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Position Estimation via Ultra-Wideband Signals
Sinan Gezici, Member, IEEE, and H. Vincent Poor, Fellow, IEEE

Abstract

The high time resolution of ultra-wideband (UWB) signals facilitates very precise position estimation in many

scenarios, which makes a variety applications possible. This paper reviews the problem of position estimation in

UWB systems, beginning with an overview of the basic structure of UWB signals and their positioning applications.

This overview is followed by a discussion of various position estimation techniques, with an emphasis on time-based

approaches, which are particularly suitable for UWB positioning systems. Practical issues arising in UWB signal

design and hardware implementation are also discussed.

I. ULTRA-WIDEBAND SIGNALS AND POSITIONING APPLICATIONS

A. Ultra-Wideband Signals

Ultra-wideband (UWB) signals are characterized by their very large bandwidths compared to those of conventional

narrowband/wideband signals. According to the U.S. Federal Communications Commission (FCC), a UWB signal

is defined to have an absolute bandwidth of at least 500 MHz or a fractional (relative) bandwidth of larger than

20% [1]. As shown in Fig. 1, the absolute bandwidth is obtained as the difference between the upper frequency

fH of the −10 dB emission point and the lower frequency fL of the −10 dB emission point; i.e.,

B = fH − fL , (1)

which is also called −10 dB bandwidth. On the other hand, the fractional bandwidth is calculated as

Bfrac =
B

fc
, (2)

This work was supported in part by the European Commission in the framework of the FP7 Network of Excellence in Wireless
COMmunications NEWCOM++ (contract n. 216715), and in part by the U. S. National Science Foundation under Grants ANI-03-38807
and CNS-06-25637.

Sinan Gezici is with the Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara TR-06800, Turkey,
Tel: +90 (312) 290-3139, Fax: +90 (312) 266-4192, e-mail: gezici@ee.bilkent.edu.tr.

H. Vincent Poor is with the Department of Electrical Engineering, Princeton University, Princeton 08544, USA, Tel: (609) 258-2260, Fax:
(609) 258-7305, email: poor@princeton.edu.



2

Fig. 1. A UWB signal is defined to have an absolute bandwidth B of at least 500 MHz, or a fractional bandwidth Bfrac larger than 0.2
(c.f. (4)) [2].

where fc is the center frequency and is given by

fc =
fH + fL

2
. (3)

From (1) and (3), the fractional bandwidth Bfrac in (2) can also be expressed as

Bfrac =
2(fH − fL)
fH + fL

. (4)

As UWB signals occupy a very large portion in the spectrum, they need to coexist with the incumbent systems

without causing significant interference. Therefore, a set of regulations are imposed on systems transmitting UWB

signals. According to the FCC regulations, UWB systems must transmit below certain power levels in order not to

cause significant interference to the legacy systems in the same frequency spectrum. Specifically, the average power

spectral density (PSD) must not exceed −41.3 dBm/MHz over the frequency band from 3.1 to 10.6 GHz, and it

must be even lower outside this band, depending on the specific application [1]. For example, Fig. 2 illustrates

the FCC limits for indoor communications systems. After the FCC legalized the use of UWB signals in the U.S.,

considerable amount of effort has been put into development and standardization of UWB systems [3], [4]. Also,

both Japan and Europe have recently allowed the use of UWB systems under certain regulations [5], [6].

Because of the inverse relation between the bandwidth and the duration of a signal, UWB systems are character-

ized by very short duration waveforms, usually on the order of a nanosecond. Commonly, a UWB system transmits

very short duration pulses with a low duty cycle; that is, the ratio between the pulse transmission instant and the

average time between two consecutive transmissions is usually kept small, as shown in Fig. 3. Such a pulse-based

UWB signaling scheme is called impulse radio (IR) UWB [7]. In an IR UWB communications system, a number

of UWB pulses are transmitted per information symbol and information is usually conveyed by the timings or the
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Fig. 2. FCC emission limits for indoor UWB systems. Please refer to [1] for the regulations for imaging, vehicular radar, and outdoor
communications systems. Note that the limits are specified in terms of equivalent isotropically-radiated power (EIRP), which is defined as
the product of the power supplied to an antenna and its gain in a given direction relative to an isotropic antenna. According to the FCC
regulations, emissions (EIRPs) are measured using a resolution bandwidth of 1 MHz.

Fig. 3. An example UWB signal consisting of short duration pulses with a low duty cycle, where T is the signal duration, and Tf represents
the pulse repetition interval or the frame interval.

polarities of the pulses1. For positioning systems, the main purpose is to estimate position related parameters of

this IR UWB signal, such as its time-of-arrival (TOA), as will be discussed in Section II.

Large bandwidths of UWB signals bring many advantages for positioning, communications, and radar applications

[2]:

• Penetration through obstacles

• Accurate position estimation

• High-speed data transmission

• Low cost and low power transceiver designs

1In addition to IR UWB systems, it is also possible to realize UWB systems with continuous transmissions. For example, direct sequence
code division multiple access (DS-CDMA) systems with very short chip intervals can be classified as a UWB communications system
[8]. Alternatively, transmission and reception of very short duration orthogonal frequency division multiplexing (OFDM) symbols can be
considered as an OFDM UWB scheme [9]. However, the focus of this paper will be on IR UWB systems.
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The penetration capability of a UWB signal is due to its large frequency spectrum that includes low frequency

components as well as high frequency ones. This large spectrum also results in high time resolution, which improves

ranging (i.e., distance estimation) accuracy, as will be discussed in Section II.

The appropriateness of UWB signals for high-speed data communications can be observed from the Shannon

capacity formula. For an additive white Gaussian noise (AWGN) channel with bandwidth of B Hz, the maximum

data rate that can be transmitted to a receiver with negligible error is given by

C = B log2(1 + SNR) (bits/second), (5)

where SNR is the signal-to-noise ratio of the system. In other words, as the bandwidth of the system increases,

more information can be sent from the transmitter to the receiver. Also note that for large bandwidths, signal power

can be kept at low levels in order to increase the battery life of the system and to minimize the interference to the

other systems in the same frequency spectrum.

Moreover, a UWB system can be realized in baseband (carrier-free), that is UWB pulses can be transmitted

without a sine-wave carrier. In that case, it becomes possible to design transmitters and receivers with fewer

components [2].

B. UWB Positioning Applications

For positioning systems, UWB signals provide an accurate, low cost and low power solution thanks to their unique

properties discussed above. Especially, short-range wireless sensor networks (WSNs), which combine low/medium

data rate communications with positioning capability seem to be the emerging application of UWB signals [10].

