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Abstract

Localization relying on wireless ultra-wideband (UWB) signaling is investigated. Various localization alternatives

are considered and the UWB time-of-arrival based one is found to have highest ranging accuracy. The challenges

in UWB positioning problems, such as multiple-access interference, multipath and non-line-of-sight propagation

are presented along with the fundamental limits for time-of-arrival estimation and time-of-arrival-based position-

ing. To reduce complexity of optimal schemes achieving those limits, suboptimal alternatives are also developed

and analyzed. Moreover, a hybrid scheme that incorporates time-of-arrival and signal strength measurements is

investigated.

I. I NTRODUCTION

Ultra-wideband (UWB) radios have relative bandwidths larger than20% and/or absolute bandwidths of more than

500 MHz. Such wide bandwidths offer a wealth of advantages for both communications and radar applications. In

both cases, a large relative bandwidth improves reliability, as the signal contains different frequency components,

which increases the probability that at least some of them can go through or around obstacles. Furthermore, a large

absolute bandwidth offers high resolution radars with improved ranging accuracy. For communications, both large

relative and large absolute bandwidth lead to alleviation of the small-scale fading [1], [2]; furthermore, spreading

information over a very large bandwidth decreases the power spectral density, thus reducing interference to other

systems, effecting spectrum overlay with legacy radio services, and lowering the probability of interception.
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Historically, UWB radars have been studied for a long time, as they have been used in military applications for

several decades [3], [4]. UWB communication-related applications were introduced only in the early 1990s [5],

[6], [7], but have received wide interest after the Federal Communications Commission (FCC) in the US allowed

the use ofunlicensed UWB communications [8]. The first commercial systems, developed in the context of IEEE

802.15.3a standardization process, are intended for high data rate, short range Personal Area Networks (PANs)

[9]-[11].

Emerging applications of UWB are foreseen for sensor networks as well. Such networks combine low to

medium rate communications with positioning capabilities. UWB signaling is especially suitable in this context,

because it allows centimeter accuracy in ranging, as well as low-power and low-cost implementation of com-

munication systems. These features allow a new range of applications, including logistics (package tracking),

security applications (localizing authorized persons in high-security areas), medical applications (monitoring of

patients), family communications/supervision of children, search-and-rescue (communications with fire fighters, or

avalanche/earthquake victims), control of home appliances, and military applications.

These new possibilities have also been recognized by the IEEE, which has set up a new standardization group

802.15.4a for the creation of a new physical layer for low data rate communications combined with positioning

capabilities; UWB technology is a leading candidate for this standard.

While UWB positioning bears similarities to radar, there are distinct differences. While radar typically relies

on a stand-alone transmitter/receiver, a sensor network combines information from multiple sensor nodes to refine

the position estimate. On the other hand, a radar can usually pick a location where surroundings induce minimal

clutter, while a sensor node in a typical application cannot choose its location and has to deal with non-ideal or even

harsh electromagnetic propagation conditions. Finally, sensor networks operate in the presence of multiple-access

interference, while radar is typically more influenced by narrowband interferers (jammers).

UWB communications have been discussed recently in [12]-[15]. In this paper, we concentrate on positioning

aspects of future sensor networks. Positioning systems can be divided into three main categories: time-of-arrival,

direction-of-arrival, and signal-strength based systems. In this paper, we will discuss their individual properties,

including fundamental performance bounds in the presence of noise and multipath. Furthermore, we will describe

possible combination strategies that improve the overall performance.

In this special issue of the IEEE Signal Processing Magazine, various aspects of signal processing techniques

for positioning and navigation with applications to communication systems are covered. For example, in [16], a

number of positioning techniques are investigated from a systems point of view for cellular networks, wireless



3

Fig. 1. A sample transmitted signal from a time-hopping impulse radio UWB system.Tf is the frame time andTc is the chip interval.
The locations of the pulses in the frames are determined according to a time-hopping sequence. See [6] for details.

local area networks (LANs) and ad-hoc sensor networks. The positioning problem for cellular networks is further

discussed in [17], which considers theoretical bounds and the FCC’s requirements on locating emergency calls.

The treatment in that work spans dynamic and static models for positioning given a set of measurements; it does

not, however, consider low-layer issues such as specific timing estimation algorithms. These low-layer issues, such

as time of arrival and angle of arrival estimation algorithms, are studied in [18]. Positioning in wireless sensor

networks is further investigated in [19], which focuses on cooperative (multi-hop) localization. Among the possible

signalling schemes discussed in [19], UWB signals are presented as a good candidate for short-range accurate

location estimation. It is the purpose of our paper to investigate the positioning problem from a UWB perspective

and to present performance bounds and estimation algorithms for UWB ranging/positioning.

The remainder of the paper is organized as follows: Section II describes positioning techniques based on time-of-

arrival, direction-of-arrival, and signal strength. Error sources of time-based positioning systems, such as multipath

propagation and multiple access interference, are the subject of Section III. The fundamental limits for time of

arrival estimation are presented in Section IV, while the performance bounds of time-of-arrival based positioning

is presented in Section V, along with a hybrid scheme that uses signal strength and time of arrival measurements.

Finally, concluding remarks are summarized in Section VI.

II. POSITIONING TECHNIQUES FORUWB SYSTEMS

Locating a node in a wireless system involves the collection of location information from radio signals traveling

between the target node and a number of reference nodes. Depending on the positioning technique, the angle of

arrival (AOA), the signal strength (SS) or time delay information can be used in order to determine the location of

a node [20]. The AOA technique measures the angles between a given node and a number of reference nodes to

estimate the location, while the SS and time-based approaches estimate the distance between nodes by measuring

the energy and the travel time of the received signal, respectively. We will investigate each approach from the

viewpoint of a UWB system.
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Fig. 2. Positioning via the angle-of-arrival (AOA) measurements. The blue (dark) nodes are the reference nodes.

A. Angle of Arrival (AOA)

An AOA-based positioning technique involves measuring angles of the target node seen by reference nodes,

which is done by means of antenna arrays. In order to determine the location of a node in a two-dimensional space,

it is sufficient to measure the angles of the straight lines that connect the node and two reference nodes, as shown

in Figure 2.

The AOA approach is not suited to UWB positioning for the following reasons. First, use of antenna arrays

increases the system cost, annulling the main advantage of a UWB radio equipped with low-cost transceivers. More

importantly, due to the large bandwidth of a UWB signal, the number of paths may be very large, especially in

indoor environments. Therefore, accurate angle estimation becomes very challenging due to scattering from objects

in the environment. Moreover, as we will see later in this section, time-based approaches can provide very precise

location estimates, and therefore they are better motivated for UWB over the more costly AOA-based techniques.

