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Abstract

In this paper, time delay estimation is studied for cognitive radio systems, which facilitate opportunistic use

of spectral resources. A two-step approach is proposed to obtain accurate time delay estimates of signals that

occupy multiple dispersed bands simultaneously, with significantly lower computational complexity than the optimal

maximum likelihood (ML) estimator. In the first step of the proposed approach, an ML estimator is used for each

band of the signal in order to estimate the unknown parameters of the signal occupying that band. Then, in the

second step, the estimates from the first step are combined in various ways in order to obtain the final time delay

estimate. The combining techniques that are used in the second step are called optimal combining, signal-to-noise

ratio (SNR) combining, selection combining and equal combining. It is shown that the performance of the optimal

combining technique gets very close to the Cramer-Rao lower bound at high SNRs. These combining techniques

provide various mechanisms for diversity combining for time delay estimation, and extend the concept of diversity

in communications systems to the time delay estimation problem in cognitive radio systems. Simulation results are

presented to evaluate the performance of the proposed estimators and to verify the theoretical analysis.
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I. INTRODUCTION

Cognitive radio is a promising approach to implement intelligent wireless communications systems [1]-

[8]. Cognitive radios can be perceived as more capable versions of software defined radios in the sense that

they have sensing, awareness, learning, adaptation, goal driven autonomous operation and reconfigurability

features [9], [10]. Thanks to these features, radio resources, such as power and bandwidth, can be used

more efficiently [1]. Especially since the electromagnetic spectrum is a precious resource, it must not be

wasted. The recent spectrum measurement campaigns in the United States [11] and Europe [12] show that

the spectrum is under-utilized; hence, opportunistic use of unoccupied frequency bands is highly desirable.

Cognitive radio provides a solution to the problem of inefficient spectrum utilization by using the

vacant frequency spectrum over time in a certain geographical region. In other words, a cognitive radio

system can opportunistically use the available spectrum of a legacy system without interfering with the

licensed users of that spectrum [2], [3]. In order to facilitate such opportunistic spectrum utilization,

it is important that cognitive radio devices are aware of their positions, and monitor the environment

continuously. These location and environmental awareness features of cognitive radios have been studied

extensively in the literature [10], [13]-[19]. In [13], the concept of cognitive radar is introduced, which

provides information related to the objects in an environment; i.e., it performs environmental sensing. In

[14], a radio environment mapping method for cognitive radio networks is studied. Conceptual models for

location and environmental awareness engines and cycles are proposed in [10], [15] and [16] for cognitive

radio systems. Also, [18] introduces the concept of a topology engine for cognitive radios by studying

topology information characterization and its applications to cognitive radio networks.

The location awareness feature of cognitive radios can be used in many network optimization appli-

cations, such as location-assisted spectrum management, network planning, handover, routing, dynamic

channel allocation and power control [8], [20]. Location awareness requires that a cognitive radio device

perform accurate estimation of its position. One possible way of obtaining position information is to

use the Global Positioning System (GPS) technology in cognitive radio systems. However, this is not a

very efficient or cost-effective solution [17]. As another approach, cognitive radio devices can estimate
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position related parameters of signals traveling between them in order to estimate their positions [17],

[21]. Among various position related parameters, the time delay parameter commonly provides accurate

position information with reasonable complexity [21], [22]. The main focus of this study is time delay

estimation in cognitive radio systems. In other words, the aim is to propose techniques for accurate

time delay estimation in dispersed spectrum systems in order to provide accurate location information

to cognitive users. Since the accuracy of location estimation increases as the accuracy of time delay

estimation increases, design of time delay estimators with high accuracy and reasonable complexity is

crucial for the location awareness feature of a cognitive radio system [21].

Time delay estimation in cognitive radio systems differs from conventional time delay estimation mainly

due to the fact that a cognitive radio system can transmit and receive over multiple dispersed bands. In

other words, since a cognitive radio device can utilize the spectral holes of a legacy system, it can have a

spectrum that consists of multiple bands that are dispersed over a wide range of frequencies (cf. Fig. 1).

In [23], the theoretical limits on time delay estimation are studied for dispersed spectrum cognitive radio

systems, and the effects of carrier frequency offset (CFO) and modulation schemes of training signals on

the accuracy of time delay estimation are quantified. The expressions for the theoretical limits indicate

that frequency diversity can be utilized in time delay estimation. Similarly, the effects of spatial diversity

on time delay estimation are studied in [24] for single-input multiple-output (SIMO) systems. In addition,

the effects of multiple antennas on time delay estimation and synchronization problems are investigated

in [25].

