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Abstract

In cooperative localization systems, wireless nodes need to exchange accurate position-related information, such

as time-of-arrival (TOA) and angle-of-arrival (AOA), in order to obtain accurate location information. One alternative

for providing accurate position-related information is to use ultra-wideband (UWB) signals. High time resolution of

UWB signals presents a potential for very accurate positioning based on TOA estimation. However, it is challenging

to realize very accurate positioning systems in practical scenarios, due to both complexity/cost constraints and

adverse channel conditions, such as multipath propagation. For example, although maximum likelihood estimators

perform very closely to theoretical lower bounds for TOA estimation, they are impractical due to the need for

extremely high sampling rates and the presence of large number of multipath components. On the other hand, the

conventional correlation-based algorithm, which serially searches for possible signal delays, takes a very long time

to estimate the TOA of a received UWB signal. Moreover, the first signal path does not always have the strongest

correlation output, which can result in significant errors in TOA estimation. Therefore, first path detection algorithms

are required for accurate TOA estimation. In this paper, a two-step TOA estimation algorithm is proposed in order to

provide accurate TOA estimation in reasonable time intervals. In order to speed up the estimation process, the first

step estimates a coarse TOA of the received signal based on received signal energy. Then, in the second step, the

arrival time of the first signal path is estimated by considering a hypothesis testing approach. The proposed scheme

uses low-rate correlation outputs, and is able to perform accurate TOA estimation in reasonable time intervals. The

simulation results are presented to analyze the performance of the estimator.

Index Terms— Ultra-wideband (UWB), impulse radio (IR), time of arrival (TOA) estimation, statistical change

detection, method of moments (MM).
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I. INTRODUCTION

Recently, communications, positioning, and imaging systems that employ ultra-wideband (UWB) signals

have drawn considerable attention [1]-[5]. Commonly, a UWB signal is defined to be one that possesses

an absolute bandwidth of at least 500 MHz or a relative bandwidth larger than 20%. The main feature of

a UWB signal is that it can coexist with incumbent systems in the same frequency range due to its large

spreading factor and low power spectral density. UWB technology holds great promise for a variety of

applications such as short-range high-speed data transmission and precise position estimation [2], [6].

A common technique to implement a UWB communications system is to transmit very short-duration

pulses with a low duty cycle [7]-[11]. Such a system, called impulse radio (IR), sends a train of pulses

per information symbol, and usually employs pulse position modulation (PPM) or binary phase shift

keying (BPSK) depending on the positions or the polarities of the pulses, respectively. In order to prevent

catastrophic collisions among pulses of different users and thus provide robustness against multiple-access

interference (MAI), each information symbol is represented by a sequence of pulses; the positions of the

pulses within that sequence are determined by a pseudo-random time-hopping (TH) sequence specific to

each user [7].

In addition to communications systems, UWB signals are also well-suited for applications that require

accurate position information, such as inventory control, search and rescue, and security [3], [12]. They are

also useful in the context of cooperative localization systems, since exchange of accurate position-related

information is very important for efficient cooperation. In the presence of inaccurate position-related

information, cooperation could be harmful by reducing the localization accuracy. Therefore, high TOA

estimation accuracy of UWB signals is very desirable in cooperative localization systems. Due to their

penetration capability and high time resolution, UWB signals can facilitate very precise positioning based

on time-of-arrival (TOA) estimation, as suggested by the Cramer-Rao lower bound (CRLB) [3]. However,

in practical systems, the challenge is to perform precise TOA estimation in a reasonable time interval

under complexity/cost constraints [13].

Maximum likelihood (ML) approaches to TOA estimation of UWB signals can get quite close to the

theoretical limits for high signal-to-noise ratios (SNRs) [14], [15]. However, they generally require joint

optimization over a large number of unknown parameters (channel coefficients and delays for multipath
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components); hence, they have prohibitive complexity for practical applications. In [19], a generalized

maximum likelihood (GML) estimation principle is employed to obtain iterative solutions after some

simplifications of the ML approach. However, this approach still requires very high sampling rates, which

is not suitable for low-power and low-cost applications.

On the other hand, the conventional correlation-based TOA estimation algorithms are both suboptimal

and require exhaustive search among thousands of bins, which results in very slow TOA estimation [16],

[17]. In order to speed up the process, different search strategies, such as random search or bit reversal

search, are proposed in [18]. However, TOA estimation time can still be quite high in certain scenarios.

In addition to the correlation-based TOA estimation, TOA estimation based on energy detection provides

a low-complexity alternative, but this commonly comes at the price of reduced accuracy [20], [21].

In the presence of multipath propagation, the first incoming signal path, the delay of which determines

the TOA, may not be the strongest multipath component. Therefore, instead of peak selection algorithms,

first path detection algorithms are commonly employed for UWB TOA estimation [19], [21]-[25]. A

common technique for first path detection is to determine the first signal component that is stronger than

a specific threshold [25]. Alternatively, the delay of the first path can be estimated based on the signal path

that has the minimum delay among a subset of signal paths that are stronger than a certain threshold [24].