B. Signal Strength (SS)

Relying on a path-loss model, the distance between two nodes can be calculated by measuring the energy of

the received signal at one node. This distance-based technique requires at least three reference nodes to determine

the two-dimensional location of a given node, using the well known triangulation approach depicted in Figure 3

[20]. In order to determine the distance from SS measurements, the characteristics of the channel must be known.

Therefore, SS-based positioning algorithms are very sensitive to the estimation of those parameters.

The Cramer-Rao lower bound (CRLB) for a distance estimated̂ from SS measurements provides the following

inequality [21]

√
Var(d̂) ≥ ln 10

10
σsh

np
d, (1)
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Fig. 3. Distance-based positioning technique. The distances can be obtained via the signal strength (SS) or the time of arrival (TOA)
estimation. The blue (dark) nodes are the reference nodes.

whered is the distance between the two nodes,np is the path loss factor andσsh is the standard deviation of the

zero mean Gaussian random variable representing the log-normal channel shadowing effect. From (1), we observe

that the best achievable limit depends on the channel parameters and the distance between the two nodes. Therefore,

the unique characteristic of a UWB signal, namely the very large bandwidth, is not exploited to increase the best

achievable accuracy. However, in some cases, the target node can be very close to some reference nodes, such

as relay nodes in a sensor network, which can take SS measurements only [22]. In such cases, SS measurements

can be used in conjunction with time delay measurements of other reference nodes in a hybrid scheme, which can

help improve the location estimation accuracy. The fundamental limits for such a hybrid scheme are investigated

in Section V-B.

C. Time-Based Approaches

Time-based positioning techniques rely on measurements of travel times of signals between nodes. If two nodes

have a common clock, the node receiving the signal can determine the time of arrival (TOA) of the incoming signal

that is time-stamped by the reference node. For a single-path additive white Gaussian noise (AWGN) channel, it

can be shown that the best achievable accuracy of a distance estimated̂ derived from TOA estimation satisfies the

following inequality [23], [24]:
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√
Var(d̂) ≥ c

2
√

2π
√

SNRβ
, (2)

wherec is the speed of light, SNR is the signal-to-noise ratio andβ is the effective (or RMS) signal bandwidth

defined by

β
∆=

[∫ ∞

−∞
f2|S(f)|2df

/ ∫ ∞

−∞
|S(f)|2df

]1/2

, (3)

andS(f) is the Fourier transform of the transmitted signal.

Unlike SS-based techniques, the accuracy of a time-based approach can be improved by increasing the SNR

or the effective signal bandwidth. Since UWB signals have very large bandwidths, this property allows extremely

accurate location estimates using time-based techniques via UWB radios. For example, with a receive UWB pulse

of 1.5 GHz bandwidth, an accuracy of less than an inch can be obtained at SNR=0dB.

Since the achievable accuracy under ideal conditions is very high, clock synchronization between the nodes

becomes an important factor affecting TOA estimation accuracy. Hence, clock jitter must be considered in evaluating

the accuracy of a UWB positioning system [25].

If there is no synchronization between a given node and the reference nodes, but there is synchronization among

the reference nodes, then the time-difference-of-arrival (TDOA) technique can be employed [20]. In this case, the

TDOA of two signals travelling between the given node and two reference nodes is estimated, which determines the

location of the node on a hyperbola, with foci at the two reference nodes. Again a third reference node is needed

for localization. In the absence of a common clock between the nodes, round-trip time between two transceiver

nodes can be measured to estimate the distance between two nodes [26], [27].

In a nutshell, for positioning systems employing UWB radios, time-based schemes provide very good accuracy

due to the high time resolution (large bandwidth) of UWB signals. Moreover, they are less costly than the AOA-based

schemes, the latter of which is less effective for typical UWB signals experiencing strong scattering. Although it is

easier to estimate RSS than TOA, the range information obtained from RSS measurements is very coarse compared

to that obtained from the TOA measurements. Due to the inherent suitability and accuracy of time-based approaches

for UWB systems, we will focus our discussion on time-based UWB positioning in the rest of this article, except

for the SS-TOA hybrid algorithm in Section V-B.
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III. T IME-BASED UWB POSITIONING AND MAIN SOURCES OFERROR

Detection and estimation problems associated with a signal traveling between nodes have been well studied

in radar and other applications. An optimal estimate of the arrival time is obtained using a matched filter, or

equivalently, a bank of correlation receivers (see Turin [28]). In the former approach the instant at which the filter

output attains its peak provides the arrival time estimate, whereas in the latter, the time shift of the template signal

that yields the largest cross correlation with the received signal gives the desired estimate. These two estimates are

mathematically equivalent, so the choice is typically based on design and implementation costs. The correlation

receiver approach requires a possibly large number of correlators in parallel (or computations of cross correlation

in parallel). Alternatively, the matched filter approach requires only a single filter, but its impulse response must

closely approximate the time-reversed version of the received signal waveform, plus a device or a program that can

identify the instant at which the filter output reaches its peak.

The maximum likelihood estimate (MLE) of the arrival time can be also reduced to the estimate based on the

matched filter or correlation receiver, when the communication channel can be modeled as an AWGN channel (see

also Turin [28]). It is also well known in radar theory (see e.g., Cook and Bernfeld [24]) that this MLE achieves

asymptotically the CRLB. It can be shown, for AWGN channels, that a set of TOAs determined from the matched

filter outputs provide sufficient statistics to obtain the MLE or maximum a posteriori (MAP) estimate of the location

of the node in question (see [29]-[32]).

Instead of the optimal MLE/MAP location estimate, the conventional TOA-based scheme estimates the location

of the node using the lower-complexity least squares (LS) approach [20]:

θ̂ = arg min
�

N∑

i=1

wi (τi − di(θ)/c)2 , (4)

whereN is the number of reference nodes,τi is the ith TOA measurement,di(θ) := ‖θ − θi‖ is the distance

between the given node and theith reference node, withθ andθi denoting their locations respectively, andwi is

a scalar weighting factor for theith measurement which reflects the reliability of theith TOA estimate.