Some important applications of UWB WSNs can be exemplified as follows [2], [10], [11]:

• Medical: Wireless body area networking for fitness and medical purposes, and monitoring the locations of

wandering patients in an hospital.

• Security/Military: Locating authorized people in high-security areas and tracking the positions of the military

personnel.

• Inventory Control: Real-time tracking of shipments and valuable items in manufacturing plants, and locating

medical equipments in hospitals.

• Search and Rescue: Locating lost children, injured sportsmen, emergency responders, miners, avalanche/earthquake

victims, and fire-fighters.

• Smart Homes: Home security, control of home appliances, and locating inhabitants.
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Accuracy requirements of these positioning scenarios vary depending on the specific application [11]. For most

applications, an accuracy of less than a foot is desirable, which makes UWB signaling a unique candidate in those

scenarios.

The opportunities offered by UWB WSNs also resulted in the formation of the IEEE 802.15 low rate alternative

PHY task group (TG4a) in 2004 to design an alternate PHY specification for the already existing IEEE 802.15.4

standard for wireless personal area networks (WPANs) [12]. The main aim of the TG4a was to provide communica-

tions and high-precision positioning with low power and low cost devices [13]. In March 2007, IEEE 802.15.4a was

approved as a new amendment to IEEE Std 802.15.4-2006. The 15.4a amendment specifies two optional signaling

formats based on UWB and chirp spread spectrum (CSS) signaling [3]. The UWB option can use 250− 750 MHz,

3.244−4.742 GHz, or 5.944−10.234 GHz bands; whereas the CSS uses the 2.4−2.4835 GHz band. Although the

CSS option can only be used for communications purposes, the UWB option has an optional ranging capability,

which facilitates new applications and market opportunities offered by UWB positioning systems.

UWB positioning systems have also attracted significant interest from the research community. Recent books

on UWB systems and in general on wireless networks study UWB positioning applications as well [14]-[16]. In

addition, research articles on UWB positioning, such as [10] and references therein, consider various aspects of

position estimation based on UWB signals. The main purpose of this article is to present a general overview of UWB

positioning systems and present not only signal processing issues as in [10] but also practical design constraints,

such as limitations on hardware components.

II. POSITION ESTIMATION TECHNIQUES

In order to comprehend the high-precision positioning capability of UWB signals, position estimation techniques

should be investigated first. Position estimation of a node2 in a wireless network involves signal exchanges between

that node (called the “target” node; i.e., the node to be located) and a number of reference nodes [17]. The position

of a target node can be estimated by the target node itself, which is called self-positioning, or it can be estimated

by a central unit that gathers position information from the reference nodes, which is called remote-positioning

(network-centric positioning) [18]. In addition, depending on whether the position is estimated from the signals

traveling between the nodes directly or not, two different position estimation schemes can be considered, as shown

in Fig. 4 [2], [17]. Direct positioning refers to the case in which the position is estimated directly from the

signals traveling between the nodes [19]. On the other hand, a two-step positioning system first extracts certain

signal parameters from the signals, and then estimates the position based on those signal parameters. Although the

2A “node” refers to any device involved in the position estimation process, such as a wireless sensor or a base station.



6

Fig. 4. (a) Direct positioning, (b) two-step positioning [17].

two-step positioning approach is suboptimal in general, it can have significantly lower complexity than the direct

approach. Also, the performance of the two approaches is usually quite close for sufficiently high signal bandwidths

and/or signal-to-noise ratios (SNRs) [19], [20]. Therefore, the two-step positioning is the common technique in

most positioning systems, which will also be the main focus of this paper.

In the first step of a two-step positioning technique, signal parameters, such as time-of-arrival (TOA), angle-

of-arrival (AOA), and/or received signal strength (RSS), are estimated. Then, in the second step, the target node

position is estimated based on the signal parameters obtained from the first step (Fig. 4-(b)). In the following,

various techniques for this two-step positioning approach are studied in detail.

A. Estimation of Position Related Parameters

As shown in Fig. 4-(b), the first step in a two-step positioning algorithm involves the estimation of parameters

related to the position of the target node. Those parameters are usually related to the energy, timing and/or direction

of the signals traveling between the target node and the reference nodes. Although it is common to estimate a single

parameter for each signal between the target node and a reference node, such as the arrival time of the signal, it is

also possible to estimate multiple position related parameters per signal in order to improve positioning accuracy.

1) Received Signal Strength: As the energy of a signal changes with distance, the received signal strength (RSS)

at a node conveys information about the distance (“range”) between that node and the node that has transmitted

the signal. In order to convert the RSS information into a range estimate, the relation between distance and signal

energy should be known. In the presence of such a relation, the distance between the nodes can be estimated from

the RSS measurement at one of the nodes assuming that the transmitted signal energy is known.

One factor that affects the signal energy is called path-loss, which refers to the reduction of signal power/energy
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as it propagates through space. A common model for path-loss is given by

P̄ (d) = P0 − 10n log10(d/d0), (6)

where n is called the path-loss exponent, P̄ (d) is the average received power in dB at a distance d, and P0 is the

received power in dB at a short reference distance d0. The relation in (6) specifies the relation between the power

loss and distance through the path-loss exponent.

Although there is a simple relation between average signal power and distance as shown in (6), the exact relation

between distance and signal energy in a practical wireless environment is quite complicated due to propagation

mechanisms such as reflection, scattering, and diffraction, which can cause significant fluctuations in RSS even over

short distances and/or small time intervals. In order to obtain a reliable range estimate, signal power is commonly

obtained as

P (d) =
1
T

∫ T

0
|r(t, d)|2dt, (7)

where r(t, d) is the received signal at distance d and T is the integration interval. Although the averaging operation

in (7) can mitigate the short-term fluctuations called small-scale fading, the average power (or RSS) still varies

about its local mean, given by (6), due to shadowing effects, which represent signal energy variations due to the

obstacles in the environment. Shadowing is commonly modeled by a zero-mean Gaussian random variable in the

logarithmic scale. Therefore, the received power P (d) in dB can be expressed as3

P (d) ∼ N (
P̄ (d) , σ2

sh

)
, (8)

where P̄ (d) is as given in (6), and σ2
sh is the variance of the log-normal shadowing variable.

