−t0
G1L → 0
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• Example 2 : Example 7.9. p. 301.

• Since the switch is closed for a long time, we may assume that capacitor

reaches its steady state → open circuit!

• By opening the capacitor → vC(0) =
VAR1

R1+R2

• For t > 0, the switch is opened. If we wait long enough, we may assume

that capacitor reaches its steady state → open circuit!

• vC(∞) = x∞ = VT = VA

• For t > 0, the switch is opened → τ = R2C

• vC(t) = VA + (
VAR1

R1+R2
−VA)e−

t−t0
R2C → VA

• iC(t) = C
dvC(t)

dt = − 1
R2

(
VAR1

R1+R2
−VA)e−

t−t0
R2C → 0

• After finding vC(t), iC(t), vL(t), iL(t), how can we find the remaining

voltages or currents ?

• By substitution. i.e. Replace the capacitor/inductor by a voltage

and/or current source with the found solution.
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• Example :
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• RT = 1 Ω, By current division ⇒ i0 = 1
44 = 1 A ⇒ voc = vT = 2 V

• τ = RTC = 1 sec, vC(∞) = vT = 2 V . Assume that vC(0) = 1 V .

• vC(t)− vC(∞) = (vC(0)− vC(∞))e
t−t0

τ

• ⇒ vC(t) = 2− e−t ⇒ iC(t) = C dvC(t)
dt = e−t

• Suppose that we want to find out, say, i1 and v2. ⇒ Use substitution.

v2
−+

1
i1

vC

−

+

214 A

• Here, vC = 2− e−t. Simple node analysis yields :

• i1(t) = 3− 0.5e−t, v2(t) = 1 + 0.5e−t.
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• Example :
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• RT = 1 Ω, By KCL ⇒ 2 = v1 + iN , iN = v1 ⇒ iN = 1 A.

• τ = GTL = 2 sec, iL(∞) = iN = 1 A. Assume that iL(0) = 3 V .

• iL(t)− iL(∞) = (iL(0)− iL(∞))e
t−t0

τ

• ⇒ iL(t) = 1 + e−
t
2 ⇒ vL(t) = LdiL(t)

dt = −2e−
t
2

• Suppose that we want to find out, say, i1 and i2. ⇒ Use substitution.

i2i1

Li

1

2
12 A

• Here, iL = 1 + e−
t
2 . Simple node analysis yields :

• i1(t) = 1− e−
t
2 , i2(t) = 1 + e−

t
2 .
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• Response to a Pulse : This will depend on the relation between τ

and T :

t > T
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0 < t < T
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t

v(t)

T

AvC

−

+

v(t) C

R

• If T À τ , vC(T ) ' vC(∞) = A. Otherwise, vC(T ) 6= vC(∞) = A

A

T

vC(t)

t
t

T

A

vC(t)

Time Constant < < T Time Constant  comparable with T

• Example : R = 1 kΩ, C = 1 µF , A = 10 V , T = 10 ms, vC(0) = 0 V .

• ⇒ τ = RC = 1 ms << T

• 0 < t < 10 ⇒ vC(t) = 10− 10e−t ⇒ vC(10) ' 10 V

• t > 10 ⇒ vC(t) = 10e−(t−10)

• Example : R = 10 kΩ, C = 1 µF , A = 10 V , T = 10 ms, vC(0) = 0 V .

• ⇒ τ = RC = 10 ms = T

• 0 < t < 10 ⇒ vC(t) = 10− 10e−0.1t ⇒ vC(10) = 10− 10e−1 = 6.32

• t > 10 ⇒ vC(t) = 6.32e−0.1(t−10)
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• Sinusoidal Response of First Order RC / RL Circuits :

• Here, the source term in the Thévenin/Norton equivalent circuit is sinu-

soidal.

• dx
dt +

1
τ x = 1

τ x∞ x∞ = VA cos ωt

• x(t) = xN(t) + xF (t) = Natural Response + Forced Response

• This is the same as SUPERPOSITION. Natural response is due to initial

condition x(0) and is called ZERO INPUT RESPONSE. This is the solution

of ODE when the source term is set to ZERO.

• Forced response is due to source term and is called ZERO STATE RE-

SPONSE. This is the solution of ODE when x(0) = 0.