Although TOA estimation gets more robust against the effects of multipath propagation in both cases,

TOA estimation can still take a long time. Finally, a low complexity timing offset estimation technique,

called timing with dirty templates (TDT), is proposed in [23], [26]-[28], which employs “dirty templates”

in order to obtain timing information based on symbol-rate samples. Although this algorithm provides

timing information at low complexity and in short time intervals, the TOA estimate obtained from the

algorithm has an ambiguity equal to the extent of the noise-only region between consecutive symbols.

One of the most challenging issues in UWB TOA estimation is to obtain a reliable estimate in a

reasonable time interval under a constraint on sampling rate. In order to have a low power and low

complexity receiver, one should assume low sampling rates at the output of the correlators. However,

when low rate samples are employed, the TOA estimation can take a very long time. Therefore, we

propose a two-step TOA estimation algorithm that can perform TOA estimation from low rate samples

(typically on the order of hundreds times slower sampling rate than chip-rate sampling) in a reasonable

time interval. In order to speed up the estimation process, the first step estimates the coarse TOA of
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the received signal based on received signal energy. After the first step, the uncertainty region for TOA

is reduced significantly. Then, in the second step, the arrival time of the first signal path is estimated

based on low-rate correlation outputs by considering a hypothesis testing approach. In order words, the

second step provides a fine TOA estimate by using a statistical change detection approach. In addition,

the proposed algorithm can operate without any thresholding operation, which increases its practicality.

The remainder of the paper is organized as follows. Section II describes the transmitted and received

signal models in a frequency-selective environment. The two-step TOA estimation algorithm is considered

in Section III, where the algorithm is described in detail and probability of detection analysis is presented.

Then, simulation results and numerical studies are presented in Section IV, and concluding remarks are

made in Section V.

II. SIGNAL MODEL

Consider a TH IR system which transmits the following signal:

stx(t) =
√

E

∞∑
j=−∞

aj bbj/Nfcwtx(t− jTf − cjTc) , (1)

where wtx(t) is the transmitted UWB pulse with duration Tc, E is the transmitted pulse energy, Tf is the

“frame” interval, and bbj/Nfc ∈ {+1,−1} is the binary information symbol. In order to smooth the power

spectrum of the transmitted signal and allow the channel to be shared by many users without causing

catastrophic collisions, a TH sequence cj ∈ {0, 1, ..., Nc − 1} is assigned to each user, where Nc is the

number of chips per frame interval; that is, Nc = Tf/Tc. Additionally, random polarity codes, aj’s, can

be employed, which are binary random variables taking on the values ±1 with equal probability, and are

known to the receiver. Use of random polarity codes helps reduce the spectral lines in the power spectral

density of the transmitted signal [31], [32] and mitigate the effects of MAI [33], [34].

It can be shown that the signal model in (1) also covers the signal structures employed in the preambles

of IEEE 802.15.4a systems [2], [35].

The transmitted signal in (1) passes through a channel with channel impulse response h(t), which is
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modeled as a tapped-delay line channel with multipath resolution Tc as follows1 [36]-[38]:

h(t) =
L∑

l=1

αlδ(t− (l − 1)Tc − τTOA) , (2)

where αl is the channel coefficient for the lth path, L is the number of multipath components, and τTOA

is the TOA of the incoming signal.

From (1) and (2), and including the effects of the antennas, the received signal can be expressed as

r(t) =
L∑

l=1

√
E αlsrx(t− (l − 1)Tc − τTOA) + n(t) , (3)

where n(t) is zero-mean white Gaussian noise with spectral density σ2, and srx(t) is given by

srx(t) =
∞∑

j=−∞
aj bbj/Nfcwrx(t− jTf − cjTc) , (4)

with wrx(t) denoting the received UWB pulse with unit energy.

Since TOA estimation is commonly performed at the preamble section of a packet [39], we assume a

data aided TOA estimation scheme, and consider a training sequence of bj = 1 ∀j. Then, srx(t) in (4)

can be expressed as

srx(t) =
∞∑

j=−∞
ajwrx(t− jTf − cjTc) . (5)

It is assumed, for simplicity, that the signal always arrives in one frame duration (τTOA < Tf), and

there is no inter-frame interference (IFI); that is, Tf ≥ (L + cmax)Tc (equivalently, Nc ≥ L + cmax),

where cmax is the maximum value of the TH sequence. Note that the assumption of τTOA < Tf does not

restrict the validity of the algorithm. In fact, it is enough to have τTOA < Ts, where Ts is the symbol

interval, for the algorithm to work when the frame interval is large enough and predetermined TH codes

are employed.2 Moreover, even if τTOA ≥ Ts, an initial energy detection can be used to determine the

arrival time within a symbol uncertainty before running the proposed algorithm. Finally, since a single-user

scenario is considered, cj = 0 ∀j can be assumed without loss of generality.