Although location estimation can be performed in a straightforward manner using the conventional LS technique

represented by equation (4) for a single user, line-of-sight (LOS) and single-path environment, it becomes chal-

lenging when more realistic situations are considered. In such scenarios, the main sources of errors are multipath

propagation, multiple access interference (MAI) and non-line-of-sight (NLOS) propagation. In addition, for UWB

systems in particular, realizing the purported high location resolution faces major challenges in accurate timing of
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ultra-short pulses of ultra-low power density.

A. Multipath Propagation

In conventional matched filtering or correlation-based TOA estimation algorithms, the time at which the matched

filter output peaks, or, the time shift of the template signal that produces the maximum correlation with the received

signal is used as the TOA estimate. However, in a narrowband system, this value may not be the true TOA since

multiple replicas of the transmitted signal, due to multipath propagation, partially overlap and shift the position of

the correlation peak. In other words, the multipath channel creates mismatch between the received signal of interest

and the transmitted template used; as a result, instead of auto-correlation, we obtain a cross-correlation, which does

not necessarily peak at the correct timing. In order to prevent this effect, some high resolution time delay estimation

techniques, such as that described in [33], have been proposed. These techniques are very complex compared to

the correlation based algorithms. Fortunately, due to the large bandwidth of a UWB signal, multipath components

are usually resolvable without the use of complex algorithms. However, multiple correlation peaks are still present

and it is important to consider algorithms such as that proposed in [26] to detect the first arriving signal path; see

also [34]-[38] for improved recent alternatives.

B. Multiple Access Interference

In a multiuser environment, signals from other nodes interfere with the signal of a given node and degrade

performance of time delay estimation.

A technique for reducing the effects of MAI is to use different time slots for transmissions from different

nodes. For example, in the IEEE 802.15.3 PAN standard [39], transmissions from different nodes are time division

multiplexed so that no two nodes in a given piconet transmit at the same time. However, even with such time

multiplexing, there can still be MAI from neighboring piconets and MAI is still an issue. Furthermore, time

multiplexing is often undesirable since spectral efficiency can be reduced by channelization.

C. Non-line-of-Sight Propagation

When the direct LOS between two nodes is blocked, only reflections of the UWB pulse from scatterers reach

the receiving node. Therefore, the delay of the first arriving pulse does not represent the true TOA. Since the pulse

travels an extra distance, a positive bias called the NLOS error is present in the measured time delay. In this case,

using the LS technique in (4) causes large errors in the location estimation process, since the LS solution is MLE

optimal only when each measurement error is a zero mean Gaussian random variable with known variance.
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In the absence of any information about NLOS errors, accurate location estimation is impossible. In this case,

some non-parametric (pattern recognition) techniques, such as those in [40] and [41], can be employed. The main

idea behind non-parametric location estimation is to gather a set of TOA measurements from all the reference nodes

at known locations beforehand and use this set as a reference when a new set of measurements is obtained.

However, in practical systems, it is usually possible to obtain some statistical information about the NLOS error.

Wylie and Holtzman [42] observed that the variance of the TOA measurements in the NLOS case is usually much

larger than that in the LOS case. They rely on this difference in the variance to identify NLOS situations and then

use a simple LOS reconstruction algorithm to reduce the location estimation error. Also, by assuming a scattering

model for the environment, the statistics of TOA measurements can be obtained, and then well-known techniques,

such as MAP and ML, can be employed to mitigate the effects of NLOS errors [43], [44]. In the case of tracking

a mobile user in a wireless system, biased and unbiased Kalman filters can be employed in order to estimate the

location accurately [45], [41].

In addition to introducing a positive bias, NLOS propagation may also cause a situation where the first arriving

pulse is usually not the strongest pulse. Therefore, conventional TOA estimation methods that choose the strongest

path would introduce another positive bias to the estimated TOA. In UWB positioning systems, first path detection

algorithms ([26], [46]) are proposed in order to mitigate the effects of the NLOS error.

In Section V, we will consider a unified analysis of the NLOS location estimation problem and present estimators

that are asymptotically optimal in the presence and absence of statistical NLOS information [32].

D. High Time Resolution of UWB Signals

As we have noted above, the extremely large bandwidth of UWB signals results in very high time (and thus

space) resolution. On the other hand, it also imposes challenges to accurate TOA estimation in practical systems.

First, clock jitter becomes an important factor in evaluating the accuracy of UWB positioning systems [25]. Since

UWB pulses have very short (sub-nanosecond) duration, clock accuracies and drifts in the target and the reference

nodes affect the TOA estimates.

Another consequence of high time resolution inherent in UWB signals is the uncertainty region for TOA; that is,

the set of delay positions that includes TOA, is usually very large compared to the chip duration. In other words,

there is a large number of chips that need to be searched for TOA. This makes conventional correlation-based serial

search approaches impractical, and calls for fast TOA estimation schemes.

Finally, high time resolution, or equivalently large bandwidth, of UWB signals makes it very impractical to
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sample the received signal at or above the Nyquist rate, which is typically on the order of tens of GHz. To faciliate

low-power UWB radio designs, it is essential to perform high-performance TOA estimation at affordable complexity,

preferably by making use of frame-rate or symbol-rate samples.

IV. FUNDAMENTAL L IMITS FOR TOA ESTIMATION

In this section, we delineate the fundamental limits of TOA estimation, and present means of realizing the high

time resolution of UWB signals at affordable complexity. For positioning applications, we focus on TOA estimation

for a single link between the target node and a reference node. We start with deriving the CRLB of TOA estimation

achieved by the optimal maximum likelihood (ML) estimator [47] for a realistic UWB multipath channel [48], [49].

1) CRLB for TOA Estimation in Multipath Channels:In a UWB positioning system, a reference node transmits

a stream of ultra-short pulsesp(t) of durationTp at the nanosecond scale. Each symbol is conveyed by repeating

over Nf frames one pulse per frame (of frame durationTf À Tp), resulting in a low duty cycle transmission form

[50]. Every frame containsNc chips, each of chip durationTc. Once timing is acquired at the receiver’s end, node

separation can be accomplished with node-specific pseudo-random time-hopping (TH) codes{c[i]} ∈ [0, Nc − 1],

which time-shift the pulse positions at multiples ofTc [50]. The symbol waveform comprisingNf frames is given

by ps(t) :=
∑Nf−1

i=0 p(t− c[i]Tc − iTf ), which has symbol durationTs := NfTf . The transmitted UWB waveform

is given by:

s(t) =
√
E

+∞∑

k=−∞
a[k]ps(t− kTs − b[k]∆), (5)

whereE is the transmission energy per symbol and∆ is the modulation index on the order ofTp. With s[k] ∈

[0;M−1] denoting theM -ary symbol transmitted by the reference node during thekth symbol period, (5) subsumes

two commonly used modulation schemes: pulse position modulation (PPM) for whichb[k] = s[k], anda[k] = 1

for all k; and pulse amplitude modulation (PAM) for whicha[k] = s[k], andb[k] = 0 for all k [50], [51].