• dxN
dt +1

τ xN = 0 xN(t) = Ke−
t
τ

• dxF
dt +1

τ xF = 1
τ VA cos ωt

• xF (t) = VF cos(ωt + φ) = a cos ωt + b sin ωt

• a = VF cos φ , b = −VF sin φ

• ẋF (t) = −aω sin ωt + bω cos ωt

• (bω+1
τ a) cos ωt + (−aω+1

τ b) sin ωt = 1
τ VA cos ωt

• (bω+1
τ a) = 1

τ VA (−aω+1
τ b) = 0

• Given τ, VA and ω Find a and b ⇒ VF and φ
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• Example 7-12, p. 307.

• Note that since the switch is open for a long time → v(0) = 0.

• For Thévenin Equivalent circuit : RT = 4 kΩ ‖ 4 kΩ = 2 kΩ

• vT = 0.5vs(t) = 10 sin 1000t → τ = 2 .103 × 10−6 = 2 .10−3 sec.

• xN(t) = Ke−
t
τ = Ke−500t

• xF (t) = VF cos(ωt + φ) = a cos ωt + b sin ωt ω = 1000 Hz.

• (bω+1
τ a) = 0 (−aω+1

τ b) = 1
τ VA

• 1000b + 500a = 0 −1000a + 500b = 5000 −→ a = −4 , b = 2

• v(t) = Ke−500t − 4 cos 1000t + 2 sin 1000t

• v(0) = 0 = K − 4 −→ K = 4

• a = VF cos φ = −4 , b = −VF sin φ = 2

• VF =
√

a2 + b2 = 4.47, tan φ = −2/−4 −→ φ = −153 deg.

• v(t) = 4e−500t + 4.47 cos(1000t− 153)

• Note that as t →∞, −→ v(t) → 4.47 cos(1000t− 153)

• This is called Sinusoidal Steady State. We will find it directly in

Chp. 8 in a simple way → Phasor Analysis.
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• Second Order Circuits : The circuits which contain total of two

capacitor- inductor combination. → 2 capacitors, 2 inductors, or 1 capacitor+

1 inductor.

• Before considering the most general case, we will first consider two im-

portant cases : series and parallel RLC circuits.

• Series RLC circuits
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• KVL : vT = vR + vC + vL KCL : iR = iC = iL

• From the first order case, we know that vC and iL are state variables

(i.e. variables of ODE)

• iC = C
dvC
dt = iL −→ dvC

dt = iL/C (1)

• vT = RT iR + vC + vL = RiL + vC + L
diL
dt

• diL
dt = − 1

L vC− RT
L iL+ 1

L vT (2)

• (1) and (2) are called state equations. They are first order coupled

ODE’s. They can be written in matrix form as :
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• d
dt




vC

iL


 =




0 1/C

−1/L −RT/L







vC

iL


 +




0

1/L


 VT (*)

• General form : −→ ẋ = Ax + bu

• x :(vector) state variable, u : input, A : matrix, b : vector.

• Alternative form : Scalar second order equation. Differentiate (1), use

(1) and (2) to eliminate iL :

• v̈C+
RT
L v̇C+ 1

LC vC = 1
LC vT (**)

• So we have to either solve (*) or (**). Since they are equivalent, they

give the same result. Usually we are given vC(0) and iL(0).

• To solve (**), we need v̇C(0). This comes from (1) : v̇C(0) = iL(0)/C

• Before finding the solution of (**), let us consider the other case :
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• Parallel RLC circuits

Li

CiRi

Ni
LCR

Li
Ci

LC

• KCL : iN = iR + iC + iL, KVL : vR = vC = vL,

• From the first order case, we know that vC and iL are state variables

(i.e. variables of ODE)

• vL = L
diL
dt = vC −→ i̇L = vC/L (1)

• iN = GvR + Cv̇C + iL = GvC + Cv̇C + iL

• v̇C = −G/CvC − 1/CiL + 1/CiN (2)

• (1) and (2) are called state equations and can be written also as :

• d
dt




vC

iL


 =



−G/C −1/C

1/L 0







vC

iL


 +




1/C

0


 iN (*)

• Alternative form : Scalar second order equation. Differentiate (1), use

(1) and (2) to eliminate vC :
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• ïL+ G
C i̇L+ 1

LC iL = 1
LC iN (**)

• So we have to either solve (*) or (**). Since they are equivalent, they

give the same result. Usually we are given vC(0) and iL(0).

• To solve (**), we need i̇L(0). This comes from (1) : i̇L(0) = vC(0)/L

• Solution = zero input response + zero state response.

• Zero Input Response ( vT = 0, iN = 0)

• ẍ + aẋ + bx = 0

• Series RLC : x = vC , a =
RT
L , b = 1

LC

• Parallel RLC : x = iL, a = G
C , b = 1

LC

• x(0) and ẋ(0) are given.