1Since the main purpose is to estimate TOA with a chip-level uncertainty, the equivalent channel model with resolution Tc is employed.
2In fact, in IEEE 802.15.4a systems, no TH codes are used in the preamble section; hence, it is easy to extend the results to the τTOA > Tf

case for those scenarios [2].
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Fig. 1. Block diagram for TOA estimation. The algorithm in this paper focuses on the blocks in the dashed box.

III. TWO-STEP TOA ESTIMATION ALGORITHM

A TOA estimation algorithm provides an estimate for the delay of an incoming signal, which is

commonly obtained in multiple steps, as shown in Figure 1. First, frame acquisition is achieved in order to

confine the TOA into an uncertainty region of one frame interval (see [40] and references therein). Then,

the TOA is estimated with a chip-level uncertainty by a TOA estimation algorithm, which is shown in the

dashed box in Figure 1. Then, the tracking unit provides sub-chip resolution by employing a delay-lock-

loop (DLL), which yields the final TOA estimate [41]-[43]. The focus of this paper is on the two-step

TOA estimation algorithm shown in Figure 1.

In order to perform fast TOA estimation, the first step of the proposed two-step TOA estimation

algorithm obtains a coarse TOA of the received signal based on received signal energy. Then, in the

second step, the arrival time of the first signal path is estimated by considering a hypothesis testing

approach.

First, the TOA τTOA in (3) is expressed as

τTOA = kTc = kbTb + kcTc , (6)

where k ∈ [0, Nc− 1] is the TOA in terms of the chip interval Tc, Tb is the block interval consisting of B

chips (Tb = BTc), and kb ∈ [0, Nc/B−1] and kc ∈ [0, B−1] are the integers that determine, respectively,

in which block and chip the first signal path arrives. Note that Nc/B represents the number of blocks,

which is denoted by Nb in the sequel.

The two-step TOA algorithm first estimates the block in which the first signal path exists; then it

estimates the chip position in which the first path resides. In other words, it can be summarized as:

• Estimation of kb from received signal strength (RSS) measurements.

• Estimation of kc (equivalently, k) from low rate correlation outputs using a hypothesis testing

approach.
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Note that the number of blocks Nb (or, the block length Tb) is an important design parameter. Selection

of a smaller block decreases the amount of time for TOA estimation in the second step, since a smaller

uncertainty region need to be searched. On the other hand, smaller block sizes can result in more errors

in the first step since noise becomes more effective. The optimal block size is affected by the SNR and

the channel characteristics.

A. First Step: Coarse TOA Estimation Based on RSS Measurements

In the first step, the aim is to detect the coarse arrival time of the signal in the frame interval. Assume,

without loss of generality, that the frame time Tf is an integer multiple of Tb, the block size of the

algorithm; that is, Tf = NbTb.

In order to have reliable decision variables in this step, energy is combined from N1 different frames

of the incoming signal for each block. Hence, the decision variables are expressed as

Yi =

N1−1∑
j=0

Yi,j , (7)

for i = 0, . . . , Nb − 1, where

Yi,j =

∫ jTf+(i+1)Tb

jTf+iTb

|r(t)|2dt . (8)

Then, kb in (6) is estimated as

k̂b = arg max
0≤i≤Nb−1

Yi . (9)

In other words, the block with the largest signal energy is selected.

The parameters of this step that should be selected appropriately for accurate TOA estimation are the

block size Tb (Nb) and the number of frames N1, from which energy is collected. In Section III-D, the

probability of selecting the correct block will be quantified.

B. Second Step: Fine TOA Estimation Based on Low Rate Correlation Outputs

After determining the coarse arrival time in the first step, the second step tries to estimate kc in

(6). Ideally, kc ∈ [0, B − 1] needs to be searched for TOA estimation, which corresponds to searching

k ∈ [k̂bB, (k̂b + 1)B − 1], with k̂b denoting the block index estimate in (9). However, in some cases,
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the first signal path can reside in one of the blocks prior to the strongest one due to multipath effects.

Therefore, instead of searching a single block, k ∈ [k̂bB − M1, (k̂b + 1)B − 1], with M1 ≥ 0, can be

searched for the TOA in order to increase the probability of detection of the first path. In other words,

in addition to the block with the largest signal energy, an additional backwards search over M1 chips can

be performed. For notational simplicity, let U = {ns, ns +1, . . . , ne} denote the uncertainty region, where

ns = k̂bB −M1 and ne = (k̂b + 1)B − 1 are the start and end points.