Adopting a tapped delay line multipath channel model, the received signal after multipath propagation is

r(t) =
L∑

j=1

αjs(t− τj) + n(t), (6)

whereL is the number of paths, with path amplitudes{αj} and delays{τj} satisfyingτj < τj+1, ∀j. The noise

n(t) is approximated as a zero-mean white Gaussian process with double-sided power spectral densityN0/2 [52].

Let us collect the unknown path gains and delays in (6) into a2L× 1 channel parameter vector

θ = [α1, . . . , αL, τ1, . . . , τL]T . (7)
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The received signal is observed over an intervalt ∈ [0, T0], with T0 = KTs spanningK symbol periods. The

log-likelihood function ofθ takes the form [47]

ln[Λ(θ)] = − 1
No

∫ T0

0

∣∣∣∣∣∣
r(t)−

L∑

j=1

αjs(t− τj)

∣∣∣∣∣∣

2

dt. (8)

Taking the second-order derivative of (8) with respect toθ, we obtain the Fisher information matrix (FIM) after

straightforward algebraic manipulations:

Fθ =




Fαα Fατ

Fατ Fττ


 , (9)

whereFαα := (KNfEEp/No)I, Fατ := −(KNfEE ′p/No)diag{α1, . . . , αL} andFττ := (KNfEE ′′p /No) diag{α2
1, . . . , α

2
L};

hereEp, E ′p and E ′′p are energy-related constants determined by the pulse shapep(t) and its derivativep′(t) :=

∂p(t)/∂t; and diag{·} denotes a diagonal matrix. When there is no overlap between neighboring signal paths, it

holds thatEp :=
∫ Tp

0 p2(t)dt, E ′p :=
∫ Tp

0 p(t)p′(t)dt =
[
p2(Tp)− p2(0)

]
/2 andE ′′p :=

∫ Tp

0 [p′(t)]2dt. Based on (9),

the CRLB of each time delay estimatêτj , j = 1, . . . , L, is given by

CRB(τ̂j) =
[
(Fττ − FατF−1

ααFατ )−1
]
j,j

=
No

KNfE(E ′′p − E ′2p /Ep)α2
j

. (10)

As a special case, whenL = 1 and |p(0)| = |p(Tp)|, (10) reduces to its AWGN counterpart given in [53]:

CRB(τ̂1) =
No

KNfEE ′′p α2
1

, E ′′p =

∫∞
−∞ f2|P (f)|2df∫∞
−∞ |P (f)|2df , (11)

whereP (f) is the Fourier transform ofp(t). Depending on whethers[k] is deterministic or random, for the data-

aided versus blind cases, (10) and (11) are exact CRLBs in the data-aided case, and represent the looser modified

CRB (MCRB) in the non-data-aided case [54]. It is evident from (10) that the fundamental lower limit to the

variance of a UWB timing estimator is determined by the pulse shapep(t), path gains{α2
j}, and the observation

interval KTs which in turn relates to the pulse repetition gainNf .

Albeit useful in benchmarking performance, the CRLB in (10) is quite difficult to approach when synchronizing

a practical UWB receiver. The difficulty is rooted in the unique characteristics of UWB signaling induced by its

ultra-wide bandwidth. TOA estimation via the ML principle requires sampling at or above the Nyquist rate, which

results in a formidable sampling rate of 14.3 –35.7GHz for a typical UWB monocycle of duration 0.7ns [47]. Such

a high sampling rate might be essential in achieving high-performance TOA estimation in AWGN or low-scattering

channels. For multipath channels with inherent large diversity, on the other hand, recent research has led to low-
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complexity TOA estimators that sample at much lower rates of one sample per frame or even per symbol [34]-[38].

Therefore, the CRLB is more pertinent for outdoor applications where low-scattering channels prevail, but not

necessarily so for strong-scattering channels that characterize dense-multipath indoor environments in emerging

commercial applications of UWB radios. In the latter case, computational complexity limits the applicability of

ML timing estimators, in addition to implementation constraints imposed at the A/D modules. In such indoor

environments, there is a very large number of closely-spaced channel taps that must be estimated from a very large

sample set, in order to capture sufficient symbol energy from what has been scattered by dense multipath [47],

[55]-[57]. Another complication in ML estimation is the pulse distortion issue in UWB propagation [58]. Frequency-

dependent pulse distortion results in non-ideal receive-templates, which further degrades the performance of ML

estimation. There is clearly a need for practical timing estimation methods that properly account for the unique

features of UWB transmissions.

Next, we present rapid UWB-based low-complexity TOA estimators that bypass pulse-rate sampling and path-

by-path channel parameter estimation. Variance expressions of such timing estimators provide meaningful measures

for evaluating the performance of practical UWB positioning systems.

2) Low-Complexity TOA Estimation in Dense Multipath:The key idea behind low-complexity TOA estimation is

to consider the aggregate unknown channel instead of resolving all closely-spaced paths. As we will show in Section

V, it suffices to estimate only the first path arrival from the LOS nodes to effect asymptotically optimal UWB-based

geo-location. Isolating the first arrival timeτ1, other path delays can be uniquely described asτj,1 := τj − τ1 with

respect toτ1. It is then convenient to expressr(t) in terms of theaggregate receive-pulsepR(t) which encompasses

the transmit-pulse, spreading codes and multipath effects [c.f. (5) and (6) taking PAM as example]:

r(t) =
√
E

∞∑

k=0

s[k]pR(t− kTs − τ1) + n(t), where pR(t) :=
L∑

j=1

αjps(t− τj,1). (12)

We selectTf ≥ τL,1 + Tp and c0 ≥ cNf−1 to confine the duration ofpR(t) within [0, Ts) and avoid inter-symbol

interference (ISI). Timing synchronization amounts to estimatingτ1, which can be accomplished in two stages. First,

we use energy detection to estimatebτ1/Tsc, whereb·c denotes integer floor [35], [38]. This effectively yields a

coarse timing offset estimate in terms of integer multiples of the symbol period. Subsequently, we must estimate

the residual fine-scale timing offset(τ1 mod Ts), which affects critically localization accuracy. To this end, we

henceforth confineτ1 within a symbol duration; i.e.,τ1 ∈ [0, Ts). Traditionally, τ1 is estimated by peak-picking

the correlation ofr(t) with the ideal templatepR(t). The challenge here is that no clean template for matching

is available, since the multipath channel (and thuspR(t)) is unknown. If on the other hand we select the transmit
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templateps(t), timing is generally not identifiable because multiple peaks emerge in the correlator output due to

the unknown multipath channel.