From (8), it is observed that accurate knowledge of the path-loss exponent and the shadowing variance is required

for a reliable range estimate based on RSS measurements. How accurate a range estimate can be obtained is specified

by a lower bound, called the Cramer-Rao lower bound (CRLB), on the variance of an unbiased4 range estimate

[21];

√
Var{d̂} ≥ (ln 10)σsh d

10 n
, (9)

where d̂ represents an unbiased estimate for the distance d. Note from (9) that the range estimates get more accurate

3There is also thermal noise in practical systems, which is commonly location-dependent. In this study, it is assumed that the thermal
noise is sufficiently mitigated [21].

4For an unbiased estimate, the mean (expected value) of the estimate is equal to the true value of the parameter to be estimated.
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Fig. 5. The AOA measurement at a node gives information about the direction over which the target node lies.

as the standard deviation of the shadowing decreases, which makes RSS vary less around the true average power.

Also, a larger path-loss exponent results in a smaller lower bound, since the average power becomes more sensitive

to distance for larger n. Finally, the accuracy of the range estimates deteriorates as the distance between the nodes

increases.

Commonly, the RSS technique cannot provide very accurate range estimates due to its heavy dependence on the

channel parameters, which is also true for UWB systems. For example, in a non-line-of-sight (NLOS) residential

environment, modeled according to the IEEE 802.15.4a UWB channel model [22], with n = 4.58 and σsh = 3.51,

the lower bound in (9) is about 1.76 m. at d = 10 m.

2) Angle of Arrival: Another position related parameter is angle-of-arrival (AOA), which specifies the angle

between two nodes as shown in Fig. 5. Commonly, multiple antennas in the form of an antenna array are employed

at a node in order to estimate the AOA of the signal arriving at that node. The main idea behind AOA estimation

via antenna arrays is that differences in arrival times of an incoming signal at different antenna elements contain the

angle information for a known array geometry [17]. For example, in a uniform linear array (ULA) configuration,

as shown in Fig. 6, the incoming signal arrives at consecutive array elements with l sinα/c seconds difference5,

where l is the inter-element spacing, α is the AOA and c represents the speed of light [2]. Hence, estimation of

the time differences of arrivals provides the angle information.

Since time delay in a narrowband signal can be approximately represented by a phase shift, the combinations of

the phase shifted versions of received signals at array elements can be tested for various angles in order to estimate

the direction of signal arrival [23] in a narrowband system. However, for UWB systems, time delayed versions of

received signals should be considered, because a time delay cannot be represented by a unique phase value for a

UWB signal.

Similar to the RSS case, the theoretical lower bounds on the error variances of AOA estimates can be investigated

in order to determine accuracy of AOA estimation. The CRLB for the variance of an unbiased AOA estimate α̂

5It is assumed that the distance between the transmitting and receiving nodes are sufficiently large so that the incoming signal can be
modeled as a planar wave-front as shown in Fig. 6.
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Fig. 6. A ULA configuration and a signal arriving at the ULA with angle α.

for a ULA with Na elements can be expressed as6 [24]

√
Var{α̂} ≥

√
3 c√

2π
√

SNRβ
√

Na(N2
a − 1) l cosα

, (10)

where α is the AOA, c is the speed of light, SNR is the signal-to-noise ratio for each element7, l is the inter-element

spacing, and β is the effective bandwidth.

It is observed from (10) that the accuracy of AOA estimation increases, as SNR, effective bandwidth, the number

of antenna elements and/or inter-element spacing are increased. It is important to note that unlike RSS estimates,

the accuracy of an AOA estimate increases linearly with the effective bandwidth, which implies that UWB signals

can facilitate high-precision AOA estimation.

3) Time of Arrival: The time of arrival (TOA) of a signal traveling from one node to another can be used

to estimate the distance between those two nodes. In order to obtain an unambiguous TOA estimate, the nodes

must either have a common clock, or exchange timing information by certain protocols such as a two-way ranging

protocol [25], [26], [3].

The conventional TOA estimation technique involves the use of correlator or matched filter (MF) receivers [27].

In order to illustrate the basic principle behind these receivers, consider a scenario in which s(t) is transmitted

from a node to another, and the received signal is expressed as

r(t) = s(t− τ) + n(t) , (11)

6It is assumed that the signal arrives at each antenna element via a single path. Please refer to [24] for CRLBs for AOA estimation in
multipath channels.

7The same SNR is assumed for all antenna elements.
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Fig. 7. a) Received signal in a single-path channel. b) Received signal over a multipath channel. Noise is not shown in the figure.

where τ is the TOA and n(t) is the background noise, which is commonly modeled as a zero-mean white Gaussian

process. A correlator receiver correlates the received signal r(t) with a local template s(t− τ̂) for various delays

τ̂ , and calculates the delay corresponding to the correlation peak; that is,

τ̂TOA = arg max
τ̂

∫
r(t) s (t− τ̂) dt . (12)

It is clear from (11) and (12) that the correlator output is maximized at τ̂ = τ in the absence of noise. However,

the presence of noise can result in erroneous TOA estimates.

Similar to the correlator receiver, the MF receiver employs a filter that is matched to the transmitted signal

and estimates the instant at which the filter output attains its largest value, which results in (12) as well. Both

the correlator and the MF approaches are optimal8 for the signal model in (11) (Fig. 7-(a)). However, in practical

systems, the signal arrives at the receiver via multiple signal paths, as shown in Fig. 7-(b). In those cases, the optimal

template signal for a correlator receiver (or the optimal impulse response for an MF receiver) should include the

overall effects of the channel; that is, it should be equal to the received signal (with no noise) that consists of all

incoming signal paths. Since the parameters of the multipath channel are not known at the time of TOA estimation,

the conventional schemes use the transmitted signal as the template, which makes them suboptimal in general. In

this case, selection of the correlation peak as in (12) can result in significant errors, as the first signal path may

not be the strongest signal one, as shown in Fig. 7-(b). In order to achieve accurate TOA estimation in multipath

environments, first-path detection algorithms are proposed for UWB systems [25], [29]-[31], which try to select

the first incoming signal path instead of the strongest one.

8In the sense that they achieve the CRLB for TOA estimation asymptotically for large SNRs and/or effective bandwidths [28].
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Accuracy limits for TOA estimation can be quantified by the CRLB, which is given by the following9 for the

signal model in (11):

√
Var(τ̂) ≥ 1

2
√

2π
√

SNR β
, (13)

where τ̂ represents an unbiased TOA estimate, SNR is the signal-to-noise ratio, and β is the effective bandwidth

[33], [34]. The CRLB expression in (13) implies that the accuracy of TOA estimation increases with SNR and

effective bandwidth. Therefore, large bandwidths of UWB signals can facilitate very precise TOA measurements.