In order to estimate the TOA with chip-level resolution, correlations of the received signal with shifted

versions of a template signal are considered. For delay iTc, the following correlation output is obtained:

zi =

∫ iTc+N2Tf

iTc

r(t)stemp (t− iTc) dt , (10)

where N2 is the number of frames over which the correlation output is obtained, and stemp(t) is the

template signal given by

stemp(t) =

N2−1∑
j=0

ajwrx(t− jTf) . (11)

Note that in practical systems, the received pulse shape may not be known exactly, since the transmitted

pulse can be distorted by the channel. In those cases, if the system employs wtx(t) instead of wrx(t) to

construct the template signal in (11), the system performance can degrade. In some cases, that degradation

may not be very significant [45]. For other cases, template design techniques should be considered in

order to maintain a reasonable performance level [44], [45].

From the correlation outputs for different delays, the aim is to determine the chip in which the first

signal path has arrived. By appropriate choice of the block interval Tb and M1, and considering a large

number of multipath components in the received signal, which is typical for indoor UWB systems, it can

be assumed that the block starts with a number of chips with noise-only components and the remaining

ones with signal-plus-noise components, as shown in Figure 2. Assuming that the statistics of the signal

paths do not change significantly in the uncertainty region U , the different hypotheses can be expressed
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Fig. 2. Illustration of the two-step TOA estimation algorithm. The signal on the top is the received signal in one frame. The first step
checks the signal energy in Nb blocks and chooses the one with the highest energy (Although one frame is shown in the figure, energy
from different frames can be collected for reliable decisions). Assuming that the third block has the highest energy, the second step focuses
on this block (or an extension of that) to estimate the TOA. The zoomed version of the signal in the third block is shown on the bottom.

approximately as follows:

H0 : zi = ηi, i = ns, . . . , nf ,

Hk : zi = ηi, i = ns, . . . , k − 1,

zi = N2

√
E αi−k+1 + ηi, i = k, . . . , nf , (12)

for k ∈ U , where H0 is the hypothesis that all the samples are noise samples, Hk is the hypothesis that

the signal starts at the kth output, ηi’s denote the independent and identically distributed (i.i.d.) Gaussian

output noise, N (0 , σ2
n) with σ2

n = N2σ
2, α1, . . . , αnf−k+1 are independent channel coefficients, assuming

nf − ns + 1 ≤ L, and nf = ne + M2 with M2 being the number of additional correlation outputs that are

considered out of the uncertainty region in order to have reliable estimates of the unknown parameters

related to the channel coefficients.

Due to very time high resolution of UWB signals, it is appropriate to model the channel coefficients
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approximately as

α1 = d1|α1| ,

αl =





dl|αl|, p

0, 1− p

, l = 2, . . . , nf − ns + 1 , (13)

where p is the probability that a channel tap arrives in a given chip, dl is the sign of αl, which is ±1

with equal probability, and |αl| is the amplitude of αl, which is modeled as a Nakagami-m distributed

random variable with parameter Ω; that is [46],

p(α) =
2

Γ(m)

(m

Ω

)m

α2m−1e−
mα2

Ω , (14)

for α ≥ 0, m ≥ 0.5 and Ω ≥ 0, where Γ(·) is the Gamma function [48].

From the formulation in (12), it is observed that the TOA estimation problem can be considered as a

change detection problem [49]. Let θ denote the unknown parameters of the distribution of α; that is,

θ = [p m Ω]. Then, the log-likelihood ratio (LLR) is given by

Snf
k (θ) =

nf∑

i=k

log
pθ(zi|Hk)

p(zi|H0)
, (15)

where pθ(zi|Hk) denotes the probability density function (p.d.f.) of the correlation output under hypothesis

Hk and with unknown parameters given by θ, and p(zi|H0) denotes the p.d.f. of the correlation output

under hypothesis H0.

Since θ is unknown, its ML estimate can be obtained first for a given hypothesis Hk and then that

estimate can be used in the LLR expression. In other words, the generalized LLR approach [49], [50] can

be taken, where the TOA estimate is expressed as

k̂ = arg max
k∈U

Snf
k (θ̂ML(k)) , (16)

with

θ̂ML(k) = arg sup
θ

Snf
k (θ) . (17)

However, the ML estimate is usually very complex to calculate. Therefore, simpler estimators such as
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the method of moments (MM) estimator can be employed to obtain those parameters. The nth moment

of a random variable X having Nakagami-m distribution with parameter Ω is given by

E{Xn} =
Γ(m + n/2)

Γ(m)

(
Ω

m

)n/2

. (18)

Then, from the correlator outputs {zi}nf
i=k+1, the MM estimates for the unknown parameters can be obtained

after some manipulation as

pMM =
γ1γ2

2γ2
2 − γ3

, (19)

mMM =
2γ2

2 − γ3

γ3 − γ2
2

, (20)

ΩMM =
2γ2

2 − γ3

γ2

, (21)

where

γ1
∆
=

1

EN2
2

(µ2 − σ2
n) ,

γ2
∆
=

1

E2N4
2

(
µ4 − 3σ4

n

γ1

− 6EN2
2 σ2

n

)
,

γ3
∆
=

1

E3N6
2

(
µ6 − 15σ6

n

γ1

− 15E2N4
2 γ2σ

2
n − 45EN2

2 σ4
n

)
, (22)

with µj denoting the jth sample moment given by

µj =
1

nf − k

nf∑

i=k+1

zj
i . (23)

Then, the index of the chip having the first signal path can be obtained as

k̂ = arg max
k∈U

Snf
k (θ̂MM(k)) , (24)

where θMM(k) = [pMM mMM ΩMM ] is the MM estimate for the unknown parameters3.