In this paper, time delay estimation is studied for dispersed spectrum cognitive radio systems. First, it is

observed that maximum likelihood (ML) estimation is not very practical for time delay estimation in such

systems. Then, a two-step time delay estimation approach is proposed in order to provide accurate time

delay estimation with significantly lower computational complexity than that of the optimal ML estimator.

In the proposed scheme, the receiver consists of multiple branches and each branch processes the part of the

received signal that occupies the corresponding frequency band. An ML estimator is used in each branch

in order to estimate the unknown parameters of the signal observed in that branch. Then, in the second

step, the estimates from all the branches are combined to obtain the final time delay estimate. Various
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Fig. 1. Illustration of dispersed spectrum utilization in cognitive radio systems.

techniques are proposed for the combining operation in the second step: Optimal combining, signal-to-

noise ratio (SNR) combining, selection combining, and equal combining. The biases and variances of

the time delay estimators that employ these combining techniques are investigated. It is shown that the

optimal combining technique results in a mean-squared error (MSE) that approximates the Cramer-Rao

lower bound (CRLB) at high SNRs. Simulation results are provided in order to compare the performance

of the proposed time delay estimators. In a more generic perspective, this study focuses on the utilization

of frequency diversity for a parameter estimation problem. Therefore, the proposed estimators can be

applied to other systems that have frequency diversity as well.

The remainder of the paper is organized as follows. In Section II, the signal model is introduced and

the signal at each branch of the receiver is described. In Section III, the optimal ML receiver is obtained,

and the CRLBs on time delay estimation in dispersed spectrum cognitive radio systems are described.

The proposed two-step time delay estimation approach is studied in Section IV. Then, in Section V, the

optimality properties of the proposed time delay estimators are investigated. Finally, simulation results

are presented in Section VI, and concluding remarks are made in Section VII.

II. SIGNAL MODEL

A cognitive radio system that occupies K dispersed frequency bands is considered as shown in Fig.

1. The transmitter sends a signal occupying all the K bands simultaneously, and the receiver aims to

calculate the time delay of the incoming signal.
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One approach for designing such a system involves the use of orthogonal frequency division multiplexing

(OFDM). In this approach, the received signal is considered as a single OFDM signal with zero coefficients

at the sub-carriers corresponding to the unavailable bands [26]-[28]. Then, the signal can be processed

as in conventional OFDM receivers. The main drawback of this approach is that it requires processing

of very large bandwidths when the available spectrum is dispersed over a wide range of frequencies.

Therefore, the design of RF components, such as filters and low-noise amplifiers (LNAs) can become

very complex and costly, and result in components with high power consumption [29]. In such scenarios,

it can be more practical to process the received signal in multiple branches, as shown in Fig. 2. In that

case, each branch processes one available band, and down-converts the signal according to the center

frequency of that band. Therefore, signals with narrower bandwidths can be processed at each branch.

For the receiver model in Fig. 2, the baseband representation of the received signal in the ith branch

can be modeled as

ri(t) = αi e
jωitsi(t− τ) + ni(t) , (1)

for i = 1, . . . , K, where τ is the time delay of the signal, αi = ai e
jφi and ωi represent, respectively,

the channel coefficient and the CFO for the signal in the ith branch, si(t) is the baseband representation

of the transmitted signal in the ith band, and ni(t) is modeled as complex white Gaussian noise with

independent components, each having spectral density σ2
i .

The signal model in (1) assumes that the signal in each branch can be modeled as a narrowband signal.

Hence, a single complex channel coefficient is used to represent the fading of each signal.

The system model considered in this study falls within the framework of cognitive radio systems,

since the cognitive user first needs to detect the available frequency bands, and then to adapt its receiver

parameters accordingly. Therefore, the spectrum sensing and adaptation features of cognitive systems are

assumed for the considered system in this study [9], [10].
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Fig. 2. Block diagram of the front-end of a cognitive radio receiver, where BPF and LNA refer to band-pass filter and low-noise amplifier,
respectively.

III. OPTIMAL TIME DELAY ESTIMATION AND THEORETICAL LIMITS

Accurate estimation of the time delay parameter τ in (1) is quite challenging due to the presence of

unknown channel coefficients and CFOs. For a system with K bands, there are 3K nuisance parameters.