As an example, for the second derivative of a Gaussian pulse [35] with a pulse width of 1 ns, the CRLB for the

standard deviation of an unbiased range estimate (obtained by multiplying the TOA estimate by the speed of light)

is less than a centimeter at an SNR of 5 dB.

4) Time Difference of Arrival: Another position related parameter is the difference between the arrival times of

two signals traveling between the target node and two reference nodes. This parameter, called time difference of

arrival (TDOA), can be estimated unambiguously if there is synchronization among the reference nodes [23].

One way to estimate TDOA is to obtain TOA estimates related to the signals traveling between the target node

and two reference nodes, and then to obtain the difference between those two estimates. Since the reference nodes

are synchronized, the TOA estimates contain the same timing offset (due to the asynchronism between the target

node and the reference nodes). Therefore, the offset terms cancel out as the TDOA estimate is obtained as the

difference between the TOA estimates [17].

When the TDOA estimates are obtained from the TOA estimates as described above, the accuracy limits can

be deduced from the CRLB expression in the previous section. Namely, it can be concluded that the accuracy of

TDOA estimation improves as effective bandwidth and/or SNR increases [17].

Another way to obtain the TDOA parameter is to perform cross-correlations of the two signals traveling between

the target node and the reference nodes, and to calculate the delay corresponding to the largest cross-correlation

value [36]. That is,

τ̂TDOA = arg max
τ

∣∣∣∣
∫ T

0
r1(t) r2(t + τ)dt

∣∣∣∣ , (14)

where ri(t), for i = 1, 2, represents the signal traveling between the target node and the ith reference node, and T

is the observation interval.

5) Other Position Related Parameters: In some positioning systems, a combination of position related parameters,

studied in the previous sections, can be utilized in order to obtain more information about the position of the target

9The CRLBs for TOA estimation in multipath channels are studied in [32], [10].
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node. Examples of such hybrid schemes include TOA/AOA [37], TOA/RSS [38], TDOA/AOA [37], and TOA/TDOA

[39] positioning systems.

In addition to the algorithms that estimate RSS, AOA and T(D)OA parameters or their combinations, another

scheme for position related parameter estimation involves measurement of multipath power delay profile (PDP)10 or

channel impulse response (CIR) related to a received signal [40]-[43]. In certain cases, PDP or CIR parameters can

provide significantly more information about the position of the target node than the previously studied schemes

[17]. For example, a single TOA measurement provides information about the distance between a target and a

reference node, which determines the position of the target on a circle; however, CIR information can directly

determine the position of the target node in certain cases if the observed channel profile is unique for the given

environment. In order to obtain position estimates from CIR (or PDP) parameters, a database consisting of previous

PDP (or CIR) measurements at a number of known positions are commonly required. In addition, estimation of

PDP/CIR information is usually more complex than the estimation of the previously studied parameters [2].

B. Position Estimation

As shown in Fig. 4-(b), in the second step of a two-step positioning algorithm, the position of the target node

is estimated based on the position related parameters estimated in the first step. Depending on the presence of a

database (training data), two types of position estimation schemes can be considered [17]:

• Geometric and statistical techniques estimate the position of the target node from the signal parameters,

estimated in the first step of the positioning algorithm, via geometric relationships and statistical approaches,

respectively.

• Mapping (fingerprinting) techniques employ a database, which consists of previously estimated signal param-

eters at known positions, to estimate the position of the target node. Commonly, the database is obtained

beforehand by a training (off-line) phase.

1) Geometric and Statistical Techniques: Geometric techniques for position estimation determine the position

of a target node according to geometric relationships. For example, a TOA (or an RSS) measurement specifies the

range between a reference node and a target node, which defines a circle for the possible positions of the target

node. Therefore, in the presence of three measurements, the position of the target node can be determined by the

intersection of three circles11 via trilateration, as shown in Fig. 8. On the other hand, two AOA measurements

between a target node and two reference nodes can be used to determine the position of the target node via

triangulation (Fig. 9). For TDOA based positioning, each TDOA parameter defines a hyperbola for the position
10Similar to the PDP parameter, the multipath angular power profile parameter can be estimated at nodes with antenna arrays.
11A two-dimensional positioning scenario is considered for the simplicity of illustrations.
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Fig. 8. Position estimation via trilateration.

Fig. 9. Position estimation via triangulation.

of the target node. Hence, in the presence of three reference nodes, two TDOA measurements can be obtained

with respect to one of the reference nodes. Then, the intersection of two hyperbolas, corresponding to two TDOA

measurements, determines the position of the target node as shown in Fig. 10. In TDOA based positioning, the

position of the target node may not always be determined uniquely depending on the geometrical conditioning of

the nodes [44], [23].

Geometric techniques can be employed for hybrid positioning systems, such as TDOA/AOA [37] or TOA/TDOA

[39], as well. For example, if a reference node obtains both TOA and AOA parameters from a target node, it can

determine the position of the target node as the intersection of a circle, defined by the TOA parameter, and a straight

line, defined by the AOA parameter [17].

Fig. 10. Position estimation based on TDOA measurements.
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Fig. 11. Position estimation ambiguities due to multiple intersections of position lines.

Although the geometric techniques provide an intuitive approach for position estimation in the absence of noise,

they do not present a systematic approach for position estimation based on noisy measurements. In practice, position

related parameter measurements include noise, which results in the cases that the position lines intersect at multiple

points, instead of a single point, as shown in Fig. 11. In such cases, the geometric techniques do not provide any

insight as to which point to choose as the position of the target node [2]. In addition, as the number of reference

nodes increases, the number of intersections can increase even further. In other words, the geometric techniques

do not provide an efficient data fusion mechanism; i.e., cannot utilize multiple parameter estimates in an efficient

manner [17].

Unlike the geometric techniques, the statistical techniques present a theoretical framework for position estimation

in the presence of multiple position related parameter estimates with or without noise. To formulate this generic

framework, consider the following model for the parameters obtained from the first step of a two-step positioning

algorithm [17]:

zi = fi(x, y) + ηi , i = 1, . . . , Nm , (15)

where Nm is the number of parameter estimates, fi(x, y) is the true value of the ith signal parameter, which is a

function of the position of the target, (x, y), and ηi is the noise at the ith estimation. Note that Nm is equal to the

number of reference nodes for RSS, AOA and TOA based positioning, whereas it is one less than the number of

reference nodes for TDOA based positioning since each TDOA parameter is estimated with respect to one reference
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node. Depending on the type of the position related parameter, fi(x, y) in (15) can be expressed as12

fi(x, y) =





√
(x− xi)2 + (y − yi)2, TOA/RSS

tan−1
(

y−yi

x−xi

)
, AOA

√
(x− xi)2 + (y − yi)2 −

√
(x− x0)2 + (y − y0)2, TDOA

, (16)

where (xi, yi) is the position of the ith reference node and (x0, y0) is the reference node, relative to which the

TDOA parameters are estimated.