Let p1(z) and p2(z), respectively, denote the distributions of η and N2

√
E d|α|+η. Then, the generalized

3Note that the dependence of pMM , mMM and ΩMM on the change position k is not shown explicitly for notational simplicity.
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LLR for the kth hypothesis is can be obtained as

Snf
k (θ̂) = log

p2(zk)

p1(zk)
+

nf∑

i=k+1

log
p p2(zi) + (1− p)p1(zi)

p1(zi)
, (25)

where

p1(z) =
1√

2πσn

e
− z2

2σ2
n (26)

and

p2(z) =
ν1√
2πσn

e
− z2

2σ2
n Φ

(
m,

1

2
;
z2

ν2

)
, (27)

with

ν1
∆
=

2
√

π Γ(2m)

Γ(m)Γ(m + 0.5)

(
4 +

2EN2
2 Ω

mσ2
n

)−m

,

ν2
∆
= 2σ2

n

(
1 + 2m

σ2
n

EN2
2 Ω

)
, (28)

and Φ denoting a confluent hypergeometric function given by [48]

Φ(β1, β2; x) = 1 +
β1

β2

x

1!
+

β1(β1 + 1)

β2(β2 + 1)

x2

2!
+

β1(β1 + 1)(β1 + 2)

β2(β2 + 1)(β2 + 2)

x3

3!
+ · · · (29)

Note that the p.d.f. of N2

√
E d|α|+ η, p2(z), is obtained from (14), (26) and the fact that d is ±1 with

equal probability.

After some manipulation, the TOA estimation rule can be expressed as

k̂ = arg max
k∈U

{
log

[
ν1Φ

(
m, 0.5;

z2
k

ν2

)]
+

nf∑

i=k+1

log

[
p ν1Φ

(
m, 0.5;

z2
i

ν2

)
+ 1− p

] }
. (30)

Note that this estimation rule does not require any threshold setting, since it obtains the TOA estimate as

the chip index that maximizes the decision variable in (30).

C. Additional Tests

The formulation in (12) assumes that the block always starts with noise-only components, and then

the signal paths start to arrive. However, in practice, there can be cases in which the first step chooses a

block consisting of all noise components. By combining a large number of frames; that is, by choosing
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a large N1 in (7), the probability of this event can be reduced considerably. However, very large N1 also

increases the estimation time; hence, there is a trade-off between the estimation error and the estimation

time. In order to prevent erroneous TOA estimation when a noise-only block is chosen, a one-sided test

can be applied using the known distribution of the noise outputs. Since the noise outputs have a Gaussian

distribution, the test reduces to comparing the average energy of the outputs after the estimated change

instant to a threshold. In other words, if 1

nf−k̂+1

∑nf

i=k̂
z2

i < δ1, the block is considered as a noise-only

block and the two-step algorithm is run again.

Another improvement of the algorithm can be obtained by checking if the block consists of all signal

paths; that is, the TOA is prior to the current block. Again, by following a one-sided test approach, we

can check the average energy of the correlation outputs before the estimated TOA against a threshold and

detect an all-signal block if the threshold is exceeded. However, for very small values of the TOA estimate

k̂, there can be a significant probability that the first signal path arrives before the current observation

region since the distribution of the correlation output after the first path includes both the noise distribution

and the signal-plus-noise distribution with some probabilities as shown in (13). Hence, the test may fail

although the block is an all-signal block. Therefore, some additional correlation outputs before k̂ can

be employed as well, when calculating the average power before the TOA estimate. In other words, if

1

k̂−ns+M3

∑k̂−1
i=ns−M3

z2
i > δ2, the block is considered as an all-signal block, where M3 ≥ 0 additional

outputs are used depending on k̂. When it is determined that the block consists of all signal outputs,

the TOA is expected to be in one of the previous blocks. Therefore, the uncertainty region is shifted

backwards, and the change detection algorithm is repeated.

D. Probability of Block Detection

In the proposed two-step TOA estimator, determination of the block that contains the first signal path

carries significant importance. Therefore, in this section, the probability of selecting the correct block is

analyzed in detail.

Let the received signal in the ith block of the jth frame be denoted by ri,j(t); i.e.,

ri,j(t)
.
=





r(t) , t ∈ [jTf + iTb , jTf + (i + 1)Tb] ,

0 , otherwise
(31)
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for i = 0, 1, . . . , Nb−1 and j = 0, 1, . . . , N1−1. Under the assumption that the channel impulse response

does not change during at least N1 frame intervals, ri,j(t) can be expressed as

ri,j(t) = si(t) + ni,j(t) , (32)

where si(t) is the signal part in the ith block, and ni,j(t) is the noise in the ith block of the jth frame.