In other words, the vector θ of unknown parameters can be expressed as

θ = [τ a1 · · · aK φ1 · · ·φK ω1 · · ·ωK ] . (2)

When the signals in (1) are observed over the interval [0, T ], the log-likelihood function for θ is given
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by [30]

Λ(θ) = c−
K∑

i=1

1

2σ2
i

∫ T

0

∣∣ri(t)− αi e
jωitsi(t− τ)

∣∣2 dt , (3)

where c is a constant that is independent of θ (the unknown parameters are assumed to be constant during

the observation interval). Then, the ML estimate for θ can be obtained from (3) as [23]

θ̂ML = arg max
θ

{
K∑

i=1

1

σ2
i

∫ T

0

R{
α∗i e

−jωitri(t)s
∗
i (t− τ)

}
dt−

K∑
i=1

Ei|αi|2
2σ2

i

}
, (4)

where Ei =
∫ T

0
|si(t− τ)|2dt is the signal energy, and R represents the operator that selects the real-part

of its argument.

It is observed from (4) that the ML estimator requires an optimization over a (3K + 1)-dimensional

space, which is quite challenging in general. Therefore, the aim of this study is to propose low-complexity

time delay estimation algorithms with comparable performance to that of the ML estimator in (4). In other

words, accurate time delay estimation algorithms are studied under practical constraints on the processing

power of the receiver. Since the ML estimator is difficult to implement, the performance comparisons

will be made with respect to the theoretical limits on time delay estimation (an ML estimator achieves

the CRLB asymptotically under certain conditions [30]). In [23], the CRLBs on the MSEs of unbiased

time delay estimators are obtained for the signal model in (1). When the baseband representation of the

signals in different branches are of the form si(t) =
∑

l di,lpi(t − lTi), where di,l denotes the complex

training data and pi(t) is a pulse with duration Ti, the CRLB is expressed as

E{(τ̂ − τ)2} ≥
(

K∑
i=1

a2
i

σ2
i

(
Ẽi − (ÊR

i )2/Ei

))−1

, (5)

where

Ẽi =

∫ T

0

|s′i(t− τ)|2dt , (6)
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and

ÊR
i =

∫ T

0

R{s′i(t− τ)s∗i (t− τ)}dt , (7)

with s′(t) representing the first derivative of s(t). In the special case of |di,l| = |di| ∀l and pi(t) satisfying

pi(0) = pi(Ti) for i = 1, . . . , K, (5) becomes [23]

E{(τ̂ − τ)2} ≥
(

K∑
i=1

Ẽi a
2
i

σ2
i

)−1

. (8)

It is observed from (5) and (8) that frequency diversity can be useful in time delay estimation. For example,

when one of the bands is in a deep fade ( i.e., small a2
i ), some other bands can still be in good condition

to facilitate accurate time delay estimation.

IV. TWO-STEP TIME DELAY ESTIMATION AND DIVERSITY COMBINING

Due to the complexity of the ML estimator in (4), a two-step time delay estimation approach is proposed

in this paper, as shown in Fig. 3. Two-step approaches are commonly used in optimization/estimation

problems in order to provide suboptimal solutions with reduced computational complexity [31], [32]. In

the proposed estimator, each branch of the receiver performs estimation of the time delay, the channel

coefficient and the CFO related to the signal in that branch. Then, the estimates from all the branches are

used to obtain the final time delay estimate as shown in Fig. 3. In the following sections, the details of

the proposed approach are explained, and the utilization of frequency diversity in time delay estimation

is explained.

A. First Step: Parameter Estimation at Different Branches

In the first step of the proposed approach, the unknown parameters of each received signal are estimated

at the corresponding receiver branch according to the ML criterion (cf. Fig. 3). Based on the signal model

in (1), the likelihood function at branch i can be expressed as

Λi(θi) = ci − 1

2σ2
i

∫ T

0

∣∣ri(t)− αi e
jωitsi(t− τ)

∣∣2 dt , (9)
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Fig. 3. The block diagram of the proposed time delay estimation approach. The signals r1(t), . . . , rK(t) are obtained at the front-end of
the receiver as shown in Fig. 2.

for i = 1, . . . , K, where θi = [τ ai φi ωi] represents the vector of unknown parameters related to the

signal at the ith branch, ri(t), and ci is a constant that is independent of θi.