In vector notations, the model in (15) can be expressed as

z = f(x, y) + η, (17)

where z = [z1 · · · zNm ]T , f(x, y) = [f1(x, y) · · · fNm(x, y)]T and η = [η1 · · · ηNm ]T .

A statistical approach estimates the most likely position of the target node based on the reliability of each

parameter estimate, which is determined by the characteristics of the noise corrupting that estimate. Depending on

the amount of information on the noise term η in (17), the statistical techniques can be classified as parametric and

nonparametric techniques [2]. For the parametric techniques, the probability density function (PDF) of the noise

η is known except for a set of parameters, denoted by λ. However, for the nonparametric techniques, there is no

information about the form of the noise PDF. Although the form of the PDF is unknown in the nonparametric case,

there can still be some generic information about some of its parameters [45], such as its variance and symmetry

properties, which can be employed for designing nonparametric estimation rules, such as the least median of squares

technique in [46], the residual weighting algorithm in [47] and the variance weighted least squares technique in [48].

In addition, mapping techniques (to be studied in Section II-B.2), such as k-nearest-neighbor (k-NN) estimation,

support vector regression (SVR), and neural networks, are also nonparametric as they estimate the position based

on a training database without assuming a specific form for the noise PDF.

Considering the parametric approaches, let the vector of unknown parameters be represented by θ, which

consists of the position of the target node, as well as the unknown parameters of the noise distribution13; i.e.,

θ =
[
x y λT

]T
. Depending on the availability of prior information on θ, Bayesian or maximum likelihood (ML)

estimation techniques can be applied [49].

For the Bayesian approach, there exists a priori information on θ, represented by a prior probability distri-

12Time parameters are converted to distance parameters by scaling by the speed of light.
13In general, the noise components may also depend on the position of the target node, in which case θ includes the union of x, y and

the elements in λ.
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bution π(θ). A Bayesian estimator obtains an estimate of θ by minimizing a specific cost function [33]. Two

common Bayesian estimators are the minimum mean square error (MMSE) and the maximum a posteriori (MAP)

estimators14, which estimate θ, respectively, as

θ̂MMSE = E {θ| z} , (18)

θ̂MAP = arg max
θ

p(z|θ)π(θ) , (19)

where E {θ| z} is the conditional expectation of θ given z, and p(z|θ) represents the conditional PDF of z given

θ [17].

For the ML approach, there is no prior information on θ. In this case, an ML estimator calculates the value of

θ that maximizes the likelihood function p(z|θ); i.e.,

θ̂ML = arg max
θ

p(z|θ) . (20)

Since f(x, y) is a deterministic function, the likelihood function can be expressed as

p(z|θ) = pη(z− f(x, y) |θ) , (21)

where pη(· |θ) denotes the conditional PDF of the noise vector given θ.

In statistical approaches, the exact form of the position estimator depends on the noise statistics. An example is

studied below [2].

Example 1 Assume that the noise components are independent. Then, the likelihood function in (21) can be

expressed as

p(z|θ) =
Nm∏

i=1

pηi
(zi − fi(x, y) |θ) , (22)

where pηi
(· |θ) represents the conditional PDF of the ith noise component given θ. In addition, if the noise PDFs

are given by zero mean Gaussian random variables,

pηi
(n) =

1√
2π σi

exp
(
− n2

2σ2
i

)
, (23)

for i = 1, . . . , Nm, with known variances, the likelihood function in (22) becomes

p(z|θ) =
1

(2π)Nm/2
∏Nm

i=1 σi

exp

(
−

Nm∑

i=1

(zi − fi(x, y))2

2σ2
i

)
, (24)

14Although MAP estimation is not properly a Bayesian approach, it still fits within the Bayesian framework [33].
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where the unknown parameter vector θ is given by θ = [x y]T . In the absence of any prior information on θ, the

ML approach can be followed, and the ML estimator in (20) can obtained from (24) as

θ̂ML = arg min
[x y]T

Nm∑

i=1

(zi − fi(x, y))2

σ2
i

, (25)

which is the well-known non-linear least-squares (NLS) estimator [23], [17]. Note that the terms in the summation

are weighted inversely proportional to the noise variances, as a larger variance means a less reliable estimate.

Among common techniques for solving (25) are gradient descent algorithms and linearization techniques via the

Taylor series expansion [23], [50]. ¤

In Example 1, the noise components related to different estimates are assumed to be independent. This assumption

is usually valid for TOA, RSS and AOA estimation. However, for TDOA estimation, the noise components are

correlated, since all TDOA parameters are obtained with respect to the same reference node. Therefore, TDOA

based systems should be studied through the generic expression in (21). In addition, the Gaussian model for the

noise terms is not always very accurate, especially for scenarios in which there is no direct propagation path between

the target node and the reference node. For such NLOS situations, position estimation can be quite challenging, as

will be discussed in Section III-A.3.

2) Mapping Techniques: A mapping technique utilizes a training data set to determine a position estimation

rule (pattern matching algorithm/regression function), and then uses that rule in order to estimate the position of

a target node for a given set of position related parameter estimates. Common mapping techniques include k-NN,

SVR and neural networks [43], [51]-[55].

Consider a training data set given by

T = {(m1, l1), (m2, l2), ...(mNT , lNT)} , (26)

where mi represents the vector of estimated parameters (measurements) for the ith position, li is the position

(location) vector for the ith training data, which is given by li = [xi yi]T for two-dimensional positioning, and NT

is the total number of elements in the training set [17]. Depending on the type of the position related parameters

employed in the system, mi can, for example, consist of RSS parameters measured at the reference nodes when

the target node is at location li. A mapping technique determines a position estimation rule based on the training

set in (26) and then estimates the position of a target node by using that estimation rule with the measurements

related to the target node.