Note that due to the static channel assumption, the signal part is identical for the ith block of all N1

frames. In addition, the noise components are independent for different block and/or frame indices.

From (31) and (32), the signal energy in (8) can be expressed as

Yi,j =

∫ ∞

−∞
|ri,j(t)|2dt , (33)

which becomes

Yi,j =

∫ ∞

−∞
|ni,j(t)|2dt , (34)

for noise-only blocks, and

Yi,j =

∫ ∞

−∞
|si(t) + ni,j(t)|2dt , (35)

for signal-plus-noise blocks, i.e., for blocks that contain some signal components in addition to noise.

It can be shown that Yi,j has a central or non-central chi-square distribution depending on the type of

the block. Let Bn and Bs represent the sets of block indices for noise-only and signal-plus-noise blocks,

respectively. Then,

Yi,j ∼





χ2
n(0) , i ∈ Bn

χ2
n(εi) , i ∈ Bs

, (36)

where n is the approximate dimensionality of the signal space, which is obtained from the time-bandwidth

product [29], εi is the energy of the signal in the ith block, εi =
∫ |si(t)|2dt, and χ2

n(ε) denotes a non-

central chi-square distribution with n degrees of freedom and a non-centrality parameter of ε. Clearly,

χ2
n(ε) reduces to a central chi-square distribution with n degrees of freedom for noise-only blocks for

which ε = 0.
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As expressed in (7), each decision variable for block estimation is obtained by adding signal energy

from N1 frames. From the fact that the sum of i.i.d. non-central chi-square random variables with n

degrees of freedom and with non-centrality parameter ε results in another non-central chi-square random

variable with N1n degrees of freedom and non-centrality parameter N1ε, the probability distribution of

Yi in (7) can be expressed as

Yi =

N1−1∑
j=0

Yi,j ∼





χ2
N1n(0) , i ∈ Bn

χ2
N1n(N1εi) , i ∈ Bs

. (37)

The probability that the TOA estimator selects the lth block, which is a signal-plus-noise block, as the

block that contains the first signal path is given by

P l
D = Pr{Yl > Yi, ∀i 6= l} (38)

for l ∈ Bs, which can be expressed as

P l
D =

∫ ∞

0

pYl
(y)

∏

i∈Bs\{l}
Pr{Yi < y}

∏
j∈Bn

Pr{Yj < y}dy , (39)

where pYl
(y) represents the p.d.f. of of the signal energy in the lth block. Since the energies of the

noise-only blocks are i.i.d., (39) becomes

P l
D =

∫ ∞

0

pYl
(y) (Pr{Yj < y})|Bn| ∏

i∈Bs\{l}
Pr{Yi < y}dy , (40)

where |Bn| denotes the number of elements in set Bn, and j can be any value from Bn.4

From (37), (40) can be obtained, after some manipulation, as (Appendix A)

P l
D =

e−
N1ε

2σ2

(2σ2)|Bs|

∫ ∞

0

fl(y)


1− e−

y

2σ2

N1n
2
−1∑

k=0

1

k!

( y

2σ2

)k



|Bn|

∏

i∈Bs\{l}

∫ y

0

fi(x)dxdy , (41)

where N1n is assumed to be an even number, ε =
∑

i∈Bs
εi represents the total signal energy, and

fl(y) = e−
y

2σ2

(
y

N1εl

)N1n−2
4

IN1n
2
−1

(√
N1εly

σ2

)
, (42)

4It is also observed from (37) that the p.d.f. of energy in a noise-only block does not depend on the index of the block.
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with

Iκ(x) =
∞∑
i=0

(x/2)κ+2i

i! Γ(κ + i + 1)
, x ≥ 0 (43)

representing the κth-order modified Bessel function of the first kind, and Γ(·) denoting the gamma function

[30].

In the presence of a single signal-plus-noise block, i.e., Bs = {l}, (41) reduces to

P l
D =

e−
N1εl
2σ2

2σ2

∫ ∞

0

fl(y)


1− e−

y

2σ2

N1n
2
−1∑

k=0

1

k!

( y

2σ2

)k



|Bn|

dy , (44)

which can be evaluated easily via numerical integration. However, in the presence of multiple signal-

plus-noise blocks, numerical integration to calculate P l
D from (41) and (42) can have high computational

complexity. Therefore, a Monte-Carlo approach can be followed, by generating a number of non-central

chi-square distributed samples, and by approximating the expectation operation in (40) by the sample

mean of the inner probability terms.

Although the probability of detecting block l can be calculated exactly based on (41) and (42), a simpler

expression can be obtained by means of Gaussian approximation for a large number of frames. In other

words, for large values of N1, Yi in (7) can be approximated by a Gaussian random variable.