• Assume solution of the form x(t) = est ⇒ ẋ(t) = sest ⇒ ẍ(t) = s2est

• ⇒ (s2 + as + b)est = 0 −→ (s2 + as + b) = 0

• This is called the characteristic polynomial of the circuit, here s

could be real of complex.
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• (s2 + as + b) = 0 −→ roots are s1 and s2

• Roots can be found as : s1,2 = ± −a±
√

a2−4b
2

• Case 1 : Distinct Roots, s1 6= s2

• x(t) = K1e
s1t + K2e

s2t

• Here K1 and K2 are constants (real or complex) to be found from the

initial conditions.

• x(0) = K1 + K2, ẋ(0) = s1K1 + s2K2

• K1 =
s2x(0)−ẋ(0)

s2−s1
K2 =

s1x(0)−ẋ(0)
s1−s2

• These formulas are valid even if s1 and s2 are complex.

• What if the roots are complex ?

• s = s1 = s̄2 = −α + β ⇒ K1 = K̄2 = r/2e−θ

• x(t) = K1e
s1t + K2e

s2t = K1e
st + K̄1e

s̄t = 2<( K1e
st )

• x(t) = 2<(( r/2)e−αt+(βt−θ) ) = re−αt cos(βt− θ)

• Need to find r and θ by using initial conditions.
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• x(t) = re−αt cos(βt− θ)

• x(0) = r cos θ −→ ẋ(0) = −αr cos θ + βr sin θ

• r cos θ = x(0) −→ r sin θ =
ẋ(0)+αx(0)

β

• Alternatively we could find the solution as :

• x(t) = C1e
−αt cos βt + C2e

−αt sin βt

• x(0) = C1 , ẋ(0) = −αC1 + βC2 −→ C2 =
ẋ(0)+αx(0)

β

• Case 2 : Repeated Roots, s1 = s2 = s

• x(t) = K1e
st + K2te

st

• x(0) = K1 , ẋ(0) = sK1 + K2 −→ K2 = ẋ(0)− sx(0)
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• Stability of solutions

• s1 6= s2 −→ xN(t) = K1e
s1t + K2e

s2t

• s1 = s2 = s −→ xN(t) = K1e
st + K2te

st

• If <(si) < 0 −→ xN(t) → 0 as t →∞ −→ Stable Case.

• In this case, if the independent sources are bounded −→ solutions are

bounded.

• If <(si) > 0, or s1 = s2 ≥ 0 −→ xN(t) → ∞ as t → ∞ −→ Unstable

Case.

• In this case, solutions are unbounded.

• For practical reasons, we want stable systems.

• From geometrical point of view, the roots of characteristic polynomial

are in the open left half of the complex plane in the stable case.

• We will do further classification for the stable case, as explained in the

next example.

• Example 7-15, p. 318.

• Consider a series RLC circuit with no independent sources. (Hence we

find zero input response, i.e. only the natural response). Let C = 0.25 µF ,

L = 1H, vC(0) = 15 V , iL(0) = 0 A. Find the solution for : (a) R = 8.5 kΩ,

(b) R = 4 kΩ, (c) : R = 1 kΩ.
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• v̈C+
RT
L v̇C+ 1

LC vC = 1
LC vT = 0 (**)

• Characteristic polynomial :

• ⇒ (s2 + as + b) = 0 −→ a =
RT
L , b = 1

LC

• Roots can be found as : s1,2 = −a±
√

a2−4b
2

• Case 1 : a =
RT
L = 8500, b = 1

LC= 4.106 ⇒ s1 = −500, s2 = −8000.

• Roots are negative ⇒ Stable case.

• vC(t) = K1e
−500t + K2e

−8000t

• vC(0) = K1 + K2 = 15.

• v̇C(0) = iL(0)/C = 0 ⇒ −500K1 − 8000K2 = 0

• ⇒ K1 = 16 , K2 = −1 ⇒ vC(t) = 16e−500t − e−8000t V

• C
dvC
dt = iL = −2.10−3e−500t + 2.10−3e−8000t A

• This is called Overdamped Case (i.e. two distinct real-negative roots)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1
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6

t (sec.)

x(
t)

Overdamped Case
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• Case 2 : a =
RT
L = 4000, b = 1

LC= 4.106 ⇒ s1 = s2 = −2000.