In order to provide intuition on mapping techniques for position estimation, the k-NN approach can be considered.
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Let l denote the position of a target node and m the measurements (parameter estimates) related to that node. The

k-NN scheme estimates the position of the target node according to the k parameter vectors in T that have the

smallest Euclidian distances to the given parameter vector m. The position estimate l̂ is calculated as the weighted

sum of the positions corresponding to those nearest parameter vectors; i.e.,

l̂ =
k∑

i=1

wi(m) l(i), (27)

where l(1), . . . , l(k) are the positions corresponding to the k nearest parameter vectors, m(1), . . . ,m(k), to m, and

w1(m), . . . , wk(m) are the weighting factors for each position. In general, the weighting factors are determined

according to the parameter vector m and the training parameter vectors m(1), . . . ,m(k) [51].

SVR and neural network approaches can also be considered in the same framework as the k-NN technique [55].

For example, SVR estimates the position also based on a weighted sum of the positions in the training set. However,

the weights are chosen in order to minimize a risk function that is a combination of empirical error and regressor

complexity. Minimization of the empirical error corresponds to fitting to the data in the training set as well as

possible, while a constraint on the regressor complexity prevents the overfitting problem [56]. In other words, the

SVR technique considers the tradeoff between the empirical error and the generalization error15.

In addition to k-NN and SVR, neural networks can also be employed in position estimation problems [43],

[57]. In [57], a UWB mapping technique based on neural networks is proposed in order to provide accurate

position estimation in mines. In general, in challenging environments, like mines, measurement models become

less reliable; hence position estimation based on statistical approaches can result in large errors. Therefore, the

mapping techniques can be preferred in the absence of reliable signal modeling. They can provide accurate position

estimation in environments with significant multipath and NLOS propagation.

The main limitation of the mapping techniques compared to statistical and geometric ones is that the training

data set should be large enough and representative of the current environment. In other words, the training set

should be updated at sufficient frequency, which can be very costly in dynamic environments. Therefore, mapping

techniques are not commonly employed in outdoor positioning scenarios.

In terms of accuracy, performance of the mapping techniques compared to the geometric and the statistical

techniques depends on the environment and system parameters. The most important parameters in a mapping

technique are the size and the representativeness of the training set, and the accuracy of the regression technique.

On the other hand, geometric and statistical techniques require accurate signal (measurement) models in order to

15Very complex regressors fit the training data very closely and therefore may not fit to new measurements very well, especially for small
training data sets. This is called the generalization (overfitting) problem.
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provide accurate position estimates.

III. TIME-BASED RANGING

In a two-step positioning algorithm, the positioning accuracy increases as the position related parameters in the

first step are estimated more precisely. As studied in Section II-A, high time resolution of UWB signals can facilitate

precise T(D)OA or AOA estimation; however, RSS estimation provides very coarse range estimates as observed

in Section II-A.1. In addition, AOA estimation commonly requires multiple antenna elements and increases the

complexity of a UWB receiver. Therefore, timing related parameters, especially TOA, are commonly preferred for

UWB positioning systems.

In this section, TOA estimation is studied in detail. First, main sources of errors in TOA estimation are investigated

for practical UWB positioning systems, and then common TOA estimation techniques are reviewed. As TOA

information can be used to obtain the distance, commonly called “range”, between two nodes, TOA estimation and

range estimation (or ranging) will be used interchangeably in the remainder of the paper.

A. Main Sources of Errors

In a single-path propagation environment with no interfering signals and no obstructions in between the nodes,

extremely accurate TOA estimation can be performed. However, in practical environments, signals arrive at a

receiver via multiple signal paths, and there are interfering signals and obstructions in the environment. In addition,

high time resolution of UWB signals, which facilitates accurate TOA estimation, can cause practical difficulties.

Those error sources for practical TOA estimation are studied in the following subsections.

1) Multipath Propagation: In a multipath environment, a transmitted signal arrives at the receiver via multiple

signal paths, as shown in Fig. 7. Due to high resolution of UWB signals, pulses received via multiple paths are

usually resolvable at the receiver. However, for narrowband systems, pulses received via multiple paths overlap with

each other as the pulse duration is considerably larger than the time delays between the multipath components.

This causes a shift in the delay corresponding to the correlation peak (c.f. eqn. (12)) and can result in erroneous

TOA estimation. In order to mitigate those errors, super-resolution time-delay estimation algorithms, such as that

described in [58], were studied for narrowband systems. However, high time resolution of UWB signals facilitates

accurate correlation based TOA estimation without the use of such complex algorithms. As discussed in Section

II-A.3, first-path detection algorithms can be employed for UWB systems [25], [29]-[31] in order to accurately

estimate TOA by determining the delay of the first incoming signal path.

In order to analyze the effects of multipath propagation on TOA estimation, accurate characterization of UWB

channels is needed [22], [59]-[62]. The UWB channel models proposed by the IEEE 802.15.4a channel modeling
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committee provide statistical information on delays and amplitudes of various signal paths arriving at a UWB

receiver [22]. Based on that statistical information or experimental data, TOA estimation errors can be modeled

[59], [60]. In [59], indoor UWB channel measurements are used to propose a statistical model for TOA estimation

errors. On the other hand, [60] characterizes the statistical behavior of delay between the first and the strongest

signal paths, which is an important parameter for TOA estimation, based on the IEEE 802.15.4a channel models.

2) Multiple-Access Interference: In the presence of multiple users in a given environment, signals can interfere

with each other, and the accuracy of TOA estimation can degrade. A common way to mitigate the effects of

multiple-access interference (MAI) is to assign different time slots or frequency bands to different users. However,

there can still be interference among networks that operate at the same time intervals and/or frequency bands.

Therefore, various MAI mitigation techniques, such as non-linear filtering [63] and training sequence design [31],

are commonly employed.

3) Non-Line-of-Sight Propagation: When the direct line-of-sight (LOS) between two nodes is obstructed, the

direct signal component is attenuated significantly such that it becomes considerably weaker than some other

multipath components, or it cannot even be detected by the receiver [59], [61], [64]. For the former case, first-path

detection algorithms can still be utilized in some cases to estimate the TOA accurately. However, in the latter

case, the delay of the first signal path does not represent the true TOA, as it includes a positive bias, called

non-line-of-sight (NLOS) error. Mitigation of NLOS errors is one of the most challenging tasks in accurate TOA

estimation.

In order to facilitate accurate positioning in NLOS environments, mapping techniques discussed in Section II-

B.2 can be employed. As the training data set obtained from the environment implicitly contains information about

NLOS propagation, mapping techniques have a certain degree of robustness against NLOS errors.