From (36), the Gaussian approximation can be obtained as

Yi =

N1−1∑
j=0

Yi,j ∼





N
(
N1nσ2 , 2N1nσ4

)
, i ∈ Bn

N
(
N1(nσ2 + εi) , 2N1σ

2(nσ2 + 2εi)
)

, i ∈ Bs

. (45)

Then, the probabilities that the energy of the lth block is larger than that of the other signal-plus-noise

blocks or than the noise-only blocks are given, respectively, by

Pr{Yi < y} ≈ Q

(
N1(nσ2 + εi)− y√
2N1σ2 (nσ2 + 2εi)

)
(46)

for i ∈ Bs\{l}, and

Pr{Yj < y} ≈ Q

(
N1nσ2 − y

σ2
√

2N1n

)
(47)
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for j ∈ Bn, where Q(x) = 1√
2π

∫∞
x

e−t2/2dt represents the Q-function. Note that the detection probability

in (40) can be calculated easily from (46) and (47) via numerical integration techniques. In addition,

as will be investigated in Section IV, the Gaussian approximation is quite accurate for practical signal

parameters.

Since the index of the block that includes the first signal path is denoted by kb in Section III, the

probability that the correct block is selected is given by P kb
D , which can be obtained from (40)-(47). If the

TOA estimator searches both the selected block and the previous block in order to increase the probability

that the first signal path is included in the search space of the second step, then the probability of including

the first signal path in the search space of the second step is given by P kb
D + P kb+1

D .

IV. SIMULATION RESULTS

In this section, numerical studies and simulations are performed in order to evaluate the expressions

in Section III-D, and to investigate the performance of the proposed TOA estimator over realistic IEEE

802.15.4a channel models [46], [47].

First, the expressions in Section III-D for probability of block detection are investigated. Consider a

scenario with Nb = 10 blocks, all of which are noise-only blocks except for the fifth one. Also, the

degrees of freedom for each energy sample, n in (36), is taken to be 10. In Figure 3, the probabilities of

block detection are plotted versus SNR for N1 = 5 and N1 = 25, where N1 is the number of frames over

which the energy samples are combined. SNR is defined as the ratio between the total signal energy ε in

the blocks and σ2 (Section III-D). It is observed that the exact expression and the one based on Gaussian

approximation yield very close values. Especially, for N1 = 25, the results are in very good agreement,

as the Gaussian approximation becomes more accurate as N1 increases.

In Figure 4, the probability of block detections are plotted versus SNR for Nb = 20, n = 5, and

ε = [3 2.5 2 1.25 0.5 015], where ε = [ε1 · · · εNb
], and 015 represents a row vector of 15 zeros. From

the plot, it is observed that the exact and approximate curves are in good agreement as in the previous

case. Also, due to the presence of multiple signal blocks with close energy levels, higher SNR values,

than those in the previous case, are needed for reliable detection of the first block in this scenario.

Next, the block energies are modeled as exponentially decaying, εi = e−λ(i−1) for i = 1, . . . , Nb,

and the block detection probabilities are obtained for various decay factors, for n = 10, N1 = 25, and
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Fig. 3. Probability of block detection versus SNR for Nb = 10, n = 10, and εi = 0 for ∀i 6= 5.

Nb = 10. In Figure 5, better detection performance is observed as the decay factor increases. In other

words, if the energy of the first block is considerably larger than the energies of the other blocks, the

probability of block detection increases. At the extreme case in which all the blocks have the same energy,

the probability converges to 0.1, which is basically equal to the probability of selecting one of the 10

blocks in a random fashion.

In order to investigate the performance of the proposed estimator, residential and office environments

with both line-of-sight (LOS) and non-line-of-sight (NLOS) situations are considered according to the

IEEE 802.15.4a channel models [46]. In the simulation scenario, the signal bandwidth is 7.5 GHz and

the frame time of the transmitted training sequence 300 ns. Hence, an uncertainty region consisting of

2250 chips is considered, and that region is divided into Nb = 50 blocks. In the proposed algorithm, the

number of pulses, over which the correlations are taken in the first and second steps are given by N1 = 50

and N2 = 25, respectively. Also M1 = 180 additional chips prior to the uncertainty region determined

by the first step are included in the second step. The estimator is assumed to have 10 parallel correlators

for the second step. In a practical setting, the estimator can use the correlators of a Rake receiver that is

already present for the signal demodulation, and 10 is a conservative value in this sense.

From the simulations, it is obtained that each TOA estimation takes about 1 millisecond (0.92 millisec-
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Fig. 4. Probability of block detection versus SNR for Nb = 20, n = 5, and ε = [3 2.5 2 1.25 0.5 015].

ond to be more precise)5. In order to have a fair comparison with the conventional correlation-based peak

selection algorithm, a training signal duration of 1 millisecond is considered for that algorithm as well.

