
Q1. Consider the following LTI systems with input–output relationships

given below:

System 1: y1[n] =
n+2∑

k=→↑

x1[k], System 2: y2[n] =
n→2∑

k=→↑

x2[k].

(a) Find the impulse responses of these systems.

(b) Are these systems

(i) Causal?

(ii) Stable?

Justify your answers.

(c) These two systems are connected in parallel to form the system given

below.

x[n]

System 1
x1[n]

System 2
x2[n]

+

→

y1[n]

y2[n]

y[n] = y1[n]→ y2[n]

(i) Find the impulse response of this system.

(ii) Is this system

(a) Causal?

(b) Stable?

Justify your answers.
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Q2. The impulse response of an LTI system is given as

h(t) = e→2tu(t).

Let x(t) be an input signal defined as

x(t) =






0, t < 0,

1, 0 → t < 1,

2, 1 → t < 2,

0, 2 → t.

(a) Evaluate the output y(t) of this LTI system for the input x(t) using

the convolution integral (clearly indicate the regions for which the con-

volution integrals are valid).

(b) Write x(t) in terms of the superposition of shifted unit step signals.

(c) Find the unit step response g(t) for the given LTI system.

(d) Use g(t) to check your answer in part (a).
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Q3. The discrete-time input signal x[n] is passed through a pair of series-

connected LTI systems with impulse responses h1[n] and h2[n]. The signals

y[n] and z[n] are obtained at the outputs of System 1 and System 2 as shown

in Figure 1.

x[n]
System 1

h1[n]
System 2

h2[n]

y[n]
z[n]

Figure 1

(a) System 1 is known to be causal, and its input–output relation is given

by

y[n]→ 1

2
y[n→ 1] = x[n].

The system is excited with a unit impulse input x[n] = ω[n]. Find the

output y[n] = h1[n].

(b) The impulse response of System 2 is given as

h2[n] = ω[n] + 3ω[n→ 1].

Obtain the input–output relation of System 2, i.e., the relation between

the signals y[n] and z[n].

(c) The series connection of the two systems in Figure 1 can equivalently

be represented as in Figure 2 as a single LTI system (System 3). Find

the impulse response h3[n].

x[n]
System 3

h3[n]
z[n]

Figure 2
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Q4.

(a) Given that x[n] is an odd sequence, prove that

→∑

n=↑→
x[n] = 0.

(b) The input–output relation of a system is given as

y(t) = Re{ej2ωtx(t)},

where x(t) can be complex–valued.

(i) Does this system satisfy the additivity property? Justify. Does

this system satisfy the homogeneity (or scaling) property for the

complex scalar and input case? Justify. Is this system linear?

(ii) Is this system time–invariant? Justify.

(iii) Is this system stable? Justify.

(iv) Is this system causal? Justify.
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Q5. System 1 (called a “moving average filter”) is an LTI system with the

following input–output relation:

z[n] =
1

8

n∑

m=n→7

x[m].

System 2 is another LTI system with impulse response

h2[n] =
(
→1

2

)n
u[n→ 1].

The overall system is shown below.

x[n]

System 1

System 2

+

→ y[n]

z[n]

w[n]

Answer the following questions about System 1, System 2 and the overall

system above.

(a) Is System 2 memoryless, causal, and/or stable? Justify your answers.

(b) If x[n] = cos(ωn/4) + ε[n→ 1], find w[n].

(c) Find the impulse response h1[n] of System 1, and express it using unit

step signals.

(d) Find the impulse response of the overall system whose input is x[n] and
output is y[n]. Justify your answer.
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Q6. Consider a discrete-time (DT) LTI system whose impulse response is

given by

h[n] =






1

n
, n → 1,

0, otherwise.

(a) By justifying briefly, determine whether this system is

(i) Stable,

(ii) Causal,

(iii) Memoryless.

Hint: Recall that the series

→∑

n=1

1

nk
converges for k → 2 and diverges

for k = 1.

(b) Find the output y[n] when the following input signal x[n] is given as

input to the system, where ω, ε, ϑ are nonzero real numbers. Express

y[n] as a function of n, by properly indicating the intervals:

x[n] =






ω, n = ↑1,

ε, n = 0,

ϑ, n = 1,

0, otherwise.

(c) Now consider that the system is excited by the constant (and thus

bounded) input signal x[n] = ω, where ω is a nonzero real number.

Find the output of the system. Comment on the result based on your

answer to part (a).
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Q7. Consider the cascade (series) connection of two LTI systems, whose

impulse responses are h1(t) = e→ωtu(t) and

h2(t) = ω(t)→ ω(t→ ε),

where ε is a real constant, 0 < ε < 1.

(a) Check whether the overall system is stable or not. Check its causality.

Briefly explain your reasonings.

(b) A continuous-time signal is given as

x(t) = cos(ϑt) + ejmεt,

where m > 1 is an integer and ϑ > 0 is a real constant. In terms of ϑ
and m, find the fundamental periods T1 and T2 of cos(ϑt) and ejmεt

,

respectively.

(c) Find the continuous-time Fourier series coe!cients of x(t).

(d) When the system with the impulse response h1(t) is excited by the

input signal est (where s ↑ C), the output signal is observed to be

1

s+ ε
est.

Evaluate the output signal y(t) for the overall cascaded system corre-

sponding to the input signal x(t) in part (b).
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Q8) Consider the continuous-time LTI system described by the di!eren-

tial equation

dy(t)

dt
+ 2y(t) = 2x(t), →↑ < t < ↑,

with zero initial condition y(0→) = 0.

(a) Find the impulse response h(t) of the system.

(b) Let x(t) = u(t). Find the output y(t). Compute

Ex =

∫ ↑

→↑
|x(t)|2 dt, Ey =

∫ ↑

→↑
|y(t)|2 dt,

and the average powers Px and Py. Classify x(t) and y(t) as energy or

power signals.

(c) Is this system invertible? If yes, derive a di!erential equation that the

inverse system must satisfy (i.e., an equation that recovers x(t) from

y(t)). State whether this inverse system is causal and BIBO stable,

and briefly justify your answers.
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Q9) Consider the discrete-time system with input x[n] and output y[n]
related by

y[n] = x[n]→ x[n→ 1] + x[n→ 2], →↑ < n < ↑.

For this system, determine whether it is

• linear,

• time invariant,

• causal,

• memoryless,

• BIBO stable,

• invertible (on the class of absolutely summable input sequences).

For each property, answer yes or no and justify briefly. If you claim that the

system is invertible, explicitly give a relation that recovers x[n] from y[n].
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