• vC(t) = K1e
−2000t + K2te

−2000t

• vC(0) = K1 = 15,

• v̇C(0) = iL(0)/C = 0 ⇒ −2000K1 + K2 = 0 ⇒ K2 = 30000

• vC(t) = (15 + 30000t)e−2000t V

• C
dvC
dt = iL = 15te−2000t A

• This is called Critically Damped Case (i.e. two repeated real-negative

roots)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

t (sec.)

x(
t)

Critically Damped Case

• Case 3 : a =
RT
L = 1000, b = 1

LC= 4.106 ⇒ s1,2 = −500± 500
√

15.

• α = 500 , β = 500
√

15

• vC(t) = Ke−500t cos(500
√

15t + φ)

• = K1e
−500t cos(500

√
15t) + K2e

−500t sin(500
√

15t)
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• vC(0) = 15 = K1

• v̇C(0) = iL(0)/C = 0 ⇒ −500K1 + 500
√

15K2 = 0 ⇒ K2 =
√

15

• vC(t) = 15e−500t cos(500
√

15t) +
√

15e−500t sin(500
√

15t)

• K cos φ = K1 = 15 , K sin φ = −K2 = −√15

• K =
√

152 + 15 = 15.5 , tan φ = −√15 ⇒ φ = −75.52 deg.= −1.32

rad.

• vC(t) = 15.5e−500t cos(500
√

15t− 1.32) (True notation)

• = 15.5e−500t cos(500
√

15t− 75.52) (False but acceptable)

• This is called Underdamped Case (i.e. two complex conjugate roots

with negative real part)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

t (sec.)

x(
t)

Underdamped Case

• Here s = −α + β; α determines the decay, and β determines the fre-

quency.
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Re

Im

s1s2

Overdamped

Re

Im

s1=s2=s

Critically Damped

−a

b

Underdamped

• Step Response

• In this case, the standard ODE becomes :

• ẍ(t) + aẋ(t) + bx(t) = A

• x(t) = xN(t) + xF

• xN(t) is the natural response and can be found as before.

• xF = B −→ ẍF = ẋF = 0 ⇒ xF = A/b

• Example 7-19, p. 328. Series RLC circuit with VT = 10 V , C =

0.5 µF , L = 2 H, R = 1 kΩ, vC(0) = 0, iL(0) = 0.

• v̈C+
RT
L v̇C+ 1

LC vC = 1
LC vT (**)

• v̈C(t) + 500v̇C(t) + 106vC(t) = 107
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• For xN , the characteristic polynomial is : s2 + 500s + 106 = 0

• Roots : s1,2 = −250± 968 −→ Underdamped case.

• vCN(t) = K1e
−250t cos 968t + K2e

−250t sin 968t = Ke−250t cos(968t + φ)

• VCF = 107/106 = 10

• vC(t) = 10 + K1e
−250t cos 968t + K2e

−250t sin 968t

• vC(0) = 10 + K1 = 0 −→ K1 = −10

• v̇C(0) = iL(0)/C = 0 ⇒ −250K1 + 968K2 = 0 −→ K2 = −2.58

• vC(t) = 10− 10e−250t cos 968t− 2.58e−250t sin 968t

• K cos φ = K1 = −10 , K sin φ = −K2 = 2.58

• K =
√

100 + 2.582 = 10.12, φ = 104.46 deg.

• The characteristic polynomial can also be written as :

• s2 + 2ξω0s + ω2
0 = 0

• ξ : damping ratio, ω0 : undamped natural frequency.

• s1,2 = ω0(−ξ ±√ξ2 − 1)

• ξ > 1 −→ Overdamped Case.

• ξ = 1 −→ Critically damped Case.

• 0 < ξ < 1 −→ Underdamped case.

• ξ = 0 −→ Lossless Case. In this case, the natural response is a pure

sinusoid.
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• General Second Order Circuits

• Note that we have vC and iL as variables, and by element relations we

have iC = Cv̇C and vL = Li̇L.

• Hence the general strategy is as follows :

• Step 1 : Use any method we have seen (node, mesh, combined con-

straints etc.) to obtain iC and vL in terms of vC , iL and independent sources

only. (This is a process of writing equations, and eliminating undesired vari-

ables ⇒ Linear Algebra)

• At the end of step 1 , we obtain the following equations :

• iC = c11vC + c12iL + d1u1

• vL = c21vC + c22iL + d2u2

• Here, coefficients cij, di depend on circuit parameters, ui depend on

independent sources.

• Step 2 : Use iC = Cv̇C and vL = Li̇L :

• Cv̇C = c11vC + c12iL + d1u1

• Li̇L = c21vC + c22iL + d2u2

• These equations can be written either in component form :

• v̇C = a11vC + a12iL + b1u1 (*)

• i̇L = a21vC + a22iL + b2u2 (**)

• Or in matrix form :
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• d
dt




vC

iL


 =




a11 a12

a21 a22







vC

iL


 +




b1u1

b2u2


 (*)

• General form : −→ ẋ = Ax + bu

• x :(vector) state variable, u : input, A : matrix, b : vector or matrix.