From (9), the ML estimator at branch i can be stated as

θ̂i = arg min
θi

∫ T

0

∣∣ri(t)− αi e
jωitsi(t− τ)

∣∣2 dt , (10)

where θ̂i = [τ̂i âi φ̂i ω̂i] is the vector of estimates at the ith branch. After some manipulation, the solution

of (10) can be obtained as

[
τ̂i φ̂i ω̂i

]
= arg max

φi,ωi,τi

∣∣∣∣
∫ T

0

R{
ri(t) e−j(ωit+φi)s∗i (t− τi)

}
dt

∣∣∣∣ (11)

and

âi =
1

Ei

∫ T

0

R
{

ri(t) e−j(ω̂it+φ̂i)s∗i (t− τ̂i)
}

dt . (12)

In other words, at each branch, optimization over a three-dimensional space is required to obtain the

unknown parameters. Compared to the ML estimator in Section III, the optimization problem in (4)

over (3K + 1) variables is reduced to K optimization problems over three variables, which results in a

significant amount of reduction in the computational complexity.
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In the absence of CFO; i.e., ωi = 0 ∀i, (11) and (12) reduce to

[
τ̂i φ̂i

]
= arg max

φi,τi

∣∣∣∣
∫ T

0

R{
ri(t) e−jφis∗i (t− τi)

}
dt

∣∣∣∣ (13)

and

âi =
1

Ei

∫ T

0

R
{

ri(t) e−jφ̂is∗i (t− τ̂i)
}

dt . (14)

In that case, the optimization problem at each branch is performed over only two dimensions. This scenario

is valid when the carrier frequency of each band is known accurately.

B. Second Step: Combining Estimates from Different Branches

After obtaining K different time delay estimates, τ̂1, . . . , τ̂K , in (11), the second step combines those

estimates according to one of the criteria below and makes the final time delay estimate (cf. Fig. 3).

1) Optimal Combining: According to the “optimal” combining criterion (the optimality properties of

this combining technique are investigated in Section V), the time delay estimate is obtained as

τ̂ =

∑K
i=1 κi τ̂i∑K
i=1 κi

, (15)

where τ̂i is the time delay estimate of the ith branch, which is obtained from (11), and

κi =
â2

i Ẽi

σ2
i

, (16)

with Ẽi being defined in (6). In other words, the optimal combining technique estimates the time delay as

a weighted average of the time delays of different branches, where the weights are chosen as proportional

to the multiplication of the SNR estimate, Eiâ
2
i /σ

2
i , and Ẽi/Ei . Since Ẽi is defined as the energy of the

first derivative of si(t) as in (6), Ẽi/Ei can be expressed, using Parseval’s relation, as Ẽi/Ei = 4π2β2
i ,

where βi is the effective bandwidth of si(t), which is defined as [30]

β2
i =

1

Ei

∫ ∞

−∞
f 2|Si(f)|2df , (17)
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with Si(f) denoting the Fourier transform of si(t). Therefore, it is concluded that the optimal combining

technique assigns a weight to the time delay estimate of a given branch in proportion to the product of

the SNR estimate and the effective bandwidth related to that branch. The intuition behind this combining

technique is the fact that signals with larger effective bandwidths and/or larger SNRs facilitate more

accurate time delay estimation [30]; hence, their weights should be larger in the combining process. This

intuition is verified theoretically in Section V.

2) SNR Combining: The second technique combines the time delay estimates in the first step according

to the SNR estimates at the respective branches. In other words, the time delay estimate is obtained as

τ̂ =

∑K
i=1 γi τ̂i∑K
i=1 γi

, (18)

where

γi =
â2

i Ei

σ2
i

. (19)

Note that γi defines the SNR estimate at branch i. In other words, this technique considers only the SNR

estimates at the branches in order to determine the combining coefficients, and does not take the signal

bandwidths into account.

It is observed from (15)-(19) that the optimal combining and the SNR combining techniques become

equivalent if Ẽ1/E1 = · · · = ẼK/EK . Since Ẽi/Ei = 4π2β2
i , where βi is the effective bandwidth defined

in (17), the two techniques are equivalent when the effective bandwidths of the signals at different branches

are all equal.

3) Selection Combining-1 (SC-1): Another technique for obtaining the final time delay estimate is to

determine the “best” branch and to use its estimate as the final time delay estimate. According to SC-1, the

best branch is defined as the one that has the maximum value of κi = â2
i Ẽi/σ

2
i for i = 1, . . . , K. In other

words, the branch with the maximum multiplication of the SNR estimate and the effective bandwidth is
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determined as the best branch and its estimate is used as the final one. That is,

τ̂ = τ̂m , m = arg max
i∈{1,...,K}

{
â2

i Ẽi/σ
2
i

}
, (20)

where τ̂m represents the time delay estimate at the mth branch.