Our first step is to establish a noisy template that matches the unknown multipath channel. EstimatingpR(t)

from r(t) requires knowledge ofτ1, which is not available prior to timing. For this reason, we will obtain instead

a mis-timed (byτ1) version ofpR(t), which we will henceforth denote aspR(t; τ1), t ∈ [0, Ts]. With reference

to the receiver’s clock,pR(t; τ1) is nothing but aTs-long snapshot of the delayed periodic receive waveform

p̃R(t; τ1) :=
∑∞

k=0 pR(t − kTs − τ1) within the time window[0, Ts]. It is evident from (12) that the channel

components iñpR(t; τ1) are in sync with those contained in the received waveformr(t); thuspR(t; τ1) is the ideal

template for a symbol-rate correlator to collect all the channel path energy in the absence of timing information

[35], [38]. To estimatepR(t; τ1), we suppose that a training sequence of all ones (s[k] = 1, ∀k) is observed within

an interval ofK1 symbol periods. Within this observation window, the noise-free version of the received signal

is nothing but the aggregate channelpR(t; τ1) itself being amplified by
√E and periodically repeated everyTs

seconds. We can thus obtain the estimatep̂R(t; τ1) = 1
K1

∑K1−1
k=0 r(t + kTs), t ∈ [0, Ts], which involves analog

operations of delay and average over consecutive symbol-long segments ofr(t). We periodically extend̂pR(t; τ1)

to obtain the waveform̂̃pR(t; τ1) =
∑∞

k=0 p̂R(t + kTs; τ1) [59], whose noise-free version is given by
√E p̃R(t; τ1).

When a correlation receiver is employed, we will useˆ̃pR(t; τ1) as the asymptotically optimal (inK1) correlation

template for matchingr(t), thus effecting sufficient energy capture without tap-by-tap channel estimation.

During synchronization, the receiver generates symbol-rate samples atcandidatetime shiftsτ ∈ [0, Ts):

yk(τ) =
∫ τ+kTs+TR

τ+kTs

r(t)ˆ̃pR(t; τ1)dt, k = 0, 1, · · · , K − 1, (13)

whereTR is the non-zero time-support ofpR(t), measured possibly via channel sounding. The peak amplitude of

E{y2
k(τ)} corresponds toτ = τ1, leading to the following timing estimator based on sample mean square (SMS):

τ̂1 = arg max
τ∈[0,Ts)

z(τ) := E
{
y2

k(τ)
}

. (14)

In practice, the sample mean-square is replaced by its consistent sample square average formed by averaging over

K symbol periods:̂z(τ) = (1/K)
∑K

k=1 y2
k(τ).

To understand how this estimator works, let us first examine the data-aided case where we choose the training

sequence to consist of binary symbols with alternating signs. Letτ∆ := [(τ − τ1) mod Ts] denote the closeness of

the candidate time-shiftτ to the true TOA valueτ1. Within any Ts-long interval,r(t) always contains up to two
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consecutive symbols. As such, the symbol-rate correlation outputyk(τ), ∀τ , can be derived from (13) as

yk(τ) =
∫ τ+kTs+TR

τ+kTs

[
E

∞∑

k=0

s[k]p2
R(t− kTs − τ1)

]
dt + nk(τ) = ± E[E+(τ)− E−(τ)

]
+ nk(τ), (15)

whereE+(τ) :=
∫ TR

τ∆
p2

R(t)dt andE−(τ) :=
∫ τ∆+TR−Ts

0 p2
R(t)dt are the portions of receive-pulse energy captured

from the two contributing symbols within the correspondingTs-long correlation window. BecauseE+(τ) andE−(τ)

correspond respectively to two adjacent symbols of the pattern±(1,−1), they show up in (15) with opposite signs.

The± sign in (15) is determined by the symbol signs within the correlation window, and is irrelevant to the search

algorithm in (14). The noise componentnk(τ) contains two noise terms and one noise-product term contributed

from both the noisy signalr(t) and the noisy templatễpR(t; τ1) in (13). In the noise-free case, whenτ = τ1,

we haveE+(τ1) = Emax :=
∫ TR

0 p2
R(t)dt and E−(τ1) = 0 by definition. Since the integration range encompasses

exactly one symbol, each sample amplitude is determined by the energyEmax contained in the entire aggregate

receive-pulsepR(t). Whenτ 6= τ1, two consecutive symbols of the pattern±(1,−1) contribute to the correlation

in (13) with opposite signs, which leads to|E+(τ) − E−(τ)| < Emax,∀τ 6= τ1, reflecting the energy cancellation

effect of this training pattern in the presence of mis-timing. This phenomenon explains why the peak amplitude

of z(τ) yields the correct timing estimate forτ1. The validity of this algorithm can be established even in the

presence of noise, as the noise term does not alter the peak location ofz(τ) statistically. It is the change of symbol

signs exhibited in the alternating symbol pattern(1,−1) that reveals the timing information in symbol-rate samples

[38]. The same timing estimation principle also applies to the non-data-aided case, except that it may take a longer

synchronization time for the algorithm to converge; see [15] for detailed derivations.

The SMS estimator in (14) enables timing synchronization at any desirable resolution constrained only by the

affordable complexity: i) coarse timing with low complexity, e.g., by picking the maximum overNf candidate

offsets{τ = nTf}Nf−1
n=0 taken everyTf in [0, Ts); ii) fine timing with higher complexity at the chip resolution;

and iii) adaptive timing (tracking) with voltage-controlled clock (VCC) circuits. As Figure 4 illustrates, the search

stepsize affects the TOA estimation accuracy at the high SNR region, where a smaller stepsize results in a lower

error floor. In the low SNR region, the timing accuracy is dominantly dictated by the multipath energy capture

capability of the synchronizer, which is independent of the stepsize thanks to the asymptotically optimal template

ˆ̃pR(t; τ1) used. In a short synchronization time (smallK), a reasonable SNR can lead to a low normalized MSE of

0.3×10−3, which translates into position accuracy of a meter, and can be further improved by a finer-scale search.