• Alternative form : Scalar second order equation. Differentiate (∗) or

(∗∗), use these equations to eliminate iL or vC :

• Case 1 : a12 6= 0

• v̈C = a11v̇C + a12i̇L + b1u̇1 = a11v̇C + a12 (a21vC + a22iL + b2u2) + b1u̇1

• = a11v̇C + a12a21vC + a22a12iL + a12b2u2 + b1u̇1

• = a11v̇C + a12a21vC + a22 (v̇C − a11vC − b1u1) + a12b2u2 + b1u̇1

• = (a11 + a22)v̇C + (a12a21 − a11a22)vC − a22b1u1 + a12b2u2 + b1u̇1

• v̈C − (a11 + a22)v̇C + (a11a22 − a12a21)vC = −a22b1u1 + a12b2u2 + b1u̇1

• Case 2 : a21 6= 0. Change vC with iL and indexes 1 ←→ 2, we obtain :

• ïL − (a22 + a11)i̇L + (a22a11 − a21a12)iL = −a11b2u2 + a21b1u1 + b2u̇2

• Let us see the relation with A :

• (a11 + a22) = Trace(A) = T

• (a11a22 − a12a21) = det A = D

• ẍ− T ẋ + Dx = us

• vC Case : us = −a22b1u1 + a12b2u2 + b1u̇1

• iL Case : us = −a11b2u2 + a21b1u1 + b2u̇2
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C2
v

−

+

C1
v

−

+

sv
C2C1

R2R1

• KCL at C1 : iC1 + G1(vC1 − vs) + G2(vC1 − vC2) = 0

• ⇒ C1v̇C1 = −(G1 + G2)vC1 + G2vC2 + G1vs

• KCL at C2 : iC2 + G2(vC2 − vC1) = 0

• ⇒ C2v̇C2 = G2vC1 −G2vC2

• ⇒ a11 = −(G1 + G2)/C1, a12 = G2/C1, a21 = G2/C2, a22 = −G2/C2,

b1 = G1/C1, u1 = vs, b2 = 0, u2 = 0

• (a11 + a22) = Trace(A) = T = −((G1 + G2)/C1 + G2/C2)

• (a11a22 − a12a21) = det A = D = G1G2/C1C2

• By using Case 2 : us = −a11b2u2 + a21b1u1 + b2u̇2 = (G1G2/C1C2)vs

• v̈C2 + ((G1 + G2)/C1 + G2/C2)v̇C2 + (G1G2/C1C2)vC2 = (G1G2/C1C2)vs

• Given initial conditions vC1(0) and vC2(0), we can calculate v̇C2(0) from

the second state equation given above :

• ⇒ C2v̇C2(0) = G2vC1(0)−G2vC2(0)

• Given the parameters Gi, Ri and the source term vs, we can solve this

ODE to find vC2.

• Then we can find v̇C2 by differentiation. By using the second equation,

we can find vC1 ...etc...
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• Example on p. 334, Fig. 7-14

ov

−

+

2
v

−

+

1
v

−

+

C1v −+

C2

C1

R2R1

sv
−

+

• KCL for Node 1 : iC1 + G1(v1 − vs) + G2(v1 − v2) = 0

• KCL for Node 2 : iC2 + G2(v2 − v1) = 0

• Op-amp eqn : v2 = v+ = v− = vo −→ vC1 = v1 − vo = v1 − v2, vC2 = v2

• C1 ˙vC1 = C1v̇1 − C1v̇2 = −(G1 + G2)v1 + G2v2 + G2vs

• C2 ˙vC2 = G2v1 −G2v2

• v̇2 = (G2/C2)v1 − (G2/C2)v2

• C1v̇1 = C1(G2/C2)v1 − C1(G2/C2)v2 − (G1 + G2)v1 + G2v2 + G2vs

• v̇1 = (G2/C2− ((G1 + G2)C1) )v1 + ( (G2/C1)− (G2/C2))v2 + (G2/C1)vs

• applying Case 2, we obtain :

• v̈2 + ((G1 + G2)/C1)v̇2 + (G1G2/C1C2)v2 = (G1G2/C1C2)vs

• As before, given the parameters, and the initial conditions, we can solve

this ODE. Then, we can find v1. Then we can find all of the remaining

voltages and currents ...etc...
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