4) Selection Combining-2 (SC-2): Similar to SC-1, SC-2 selects the “best” branch and uses its estimate

as the final time delay estimate. However, according to SC-2, the best branch is defined as the one with

the maximum SNR. Therefore, the time delay estimate is obtained as follows according to SC-2:

τ̂ = τ̂m , m = arg max
i∈{1,...,K}

{
â2

i Ei/σ
2
i

}
, (21)

where τ̂m represents the time delay estimate at the mth branch.

SC-1 and SC-2 become equivalent when the effective bandwidths of the signals at different branches

are all equal.

5) Equal Combining: The equal combining technique assigns equal weights to the estimates from

different branches and obtains the time delay estimate as follows:

τ̂ =
1

K

K∑
i=1

τ̂i . (22)

Considering the proposed combining techniques above, it is observed that they are similar to diversity

combining techniques in communications systems [33]. However, the main difference is the following.

The aim is to maximize the SNR or to reduce the probability of symbol error in communications systems

[33], whereas, in the current problem, it is to reduce the MSE of time delay estimation. In other words,

this study considers diversity combining for time delay estimation, where the diversity results from the

dispersed spectrum utilization of the cognitive radio system.

V. ON THE OPTIMALITY OF TWO-STEP TIME DELAY ESTIMATION

In this section, the asymptotic optimality properties of the two-step time delay estimators proposed in

the previous section are investigated. In order to analyze the performance of the estimators at high SNRs,
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the result in [24] for time-delay estimation at multiple receive antennas is extended to the scenario in this

paper.

Lemma 1: Consider any linear modulation of the form si(t) =
∑

l di,lpi(t − lTi), where di,l denotes

the complex data for the lth symbol of signal i, and pi(t) represents a pulse with duration Ti. Assume

that
∫∞
−∞ s′i(t− τ)s∗i (t− τ)dt = 0 for i = 1, . . . , K. Then, for the signal model in (1), the delay estimate

in (11) and the channel amplitude estimate in (12) can be modeled, at high SNR, as

τ̂i = τ + νi , (23)

âi = ai + ηi , (24)

for i = 1, . . . , K, where νi and ηi are independent zero mean Gaussian random variables with variances

σ2
i /(Ẽi a

2
i ) and σ2

i /Ei, respectively. In addition, νi and νj (ηi and ηj) are independent for i 6= j.

Proof: The proof uses the derivations in [23] in order to extend Lemma 1 in [24] to the cases with

CFO. At high SNRs, the ML estimate θ̂i of θi = [τ ai φi ωi] in (11) and (12) is approximately distributed

as a jointly Gaussian random variable with the mean being equal to θi and the covariance matrix being

given by the inverse of the Fisher information matrix (FIM) for observation ri(t) in (1) over [0, T ]. Then,

the results in [23] can be used to show that, under the conditions in the lemma, the first 2× 2 block of

the covariance matrix can be obtained as diag{σ2
i /(Ẽia

2
i ), σ

2
i /Ei}. Therefore, τ̂i and âi can be modeled

as in (23) and (24). In addition, since the noise at different branches are independent, the estimates are

independent for different branches. ¤

Based on Lemma 1, the asymptotic unbiasedness properties of the estimators in Section IV can be

verified. First, it is observed from Lemma 1 that E{τ̂i} = τ . Considering the optimal combining technique

in (15) as example, the unbiasedness property can be shown as

E{τ̂ |â1, . . . , âK} =

∑K
i=1 κi E{τ̂i|â1, . . . , âK}∑K

i=1 κi

=

∑K
i=1 κi E{τ̂i|âi}∑K

i=1 κi

= τ , (25)

where κi = â2
i Ẽi/σ

2
i . Since E{τ̂ |â1, . . . , âK} does not depend on â1, . . . , âK , E{τ̂} = E{E{τ̂ |â1, . . . , âK}} =

τ . In other words, since for each specific value of âi, τ̂i is unbiased (i = 1, . . . , K), the weighted average
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of τ̂1, . . . , τ̂K is also unbiased. Similar arguments can be used to show that all the two-step estimators

described in Section IV are asymptotically unbiased.