In the presence of statistical information about NLOS errors, various NLOS identification and mitigation algo-

rithms can be employed [10], [59]. For example, in [65], the observation that the variance of TOA measurements in

the NLOS case is usually considerably larger than that in the LOS case is used in order to identify NLOS situations,

and then a simple LOS reconstruction algorithm is employed to reduce the positioning error. In addition, statistical

techniques are studied in [66] and [67] in order to classify a set of measurements as LOS or NLOS. Finally, based

on various scattering models for a given environment, the statistics of TOA measurements can be obtained, and

then well-known techniques, such as MAP and ML, can be employed to mitigate the effects of NLOS errors [49],

[68].

4) High Time Resolution of UWB Signals: Although high time resolution of UWB signals results in very precise

TOA estimation, it also poses certain practical challenges. First, clock jitter becomes a significant factor that affects
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Fig. 12. A receiver architecture for correlation-based TOA estimation.

the accuracy of UWB positioning systems [69]. Due to short durations of UWB pulses, clock inaccuracies and

drifts in target and reference nodes can affect the TOA estimates.

In addition, high time resolution of UWB signals makes it quite impractical to sample received signals at or

above the Nyquist rate16, which is typically on the order of a few GHz. Therefore, TOA estimation schemes should

make use of low rate samples in order to facilitate low power designs.

Finally, high time resolution of UWB signals results in a TOA estimation scenario, in which a large number of

possible delay positions need to be searched in order to determine the true TOA. Therefore, conventional correlation-

based approaches that search this delay space in a serial fashion become impractical for UWB signals. Therefore,

fast TOA estimation algorithms, as will be discussed in the next sub-section, are required in order to obtain TOA

estimates in reasonable time intervals.

B. Ranging Algorithms

As discussed in Section II-A.3, a conventional correlation-based TOA estimation (equivalently, ranging) algorithm

correlates the received UWB signal with various delayed versions of a template signal, and obtains the TOA estimate

as the delay corresponding to the correlation peak (Fig. 12). However, in practice, there is a large number of possible

signal delays that need to be searched for the correlation peak due to high time resolution of UWB signals, and

also the correlation peak may not always correspond to the true TOA. Therefore, a serial search strategy can be

employed, which estimates the delay corresponding to the first correlation output that exceeds a certain threshold

[23], [29], [70]. However, also the serial search approach can take a very long time to obtain a TOA estimate in

many cases [71]. In order to speed up the estimation process, different search strategies, such as random search or

bit reversal search, can be employed [72]. For example, in a random search strategy, possible signals delays are

selected randomly and tested for the TOA. In the presence of multipath propagation, the random search strategy can

reduce the time to obtain a rough TOA estimate; that is, to determine the delay of a signal path (not necessarily the

first one). Then, fine TOA estimation can be performed by searching backwards in time from the detected signal

16The Nyquist rate is equal to twice the highest frequency component contained within a signal.
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component [73].

In general, two-step approaches that estimate a rough TOA in the first step and then obtain a fine TOA estimate

in the second step can provide significant reduction in the amount of time to perform ranging [30]. Commonly,

rough TOA estimation in the first step can be performed by low-complexity receivers rapidly, which considerably

reduces the possible delay positions that need to be searched for the fine TOA in the second step. For example,

in [30], a simple energy detector is employed for determining a rough TOA estimation; i.e., for reducing the TOA

search space. Then, the second step searches for the TOA within a smaller interval determined by the first step. For

the second step, correlation-based first-path detection schemes [29], [25], or statistical change detection approaches

[30] can be employed.

As discussed, in Section III-A.4, TOA estimation based on low rate sampling, compared to the Nyquist rate

sampling, is desirable for low power implementations. Examples of such low rate TOA estimators include ones

that employ energy detectors (non-coherent receivers), low rate correlator outputs, or symbol rate auto-correlation

receivers [74]-[76], [31].

IV. PRACTICAL CONSIDERATIONS

After studying theoretical aspects and estimation algorithms for UWB positioning and ranging systems, we now

consider practical issues related to the design of UWB ranging signals, and hardware issues for UWB transmitters

and receivers.

A. Signal Design

In order to meet certain performance requirements under practical and regulatory constraints, UWB ranging

signals should be designed appropriately [2]. The main performance criterion in a ranging system is ranging

accuracy, which is commonly quantified by the root-mean-square error (RMSE) given by

RMSE =
√

E
{

(d̂− d)2
}

, (28)

where d̂ is the range estimate and d is the true range. In other words, the RMSE is defined as the square root of the

average value of the squared error17. In practice, the expected value in (28) is approximated by the sample mean

of the squared error; i.e.,

RMSE ≈

√√√√ 1
N

N∑

i=1

(
d̂i − di

)2
, (29)

17A more generic accuracy metric is the cumulative distribution function (CDF) of the ranging error, which specifies the probability that
the ranging error is smaller than a given threshold value for all possible thresholds.
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where di and d̂i are, respectively, the true range and the range estimate for the ith measurement, for i = 1, . . . , N .

In addition to ranging accuracy, the duration of a ranging signal is another important parameter for UWB ranging

systems [2]. For small durations of ranging signals, range estimates can be obtained quickly and also more signal

resources can be allocated for data transmission if the system is performing both ranging and communications.

Intuitively, as the duration of ranging signal increases, more accurate range (TOA) estimation can be performed.

This can be observed also from the CRLB expression in (13). To that end, consider a generic ranging signal

structure, as shown in Fig. 3, which is expressed as

s(t) =
∞∑

j=−∞
aj ω(t− jTf) , (30)

where ω(t) is a UWB pulse, Tf is the frame interval (or, pulse repetition interval), which is commonly considerably

larger than the pulse width, and aj is a binary, {−1, +1}, or ternary, {−1, 0,+1}, code, which is used for interference

robustness and spectral optimization [77], [78], [79]. For example, in the IEEE 802.15.4a standard, ternary codes

are employed for the synchronization preamble of each packet, which is used for ranging purposes [3].

According to the FCC regulations, as shown in Fig. 2, there is a limit on the average PSD of a UWB signal.

Depending on the spectral characteristics of the signal in (30), the maximum amount of average power Pmax that

can be transmitted by a UWB transmitter can be determined from the FCC limit. Then, the maximum energy of a

pulse in a frame can be calculated as TfPmax. Therefore, for a ranging system that employs Nf UWB pulses, the

SNR in the CRLB expression in (13) becomes directly proportional to TPmax, where T = NfTf . Hence, as the

duration of the ranging signal increases, better accuracy can be achieved; i.e., the ranging signal duration and the

lower bound on the error variance of unbiased range estimators are inversely proportional.

