Signals and Systems – Question Set (Q1–Q4)

Ramazan Burak Güler

November 10, 2025

Question 1

A causal and stable LTI system S has the frequency response

$$H(j\omega) = \frac{j\omega + 4}{10 - \omega^2 + j6\omega}.$$

1. Determine a differential equation relating the input x(t) and output y(t) of the system.

$$\begin{array}{lll}
& = -at \\ & = -(1+1) = \frac{1}{2} \\ & = -(1+1) = -(1+1) + \frac{1}{2} \\ & = -(1+1) = \frac{1$$

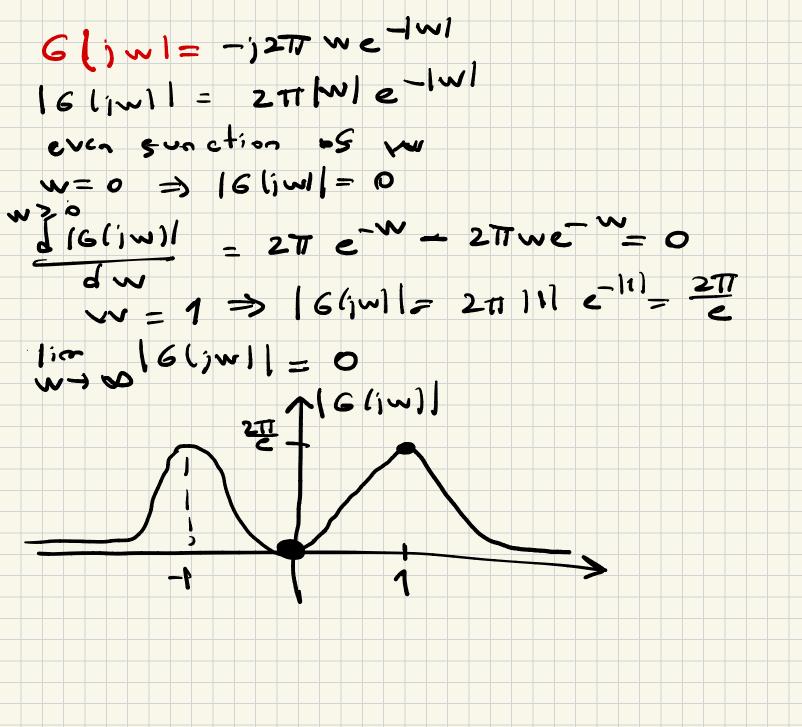
Consider the Fourier transform pair:

$$e^{-|t|} \frac{2}{1+\omega^2}.$$

- 1. Use the appropriate Fourier transform property to find the Fourier transform of $te^{-|t|}$.
- 2. Use the result from part (a) and the duality property to find the Fourier transform of

9 (
$$+ 1 = \frac{4t}{(1+t^2)^2}$$

3. Simplify your results and sketch the magnitude spectrum.



A periodically charged capacitor generates the following output signal with period T_c :

$$x(t) = e^{-t}, \quad 0 \le t \le T_c.$$

- 1. Find the Fourier series coefficients a_k of x(t).
- 2. Given an LTI system with the impulse response $h(t) = \delta(t) \delta(t T_1)$, evaluate the Fourier series representation of the output when x(t) is applied to the system.
- 3. There is a voltage subtractor device which can produce $x(t) x(t \tau)$, where τ can be adjusted. How would you use this device to find T_c ? Justify your answer both in time and frequency domains.

time and frequency domains.

$$x/+1 = e^{-t} \quad \text{Poissic} \quad \text{with poissod} \quad \text{Te}$$

$$1) \quad a_{1} = \frac{1}{T_{c}} \quad \text{STe} \quad -t = jk \frac{2\pi}{T_{c}} \quad \text{Te}$$

$$= \frac{1}{T_{c}} \quad e^{-(1+jk \frac{2\pi}{T_{c}})} \quad \text{Te} \quad \frac{1-e^{-Tc}}{T_{c}} \quad \frac{2\pi}{T_{c}} \quad \text{Te}$$

$$= \frac{1}{T_{c}} \quad e^{-(1+jk \frac{2\pi}{T_{c}})} \quad \text{Te} \quad \frac{1-e^{-Tc}}{T_{c}} \quad \text{Te}$$

$$2) \quad h/+1 = S(+) - S(+-T_{1}) \quad \text{with the same poisod}$$

$$x/+1 \quad \text{Poissod} \quad e \Rightarrow y(+) \text{ poisod} \quad \text{with the same poisod}$$

$$x/+1 \quad \text{Poissod} \quad e \Rightarrow y(+) \text{ poisod} \quad \text{with the same poisod}$$