Regarding the variance of the estimators, it can be shown that the optimal combining technique has a

variance that is approximately equal to the CRLB at high SNRs (in fact, this is the main reason why this

combining technique is called optimal). To that aim, the conditional variance of τ̂ in (15) given â1, . . . , âK

is obtained as follows:

Var{τ̂ |â1, . . . , âK} =

∑K
i=1 κ2

i Var{τ̂i|â1, . . . , âK}(∑K
i=1 κi

)2 , (26)

where the independence of the time delay estimates is used to obtain the result (cf. Lemma 1). Since

Var{τ̂i|â1, . . . , âK} = Var{τ̂i|âi} = σ2
i /(Ẽi a

2
i ) from Lemma 1 and κi = â2

i Ẽi/σ
2
i , (26) can be expressed

as

Var{τ̂ |â1, . . . , âK} =

∑K
i=1

â4
i Ẽ2

i

σ4
i

σ2
i

Ẽia2
i(∑K

i=1
â2

i Ẽi

σ2
i

)2

=
K∑

i=1

â4
i Ẽi

a2
i σ

2
i

(
K∑

i=1

â2
i Ẽi

σ2
i

)−2

. (27)

Lemma 1 states that at high SNRs, âi is distributed as a Gaussian random variable with mean ai and

variance σ2
i /Ei . Therefore, for sufficiently large values of Ei

σ2
i
, . . . , EK

σ2
K

, (27) can be approximated by

Var{τ̂ |â1, . . . , âK} ≈
(

K∑
i=1

Ẽi a
2
i

σ2
i

)−1

, (28)

which is equal to CRLB expression in (8). Therefore, the optimal combining technique in (15) results in

an approximately optimal estimator at high SNRs.

The variances of the other combining techniques in Section IV can be obtained in a straightforward

manner and it can be shown that the asymptotic variances are larger than the CRLB in general. For
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example, for the SNR combining technique in (18), the conditional variance can be calculated as

Var{τ̂ |â1, . . . , âK} =

∑K
i=1

â4
i E2

i

σ4
i

σ2
i

Ẽia2
i(∑K

i=1
â2

i Ei

σ2
i

)2

=
K∑

i=1

â4
i E

2
i

a2
i Ẽiσ2

i

(
K∑

i=1

â2
i Ei

σ2
i

)−2

, (29)

which, for sufficiently large SNRs, becomes

Var{τ̂ |â1, . . . , âK} ≈
K∑

i=1

a2
i E

2
i

Ẽiσ2
i

(
K∑

i=1

a2
i Ei

σ2
i

)−2

. (30)

Then, from the Cauchy-Schwarz inequality, the following condition is obtained:

Var{τ̂ |â1, . . . , âK} ≈
∑K

i=1
a2

i E2
i

Ẽiσ2
i(∑K

i=1
aiEi

σi

√
Ẽi

ai

√
Ẽi

σi

)2 ≥
∑K

i=1
a2

i E2
i

Ẽiσ2
i∑K

i=1
a2

i E2
i

Ẽiσ2
i

∑K
i=1

a2
i Ẽi

σ2
i

= CRLB , (31)

which holds with equality if and only if Ẽ1

E1
= · · · = ẼK

EK
(or, β1 = · · · = βK). In fact, under that condition,

the optimal combining and the SNR combining techniques become identical as mentioned in Section IV,

since κi = â2
i Ẽi/σ

2
i = (Ẽi/Ei)(Eiâ

2
i /σ

2
i ) = (Ẽi/Ei)γi (cf. (16) and (19)). In other words, when the

effective bandwidths of the signals at different branches are not equal, the asymptotic variance of the

SNR combining technique is strictly larger than the CRLB.

Regarding the selection combining approaches in (20) and (21), similar conclusions as for the diversity

combining techniques in communications systems can be made [33]. Specifically, SC-1 and SC-2 perform

worse than the optimal combining and the SNR combining techniques, respectively, in general. However,

when the estimate of a branch is significantly more accurate than the others, the performance of the

selection combining approach can get very close to the optimal combining or the SNR combining tech-

nique. However, when the branches have similar estimation accuracies, the selection combining techniques

can perform significantly worse. The conditional variances of the selection combining techniques can be
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approximated at high SNR as

Var{τ̂ |â1, . . . , âK} ≈ min

{
σ2

1

Ẽ1a2
1

, . . . ,
σ2

K

ẼKa2
K

}
, (32)

for SC-1, and

Var{τ̂ |â1, . . . , âK} ≈ Em

Ẽm

min

{
σ2

1

E1a2
1

, . . . ,
σ2

K

EKa2
K

}
, (33)

for SC-2, where m = arg min
i∈{1,...,K}

{σ2
i /(Eiâ

2
i )} . From (32) and (33), it is observed that if Ẽ1

E1
= · · · = ẼK

EK

(β1 = · · · = βK), then the asymptotic variances of the SC-1 and SC-2 techniques become equivalent.