For both algorithms, frame-rate sampling is assumed. In Figure 6, the root-mean-square errors are plotted

versus SNR for the proposed and the conventional algorithms under four different channel conditions.

Due to the different characteristics of the channels in residential and office environments, the estimates

are better in the office environment. Namely, the delay spread is smaller in the channel models for the

office environment. Moreover, as expected, the NLOS situations cause increase in the RMSE values.

Comparison of the two algorithms reveal that the proposed algorithm can provide better accuracy than

the conventional one. Especially, at high SNR values the proposed algorithm can provide less than a

meter accuracy for LOS channels and about 2 meters accuracy for NLOS channels. In addition to the

conventional and the proposed approaches, the maximum likelihood estimator (MLE) is also illustrated

in Figure 6 as a theoretical limit for CM-3. For the MLE, it is assumed that Nyquist rate samples of

the signal can be obtained over two frames and the channel coefficients are known. Note that due to the

impractical assumptions related to the MLE, the lower limit provided by the MLE is not tight. Therefore,

it is concluded that more realistic theoretical limits (e.g., CRLB) based on low-rate non-coherent and

5Since we do not employ any additional tests after the TOA estimate, which are described in Section III-C, and use the same parameters
for all the channel models, the estimation time is the same for all the channel realizations.
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Fig. 5. Probability of block detection versus SNR for εi = e−λ(i−1) for i = 1, . . . , Nb, n = 10, N1 = 25, and Nb = 10.

coherent signal samples need to be obtained, which is a topic of future research.

Note that one disadvantage of the conventional approach is that it needs to search for TOA in every chip

position one by one. However, the proposed algorithm first employs coarse TOA estimation, and therefore

it can perform fine TOA estimation only in a smaller uncertainty region. In order to investigate how much

the conventional algorithm can be improved by applying a similar two-step approach, a modified version

of the conventional algorithm is considered, which first employs the coarse TOA estimation (via energy

detection), and then performs the conventional peak selection in the second step. Figure 7 compares the

proposed algorithm with the modified version of the conventional algorithm. Note from Figure 6 and

Figure 7 that the performance of the conventional algorithm is slightly enhanced by employing a two-step

approach, since correlation outputs can be obtained more reliably over the 1 millisecond training signal

interval for the latter. In other words, more time can be allocated to the chip positions around the TOA by

applying the coarse TOA estimation first. However, the performance is still considerably worse than that

of the proposed approach, since the peak selection in the conventional approach performs significantly

worse than the proposed change detection technique.

Finally, note that for the proposed algorithm, the same parameters are used for all the channel models.

More accurate results can be obtained by employing different parameters in different scenarios. In addition,

by applying additional tests described in Section III-C, the accuracy can be enhanced even further.
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Fig. 6. RMSE vs SNR for the proposed and the conventional maximum (peak) selection algorithms.

V. CONCLUSIONS

In this paper, we have proposed a two-step TOA estimation algorithm, where the first step uses RSS

measurements to quickly obtain a coarse TOA estimate, and the second step uses a change detection

approach to estimate the fine TOA of the signal. The proposed scheme relies on low-rate correlation

outputs, but still obtains a considerably accurate TOA estimate in a reasonable time interval, which makes

it quite practical for realistic UWB systems. Simulations have been performed to analyze the performance

of the proposed TOA estimator, and the comparisons with the conventional TOA estimation techniques

have been presented.

APPENDIX

A. Derivation of Equation (41)

Since the energy is distributed according to non-central chi-square distribution for signal-plus-noise

blocks, as specified by (37), pYl
(y) in (40) is given by

pYl
(y) =

1

2σ2

(
y

N1εl

)N1n−2
4

e−
(y+N1εl)

2σ2 IN1n
2
−1

(√
N1εly

σ2

)
(48)
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Fig. 7. RMSE vs SNR for the proposed and the two-step peak selection algorithms.

for y ≥ 0, where Iκ(·) is as defined in (43). Similarly, Pr{Yi < y} can be obtained from the following

expression:

Pr{Yi < y} =
1

2σ2

∫ y

0

(
x

N1εi

)N1n−2
4

e−
(x+N1εi)

2σ2 IN1n
2
−1

(√
N1εix

σ2

)
dx . (49)

for i ∈ Bs.

Since the energy is distributed according to a central chi-square distribution for noise-only blocks, as

specified by (37), the Pr{Yj < y} is given by

Pr{Yj < y} =
1

2
N1n

2 σN1nΓ
(

N1n
2

)
∫ y

0

x
N1n

2
−1e−

x
2σ2 dx (50)

for j ∈ Bn, where Γ(·) represents the gamma function.

For even values of N1n, (50) can be expressed as [30]

Pr{Yj < y} = 1− e−
y

2σ2

N1n
2
−1∑

k=0

1

k!

( y

2σ2

)k

. (51)

Then, from (48), (49) and (51), (40) can be expressed as in (41) and (42), after some manipulation. ¤
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