$$x/+1 \quad \text{Poissod} \quad \text{Te} \quad \text{Te}$$

$$x/+1 \quad \text{Poissod} \quad \text{Te} \quad \text{Te}$$

$$x/+1 \quad \text{Poissod} \quad \text{Te}$$

$$x/+1 \quad \text{Poissod} \quad \text{Te}$$

$$x/+1 \quad \text{Poissod} \quad \text{Te}$$

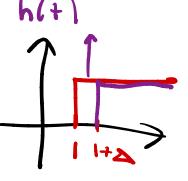
$$x/+1 \quad \text{Te} \quad \text{Te}$$

$$x/+1 \quad \text{Te}$$

Assume a CT signal $x(t) = e^{-3t}u(t)$ is input to an LTI system with

$$h(t) = \frac{1}{\Delta} \big[u(t-1) - u(t-1-\Delta) \big],$$

 $h(t) = \frac{1}{\Delta} [u(t-1) - u(t-1-\Delta)],$



where $\Delta > 0$.

- 1. Find the output y(t) for this input in terms of Δ .
- 2. Repeat part (a) for $h_0(t) = \lim_{\Delta \to 0} h(t)$.
- 3. Find the continuous-time Fourier transforms (CTFTs) of x(t) and $h_0(t)$.
- 4. Find the inverse CTFT of $X(j\omega)H_0(j\omega)$.

4)
$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$
 $h(t-\tau) = \int_{-\infty}^{\infty} [u(t-\tau-1)-u(t-\tau-1-\Delta)]$
 $x(\tau) \neq 0 \quad \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) \neq 0 \quad \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) \neq 0 \quad \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) \neq 0 \quad \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) \neq 0 \quad \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) \neq 0 \quad \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq 1 + \Delta$
 $h(t-\tau) = \int_{-\infty}^{\infty} 1 < t-\tau \leq$

Let x[n] be a periodic discrete-time sequence with period N (even and positive). The Fourier Series coefficients of x[n] are a_k . Another sequence is defined as

$$y[n] = g[n]x[n], \text{ where } g[n] = \sum_{k=-\infty}^{\infty} \delta[n-2k-1].$$

- 1. Find the Fourier series coefficients of g[n] and express g[n] as a sum of complex exponentials.
- 2. Obtain the Fourier series coefficients of $x[n]e^{jM(2\pi/N)n}$ in terms of a_k .
- 3. Determine whether y[n] is periodic, find its period, and express its FS coefficients b_k in terms of a_k .

Ty =
$$L < M(T_9, T_8) = N$$

Tq = Z

Tx = N (even)

e $I \Pi \Omega = e^{\int \frac{N}{2} \frac{2\pi}{N}} \Omega = (-1)^{\Gamma}$

y[$\Omega I = \frac{1}{2} \times \Gamma \Omega I - \frac{1}{2} = \frac{1}{2} \times \Gamma \Omega I$

by $\Gamma I = \frac{1}{2} \times \Gamma \Omega I - \frac{1}{2} = \frac{1}{2} \times \Gamma \Omega I$

by $\Gamma I = \frac{1}{2} \times \Gamma \Omega I - \frac{1}{2} = \frac{1}{2} \times \Gamma \Omega I$

Question 6: CTFT Properties – Find the Signal

Let the signals listed below be real-valued functions of continuous time t. Their continuoustime Fourier transforms are denoted by $X(j\omega)$.

Signal List

(A)
$$x(t) = e^{-t^2}$$

(Gaussian pulse)

(B)
$$x(t) = te^{-t^2}$$

(B)
$$x(t) = te^{-t^2}$$
(C) $x(t) = e^{-(t-2)^2}$ neither even peths of (s

(shifted Gaussian pulse)

(D)
$$x(t) = \cos(3t)$$

(E)
$$x(t) = \sum_{n=-\infty}^{\infty} \delta(t-n)$$

(impulse train)

(F)
$$x(t) = e^{-|t|} \sin(t)$$

Instructions: Determine which, if any, of the signals (A)–(F) have Fourier transforms that satisfy each of the following conditions. A condition may be satisfied by one, more than one, or no signals. See A (+1) real and odd (-1) (+1) real and odd (-1) (-

$$4. \int_{-\infty}^{\infty} X(j\omega) \, d\omega = 0$$

$$Y(iw)$$
 $y(t) = x(t+d)$

$$5. \int_{-\infty}^{\infty} \omega X(j\omega) \, d\omega = 0$$

6. $X(i\omega)$ is periodic

4) 3 x 1 jwldw = 0

$$x_{1} = 0$$
 $\sum_{i=0}^{\infty} x(i, i) = \sum_{i=0}^{\infty} x(i, i) = 0$ $\sum_{i=0}^{\infty} x(i, i) = 0$ $\sum_{i=0}^{\infty} x(i, i) = 0$