Finally, for the equal combining technique, the variance can be obtained from (22) as

Var{τ̂} =
1

K2

K∑
i=1

σ2
i

Ẽia2
i

. (34)

In general, the equal combining technique is expected to have the worst performance since it does not

make use of any information about the SNR or the signal bandwidths in the estimation of the time delay.

VI. SIMULATION RESULTS

In this section, simulations are performed in order to evaluate the performance of the proposed time

delay estimators and compare them with each other and against the CRLBs. The signal si(t) in (1)

corresponding to each branch is modeled by the Gaussian doublet given by

si(t) = Ai

(
1− 4π(t− 1.25 ζi)

2

ζ2
i

)
e−2π(t−1.25ζi)

2/ζ2
i , (35)

where Ai and ζi are the parameters that are used to adjust the pulse energy and the pulse width, respectively.

The bandwidth of si(t) in (35) can approximately be expressed as Bi ≈ 1/(2.5 ζi) [29]. For the following

simulations, Ai values are adjusted to generate unit-energy pulses.

For all the simulations, the spectral densities of the noise at different branches are assumed to be equal;

that is, σ2
i = σ2 for i = 1, . . . , K. In addition, the SNR of the system is defined with respect to the total

energy of the signals at different branches; i.e., SNR = 10 log10

(PK
i=1 Ei

2 σ2

)
.
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Fig. 4. RMSE versus SNR for the proposed algorithms, and the theoretical limit (CRLB). The signal occupies three dispersed bands with
bandwidths B1 = 200 kHz, B2 = 100 kHz and B3 = 400 kHz.

In assessing the root-mean-squared errors (RMSEs) of the different estimators, a Rayleigh fading channel

is assumed. Namely, the channel coefficient αi = ai ejφi in (1) is modeled as ai being a Rayleigh distributed

random variable and φi being uniformly distributed in [0, 2π). Also, the same average power is assumed

for all the bands; namely, E{|αi|2} = 1 is used. The time delay τ in (1) is uniformly distributed over the

observation interval. In addition, it is assumed that there is no CFO in the system.

First, the performance of the proposed estimators is evaluated with respect to the SNR for a system

with K = 3, B1 = 200 kHz, B2 = 100 kHz and B3 = 400 kHz. The results in Fig. 4 indicate that

the optimal combining technique has the best performance as expected from the theoretical analysis, and

SC-1, which estimates the delay according to (20), has performance close to that of the optimal combining

technique. The SNR combining and SC-2 techniques have worse performance than the optimal and SC-1

techniques, respectively. In addition, SC-1 has better performance than the SNR combining technique in

this scenario, which indicates that selecting the delay estimate corresponding to the largest Ẽiâ
2
i /σ

2
i value
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Fig. 5. RMSE versus SNR for the proposed algorithms, and the theoretical limit (CRLB). The signal occupies two dispersed bands with
bandwidths B1 = 100 kHz and B2 = 400 kHz.

is closer to optimal than combining the delay estimates of the different branches according to the SNR

combining criterion in (18) for the considered scenario. The main reason for this is related to the large

variability of the channel amplitudes due to the nature of the Rayleigh distribution. Since the channel

amplitude levels are expected to be quite different for most of the time, using the delay estimate of the

best one yields a more reliable estimate than combining the delay estimates according to the suboptimal

SNR combining technique (since the signal bandwidths are different, the SNR combining technique is

suboptimal as studied in Section V). Regarding the equal combining technique, it has significantly worse

performance than the others, since it combines all the delay estimates equally. Since the delay estimates

of some branches can have very large errors due to fading, the RMSEs of the equal combining technique

become significantly larger. For example, when converted to distance estimates, an RMSE of about 120

meters is achieved by this technique, whereas the optimal combining technique results in an RMSE of

less than 15 meters. Finally, it is observed that the performance of the optimal combining technique gets
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Fig. 6. RMSE versus SNR for the proposed algorithms, and the theoretical limit (CRLB). The signal occupies two dispersed bands with
equal bandwidths of 400 kHz.

very close to the CRLB at high SNRs, which is expected from the asymptotic arguments in Section V.