3) Variance of Low-Complexity TOA Estimators:To benchmark timing estimation accuracy of the SMS-based

TOA estimator in (14), we now present its asymptotic estimation variance analytically, using first-order perturbation
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2}� of the TOA estimate obtained from (14):K is the number of training symbols used andδτ
is the search stepsize for candidateτ ’s. Simulation parameters are:Nf = 20, Tf = 50ns,Tp = Tc = 1ns,Nc=48 with randomly generated
TH code, and a typical UWB multipath channel modeled by [48] with parametersΛ = 0.5ns, λ = 2ns, Γ = 30ns andγ = 5ns.

analysis. Because of noise, the maximum ofẑ(τ) moves fromτ1 to τ̂1 = τ1 + ∆τ , thus inducing an estimation

error ∆τ . Let ˙̂z(τ) := ∂ẑ(τ)/∂τ and z̈(τ) := ∂2z(τ)/∂τ2 denote the derivatives of the objective functions with

respect toτ . When sample sizeK or transmit SNRE is sufficiently large such that|∆τ | ≤ ε, we can use themean

value theoremto obtain:

˙̂z(τ̂1) ≈ ˙̂z(τ1 + ∆τ) = ˙̂z(τ1) + z̈(τ1 + µ∆τ)∆τ, (16)

whereµ ∈ (0, 1) is a scalar that depends on∆τ . Because˙̂z(τ̂1) = 0 and z̈(τ) is deterministic, if follows that

∆τ = −
˙̂z(τ1)

z̈(τ1 + µ∆τ)
, and var{τ̂1} = E

{
(∆τ)2

}
=

E
{

˙̂z2(τ1)
}

z̈2(τ1 + µ∆τ)
. (17)

To execute the derivations required by (17), we note thatpR(t), a key component inz(τ), has finite time support

and may not be differentiable att = 0 and t = TR. The following operational condition needs to be imposed:

C1: pR(t) is twice continuously differentiable over[0, +ε] ∪ [TR − ε, TR], whereε > 0 is very small.

Skipping the tedious derivation procedure for conciseness, we summarize the analytic mean-square error of the

unbiased timing estimatêτ1 as:

var{∆τ2} ≤ (BTR)2

2KK1(2E/N0)2Γp
. (18)
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whereΓp := min
{

p2
R(µ∆τ)

[
p3

R(µ∆τ)−p′R(µ∆τ)Emax

]2
, p2

R(TR−µ∆τ)
[
p3

R(TR−µ∆τ)−p′R(TR−µ∆τ)Emax

]2
}

is a quantity selected from the worse case betweenτ ≥ τ1 andτ ≤ τ1. Obviously, the timing accuracy of this SMS

synchronizer is closely related topR(t) via Γp. To ensureΓp to be positive, the expression in (18) is valid to a

limited class ofpR(t) waveforms with the following local behavior around their edges:

C2: pR(t) ∝ ta in t ∈ [0,+ε], with −1/2 < a < 1/2,

C3: pR(t) ∝ (TR − t)b in t ∈ [TR − ε, TR], with −1/2 < b < 1/2.

The result in (18) delineates the requiredK (andK1) to achieve a desired level of timing accuracy for a practical

positioning system. On the other hand, the asymptotic variance is only applicable under conditions C1-C3 for a

small-error local region aroundτ1, which requires the search time resolution to be sufficiently small and the SNR

or K to be sufficiently large. In general, the TOA estimation accuracy decreases as the time-bandwidth product

BTR increases, but it can be markedly improved either by more averaging (largerK or K1) or by higher SNR.

V. FUNDAMENTAL L IMITS FOR LOCATION ESTIMATION

In the previous section, we have considered the theoretical limits for TOA estimation. This section considers the

limits for the location estimation problem. We first consider location estimation based on TOA measurements, and

then location estimation based on TOA and SS measurement. The receiver structures for asymptotically achieving

those limits will also be discussed [32].

A. Fundamental Limits for TOA-Based Location Estimation

Consider a synchronous system withN nodes,M of which have NLOS to the node they are trying to locate,

while the remaining ones have LOS. Suppose that we know a priori which nodes have LOS and which have

NLOS. This can be obtained by employing NLOS identification techniques [61]-[63]. When such information is

unavailable, all first arrivals can be treated as NLOS signals.

The received signal at theith node can be expressed as

ri(t) =
Li∑

l=1

αils(t− τil) + ni(t), (19)

for i = 1, . . . , N , whereLi is the number of multipath components at theith node,αil and τil are the respective

amplitude and delay of thelth path of theith node,s(t) is the UWB signal as in (5), andni(t) is a zero mean

AGWN process with spectral densityN0/2. We assume, without loss of generality, that the firstM nodes have

NLOS, and the remainingN −M have LOS.
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For a two-dimensional location estimation problem, the delayτij in (19) can be expressed as

τij =
1
c

[√
(xi − x)2 + (yi − y)2 + lij

]
, (20)

for i = 1, . . . , N , j = 1, . . . , Li, wherec = 3× 108m/s is the speed of light,[xi yi] is the location of theith node,

lij is the extra path length induced by NLOS propagation, and[x y] is the target location to be estimated.

Note thatli1 = 0 for i = M + 1, . . . , N since the signal directly reaches the related node in a LOS situation.

Hence, the parameters to be estimated are the NLOS delays and the location of the node,[x y], which can be

expressed asθ = [x y lM+1 · · · lN l1 · · · lM ], where

li =





(li1 li2 · · · liLi
) for i = 1, . . . , M,

(li2 li3 · · · liLi
) for i = M + 1, . . . , N,

(21)

with 0 < li1 < li2 · · · < liNi
[32]. Note that for LOS signals the first delay is excluded from the parameter set

since these are known to be zero.