Next, similar performance comparisons are performed for a signal with K = 2, B1 = 100 kHz, and

B2 = 400 kHz, as shown in Fig. 5. Again similar observations as for Fig. 4 are made. In addition, since

there are only two bands (K = 2) and the signal bandwidths are quite different, the selection combining

techniques, SC-1 and SC-2, get very close to the optimal combining and the SNR combining techniques,

respectively.

In addition, the equivalence of the optimal combining and the SNR combining techniques and that of

SC-1 and SC-2 are illustrated in Fig. 6, where K = 2, and B1 = B2 = 400 kHz are used. In other words,

the signal consists of two dispersed bands with 400 kHz bandwidths, and in each band, the same signal

described by (35) is used. Therefore, Ẽ1/E1 = Ẽ2/E2 is satisfied, which results in the equivalence of the

optimal combining and the SNR combining techniques, as well as that of the SC-1 and SC-2 techniques, as

discussed in Section IV. Also, since there are only two bands (K = 2), the selection combining techniques
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Fig. 7. RMSE versus the number of bands for the proposed algorithms, and the theoretical limit (CRLB). Each band occupies 100 kHz,
and σ2

i = 0.1 ∀i.

get very close to the optimal combining and the SNR combining techniques.

In Fig. 7, the RMSEs of the proposed estimators are plotted against the number of bands, where each

band is assumed to have 100 kHz bandwidth. The spectral densities are set to σ2
i = σ2 = 0.1 ∀i. Since the

same signals are used in each band, the optimal combining and the SNR combining techniques become

identical; hence, only one of them is marked in the figure. Similarly, since SC-1 and SC-2 are identical

in this scenario, they are referred to as “selection combining” in the figure. It is observed from Fig. 7

that the optimal combining has better performance than the selection combining and the equal combining

techniques. In addition, as the number of bands increases, the amount of reduction in the RMSE per

additional band decreases (i.e., diminishing return). In fact, the selection combining technique seems to

converge to an almost constant value for large numbers of bands. This is intuitive since the selection

combining technique always uses the estimate from one of the branches; hence, in the presence of a

sufficiently large number of bands, additional bands do not cause a significant increase in the diversity.



21

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−7

10
−6

10
−5

SNR (dB)

R
M

S
E

 (
se

c.
)

 

 

Optimal combining
SNR combining
Equal combining
Selection combining 1
Selection combining 2
Theoretical limit

Fig. 8. RMSE versus SNR for the proposed algorithms, and the theoretical limit (CRLB) in the presence of CFO. The signal occupies two
dispersed bands with bandwidths B1 = 100 kHz and B2 = 400 kHz.

On the other hand, the optimal combining technique has a slope that is quite similar to that of the CRLB;

that is, it makes an efficient use of the frequency diversity.

Finally, the performance of the proposed algorithms is investigated in the presence of CFO in Fig. 8.

The CFOs at different branches are modeled by independent uniform random variables over [−100, 100]

Hz, and the RMSEs are obtained for the system parameters that are considered for Fig. 5. Again similar

observations as for Fig. 4 and Fig. 5 are made. In addition, the comparison of Fig. 5 and Fig. 8 reveals

that the RMSE values slightly increase in the presence of CFOs, although the theoretical limit stays the

same [23].

VII. CONCLUDING REMARKS

Time delay estimation for dispersed spectrum cognitive radio systems has been studied. After the

investigation of the ML estimator and the CRLBs, a two-step approach has been proposed to obtain
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accurate time delay estimates with reasonable computational complexity. In the first step of the proposed

approach, an ML estimator is used at each branch of the receiver in order to estimate the unknown

parameters of the received signal at that branch. Then, in the second step, a number of diversity combining

approaches have been studied. In the optimal combining technique, both the SNRs and the bandwidths

of the signals at different branches are considered to obtain the time delay estimate, whereas the SNR

combining technique obtains the time delay estimate according to the estimated SNR values only. In

addition, two selection combining techniques, as well as the equal combining technique, have been

investigated. It has been shown that the optimal combining technique can approximate the CRLB at

high SNRs, whereas the equal combining technique has the worst performance since it does not make

use of any information about signal bandwidths and/or the SNRs. Simulation results have been presented

to verify the theoretical analysis.
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