From (19), the joint probability density function (p.d.f.) of the received signals from theN reference nodes,

{ri(t)}N
i=1, can be expressed, conditioned onθ, as follows

f�(r) ∝
N∏

i=1

exp



−

1
N0

∫ ∣∣∣∣∣∣
ri(t)−

Li∑

j=1

αijs(t− τij)

∣∣∣∣∣∣

2

dt



 . (22)

From the expression in (22), the lower bound on the variance of any unbiased estimator for the unknown parameter

θ can be obtained. Towards that end, the FIM can be obtained as [32]

J� =
1
c2

HJ�HT , (23)

whereH :=



HNLOS HLOS

I 0


, andJ� :=



ΛNLOS 0

0 ΛLOS


, with τ := [τ11 · · · τ1L1 · · · τN1 · · · τNLN

]. Matrices

HNLOS andHLOS are related to NLOS and LOS nodes respectively, and depend on the angles between the target

node and the reference nodes [32]. The components ofJ� are given byΛNLOS := diag{Ψ1,Ψ2, . . . ,ΨM} and

ΛLOS := diag{ΨM+1,ΨM+2, . . . ,ΨN}, where

[Ψi]jk =
2αijαik

N′

∫
∂

∂τij
s(t− τij)

∂

∂τik
s(t− τik)dt, (24)

for j 6= k, and [Ψi]jj = 8π2β2SNRij , whereSNRij = |αij |2
N0

is the signal to noise ratio of thejth multipath
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Fig. 5. An asymptotically optimum receiver structure for positioning. No information about the statistics of the NLOS delays is assumed.

component ofith node’s signal, assuming thats(t) has unit energy, andβ is given as in (3).

The CRLB for the location estimation problem is the inverse of the FIM matrix; that is, E�{(θ̂−θ)(θ̂−θ)T } ≥

J−1
� . It can be shown that the firsta× a block of the inverse matrix is given by [32]

[
J−1
�

]
a×a

= c2
(
HLOSΛLOSHT

LOS

)−1
, (25)

wherea := 2 +
∑N

i=M+1(Li − 1). Since the main unknown parameters to be estimated,x andy, are the first two

elements ofθ, (25) proves that the CRLB depends only on the signals from the LOS nodes. Note that we do not

assume any statistical information about the NLOS delays in this case.

Moreover, the numerical examples in [32] show that, in most cases, the CRLB is almost the same whether we

use all the multipath components from the LOS nodes, or just the first arriving paths of the LOS nodes. For very

large bandwidths, the ML estimator for the node location that uses the first arriving paths from the LOS nodes

becomes asymptotically optimal [32], which suggests that, for UWB systems, only the first arriving signals from

the LOS nodes are sufficient for an asymptotically optimal receiver design. This receiver, shown in Figure 5, can

be implemented by the following steps:

• Estimate the delays of the first multipath components; solutions are available either via the SMS synchronizer

in (14) and those in [34]-[38], or by correlation techniques in which each reference node selects the delay

corresponding to the maximum correlation between the received signal and a receive-waveform template [32].

• Obtain the ML estimate for the position of the target node using the delays of the first multipath components

of the LOS nodes.

In other words, the first step of the optimal receiver, the estimation of the first signal path, can be considered

separately from the overall positioning algorithm without any loss in optimality.

In order to utilize the closed-form CRLB expressions above, consider the simple positioning scenario in Figure



19

Fig. 6. A simple location estimation scenario, where6 reference nodes are trying to locate the target node in the middle.
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Fig. 7. Minimum positioning error versus bandwidth for different number of NLOS nodes. ForM = 1, node 1; forM = 2, node1 and
2; and forM = 3, node1, 2 and3 are the NLOS nodes. The UWB channels are modeled as in [64] withL = 10, λ = 0.25 andσ2 = 1.

6, where the target node is in the middle of6 reference nodes located uniformly around a circle. In Figure 7, the

minimum positioning error, defined as,
√

trace([J−1
� ]2×2), is plotted against the effective bandwidth for different

numbers of NLOS nodes,M , at SNR= 0dB. The channels between the target and the reference nodes have10 taps

that are independently generated from a lognormally distributed fading model with random signs and exponentially

decaying tap energy. It can be observed that large bandwidth of UWB signals makes it possible to obtain location

estimates with very high accuracy.

When there is statistical information on the NLOS delays, where the p.d.f. for nodei is denoted bypli(li)

for i = 1, . . . , N , the lower bound of the estimation error is expressed by the generalized CRLB (G-CRLB)
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E�{(θ̂ − θ)(θ̂ − θ)T } ≥ (J� + JP )−1, where

JP = E

{
∂

∂θ
lnp�(θ)

(
∂

∂θ
lnp�(θ)

)T
}

, (26)

with the expectation being taken overθ [65]. Note thatp�(θ) =
∏N

i=1 pli(li) since it is assumed that multipath

delays at different nodes are independent, and the other parameters inθ, namelyx, y and l0 are constant unknown

parameters.

Under some conditions, the maximum a posteriori probability (MAP) estimator based on time-delay estimates

from all available multipath components is asymptotically optimal [32]. In other words, unlike the case where

no NLOS information exists, the accuracy depends on the delay estimates from all the nodes in the presence of

statistical NLOS information.

When UWB systems are considered, the large number of multipath components makes it very costly to implement

the optimal location estimation algorithm. However, as observed by the numerical analysis in [32], only the strongest

multipath components provide substantial improvement in the estimation accuracy. Therefore, simpler suboptimal

algorithms that make use of a few strongest multipath components can provide satisfactory performance at lower

cost.

B. Hybrid Location Estimation for UWB Systems

Although SS measurements are easily available since mobile terminals constantly monitor the strength of neigh-

boring base stations’ pilot signals for handoff purposes [66], [67], the SS ranging technique is not very accurate

in cellular networks because of its dependency on the distance of a located device to reference devices (i.e., base

stations). On the other hand, the results in [22] indicate that in short-range wideband communications, the use of

received signal strength measurements in conjunction with TOA or TDOA leads to two enhancements in positioning

with respect to the case where only TOA or TDOA measurements are used: improved overall location estimation

accuracy and significantly lower CRLB within close proximity of the SS devices, and suppression of singularities

in the CRLB when closer to TOA devices.

In sensor networks, the distances between sensor nodes and the neighboring reference devices are on the order

of tens of meters. For example, in the emerging ZigBee standards, which rely on IEEE 802.15.4 MAC/PHY, the

typical transmission range is15-30m. Therefore, TDOA/SS and TOA/SS hybrid positioning schemes may achieve

better positioning accuracy.
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Fig. 8. Illustration of different hybrid TOA and SS observation scenarios.

1) Modelling TOA and SS Observations:The TOA observationsti,j between devicesi and j are commonly

modelled as normal random variablesti,j ∼ N (di,j/c , σ2
T ) [68], wheredi,j is the separation of the two devices,

c is the speed of radio-wave propagation andσT is the parameter describing the joint nuisance parameters of the

multipath channel and the measurement error. On the other hand, the SS measurements,ri,j , are conventionally

modeled as log-normal random variablesri,j ∼ N (P ir
dB , σ2

sh), with P ir
dB = P jt

dB − 10np log10(di,j), whereP ir
dB and

P jt
dB are the decibel values of the mean received power at devicei and the mean transmitted power at devicej

respectively,np is the propagation exponent, andσ2
sh is the variance of the log-normal shadowing. In UWB channel

modeling, frequency dependence of the path loss has also been reported [69], and appears to be independent of the

distance dependent losses; i.e.,

P ir
dB,uwb = P ir

dB(di,j) + P ir
dB(f). (27)

The positive bias in the mean received power due to the frequency,f , can be assumed to be deterministic and

known through measurements.

2) Hybrid Observations and the Cramer-Rao Lower Bound:In a positioning scheme that relies on both TOA and

SS measurements, a device may track the TOA and SS of incoming signals from a single transmitter as illustrated

in Figure 8.a. These measurements may also be obtained separately from different transmitters as in Figure 8.b.

If discrepancy in communication ranges exists between a transmitter-receiver pair, it is very likely that round trip

TOA cannot be acquired, but a TDOA can become available from two such transmitters. In these cases, additional

information to enhance positioning accuracy can still be obtained from SS measurements from neighboring nodes.
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Fig. 9. Illustration of the geometric conditioning of devices1 and2 with respect to0, Ai,j =
di,jd0⊥(i,j)

di,0dj,0
.

Let S0 denote a node whose location is being estimated; and assume that there areN reference nodes within

communication range ofS0, of which NTOA nodes perform TOA andNSS provide SS measurements such that

N = NTOA + NSS . Also assume that the actual coordinate vector ofS0 is θ0 = [x0 y0], and denote its estimate

by θ̂0. Then, the location estimation problem is to findθ̂0, given the coordinate vector of the reference devices,

θ = [θ1 θ2 · · · θN ].

The CRLB of an unbiased estimatorθ̂0 is Cov(θ̂0) ≥ J−1
�0

, whereJ�0 is the FIM. The CRLB of the TOA/SS

hybrid location estimation scheme is given in [22]. Here we generalize it to the following closed form expression

based on the problem statement defined earlier:

σ2
CRLB =

NT OA

c2σ2
T

+ b
∑NSS

i=1 d2
i,0

1
(c2σ2

T )2
∑NT OA

i=1

∑NT OA

j=1
i<j

A2
i,j + b

c2σ2
T

∑NT OA

i=1

∑NSS

j=1
A2

i,j

d2
j,0

+ b2
∑NSS

i=1

∑NSS

j=1
i<j

(
Ai,j

di,0 dj,0

)2 , (28)

whereb =
(

10np

σsh log 10

)2
andAi,j = di,jd0⊥(i,j)

di,0dj,0
is a unit-less parameter called the “geometric conditioning” of devices

i and j with respect toS0. The parameterd0⊥(i,j) is the length of the shortest distance betweenS0 and the line

that connectsi and j as shown in Figure 9.

The denominator in (28) consists of three expressions: the contribution of the TOA measurements only, which

is a function of the geometric conditioning of TOA devices with respect toS0; the geometric conditioning of the

TOA and SS reference devices with respect toS0; and the contribution of the SS measurements alone, which is

determined by the separation ofS0 from the SS reference nodes. It is clear from (28) that besides the number

of TOA and SS devices in the network, how they are placed relative to one another also determines the level of

CRLB. For instance, as illustrated in Figure 10-(a), placed at two corners of a100× 100 meters field are two TOA

devices and at coordinates(25, 25), (50, 50) and (75, 75) are three SS devices. The
√

CRLB are shown in the

case ofσT = 6 ns andσsh/n = 2. These values are borrowed from wideband field measurements reported in [68].
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Fig. 10. The
√

CRLB versus different node positions in the case ofσT = 6 ns andσsh/n = 2.

Within close proximity of SS devices, the bound is lowered; and at locations closer to a TOA device it gets worse.

In Figure 10-(b), the orientations of the SS devices are moved to the coordinates(25, 75), (50, 50) and (75, 25)

such that all the TOA and SS devices are aligned along a diagonal, causing the CRLBs to be adversely affected.

The geometric conditioning ofS0 with respect to a TOA and a SS device becomes zero, when they are all aligned

along a line. This expectedly lowers the numerical value that the middle term of the denominator in (28) would

generate, unless some SS devices are placed off the line to have non-zero contributions (Figure 10-(a). Therefore,

the CRLB gets relatively higher within close proximity of the aligned nodes. In order to lower the bound, one

should avoid forming a straight line with two or more RSS devices and a TOA device. Similarly, the same design

rule should be advocated among TOA devices, if there exist multiple of them within the communication range of

S0.

In the TDOA/SS case, a TDOA observation is derived from two TOA observations as their difference, sacrificing

an independent TOA measurement. Therefore, a TDOA observation atS0 from any two terminalsi and j can be

modeled asτi,j ∼ N ((di,0 − dj,0)/c , 2σ2
T ). Note thatNTDOA = NTOA − 1, and the variance increases.

VI. CONCLUSIONS

UWB technology provides an excellent means for wireless positioning due to its high resolution capability in

the time domain. Its ability to resolve multipath components makes it possible to obtain accurate location estimates

without the need for complex estimation algorithms. This precise location estimation capability facilitates many

applications such as medical monitoring, security and asset tracking. Standardization efforts are underway in the
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IEEE 802.15.4a PAN standard, which will make use of the unique features of the UWB technology for location-

aware sensor networking. In this article, theoretical limits for TOA estimation and TOA-based location estimation

for UWB systems have been considered. Due to the complexity of the optimal schemes, suboptimal but practical

alternatives have been emphasized. Performance limits for hybrid TOA/SS and TDOA/SS schemes have also been

considered.

Although the fundamental mechanisms for localization, including AOA, TOA, TDOA, and SS based methods,

apply to all radio air interface, some positioning techniques are favored by UWB-based systems utilizing ultra-

wide bandwidths. Due to the high time resolution of UWB signals, time-based location estimation schemes usually

provide better accuracy than the others. In order to implement a time-based scheme, the TOA estimation algorithm

based on noisy templates can be employed, which is a very suitable approach for UWB systems due to its excellent

multipath energy capture capability at affordable complexity. In the cases where certain nodes in the network can

only measure signal strength (such as the biomedical sensing nodes in a body area network), the use of hybrid

TOA/SS or TDOA/SS schemes can be useful for obtaining accurate location estimates.
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