Design of a ranging signal, as in (30), also requires an appropriate selection of the frame interval Tf . As studied

above, the energy of a pulse in a frame is proportional to the frame interval. Hence, for a given pulse width (or

the signal bandwidth), the peak power increases as the frame interval increases. The peak power is an important

parameter in UWB ranging systems due to practical limitations of integrated circuits [80] and regulatory constraints

[1]. Therefore, there exists a practical upper bound on the frame interval in a given UWB system. On the other hand,

very small frame intervals are not desirable either, as they can result in interference between pulses in consecutive

frames due to the effects of multipath propagation. Also, large frame intervals can facilitate low power designs, as

some units in the receiver, such as an analog-to-digital converter (ADC), can be run only when pulses arrive [81].

After determining the length of the ranging signal T , and the frame interval Tf , another important issue is

related to pulse coding, which is implemented by the sequence {aj} in (30). Pulse coding is quite important for
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Fig. 13. Block diagram of a UWB transmitter in a communications system with ranging capability [2].

reliable range estimation, as coded pulses in a ranging signal can provide robustness against multipath and multiple-

access interference (MAI). While autocorrelation properties of a code determine its robustness against multipath

interference, its cross-correlation properties become effective in mitigating MAI [2]. In addition, code length is an

important parameter; since better correlation properties can be obtained with longer codes, but shorter codes ease

the acquisition process [82], [77].

B. Hardware Issues

After the selection of signal parameters, implementation of a UWB system requires the design of hardware

components for UWB transmitters and receivers. Due to large bandwidths of UWB signals, conventional hardware

design techniques are not applicable to certain sections of a UWB transmitter/receiver. In this section, various issues

related to hardware design for UWB systems are briefly investigated.

UWB systems that provide ranging information commonly perform both communications and ranging, as in

typical IEEE 802.15.4a systems [3]. In other words, such UWB systems provide low-to-medium rate data commu-

nications together with ranging capability. Fig. 13 illustrates the block diagram of a UWB transmitter in such a

UWB system [2]. As shown in the figure, communications data is first coded in order to provide robustness against

the adverse effects of the channel. In other words, some systematic redundancy is added into the data in order to

recover the correct data at the receiver in the presence of errors. Then, the coded data is mapped onto specific

symbols for modulation purposes. As an example, the coded data can be mapped onto binary phase shift keying

(BPSK) symbols, which take values from the set {−1,+1}. After symbol mapping, ranging related information is

inserted at the beginning of the communications data. Typically, transmission is performed in terms of packets, which

contain both communications and ranging signals; i.e., a certain section of transmission is allocated for ranging

signals, and the remaining is allocated for communications signals. Since ranging signals commonly constitute the

beginning section of each packet, they are also called preambles18.

The digital sequence at the output of the preamble insertion block is converted into an analog UWB pulse

18In a system that performs both communications and ranging, preamble signals are used not only for ranging, but also for timing
acquisition, frequency recovery, packet and frame synchronization and channel estimation.
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sequence by the pulse generation block. UWB pulse generators can be broadly classified into two depending on

the use of an up-conversion unit19. The ones that employ an up-conversion unit first generate a pulse at baseband,

and then translate the frequency contents of the signal (i.e., “up-convert” it) around a desired center frequency

[83]-[85]. On the other hand, some UWB pulse generators can directly generate the pulses in the desired frequency

band without employing any up-conversion unit. Among such pulse generators are the ones that generate UWB

pulses, such the fifth derivative of a Gaussian pulse, without any filtering operations [86], [87], the ones that use

antenna for shaping UWB pulses [88], [89], and the ones that employ filtering for pulse shaping [90]-[95].

After generating UWB pulses, a power amplifier (PA) can be used to increase the power of the signal delivered to

the antenna. For UWB systems operating under extremely low power regulations, such as the Japanese regulations

for unlicensed use of UWB systems, use of a PA may not be needed [96]. Commonly, PAs can constitute a large

portion of the transmitter power consumption. Hence, it is desirable to have efficient20 PAs in order to minimize

the power consumed at a transmitter [97]-[101].

Finally, an antenna unit transmits the UWB signal into space, as shown in Fig. 13. Related to large bandwidths

of UWB signals, UWB antenna design should take a number of issues into account. First, a UWB antenna should

have a wide impedance bandwidth, which is defined as the frequency band over which there is no more than 10%

signal loss due to the mismatch between the transmitter circuitry and the antenna [2]. Ideally, when there is perfect

matching, incoming signal towards the antenna is completely radiated into space. In order to obtain large impedance

bandwidths for UWB antennas, various bandwidth broadening techniques are commonly employed. Among those

techniques are using specific antenna geometries such as helix, biconical, and bow-tie structures [102], beveling or

smoothing [103]-[106], resistive loading [107], slotting (or adding a strip) [108], [109], notching, and optimizing

location or structure of the antenna feed [110]-[112]. Another important issue in UWB antenna design is that a

UWB antenna should radiate a pulse that is very similar to the pulse at the feed of the antenna (or its derivative)

so that no significant pulse distortion occurs [107]. In addition, radiation efficiency, which is defined as the ratio of

the radiated power to the input power at the terminals of the antenna [102], should be quite high so that there is no

significant power loss. Since UWB signals operating under regulatory constraints can transmit low power signals

only, high radiation efficiency of UWB antennas is needed for ranging/communications at reasonable distances.

Commonly, planar antennas, such as bow-tie, diamond and square dipole antennas, and polygonal and elliptical

monopole antennas, are well-suited for UWB systems as they are compact and can be printed on PCBs ([113]

and [114], and references therein). In addition, they can have wide impedance bandwidths and reasonable pulse

19An up-conversion unit commonly consists of a mixer and a local oscillator. The incoming signal and the signal generated by the local
oscillator is multiplied using the mixer in order to perform frequency translation.

20Efficiency of a PA is defined as the ratio between the signal power delivered to the load and the total power consumed by the amplifier.
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Fig. 14. Block diagram of a UWB receiver. The unit in the dotted box exists only when analog correlation or energy detection is to be
performed [2].

distortion if their geometries and feeding structures are designed in an appropriate fashion [113].

Considering the receiver part, UWB signals are collected by a UWB antenna as shown in Fig. 14 [2]. Then, the

signal is passed through a band-pass filter (BPF) and a low-noise amplifier (LNA) for out-of-band noise/interference

mitigation and signal amplification, respectively. At this point, two groups of UWB receivers can be considered.

One group of UWB receivers, called “all-digital”, directly convert the analog UWB signal into digital and perform

all the main signal processing operations, such as correlation, in the digital domain [115]-[117]. In other words,

for all-digital UWB receivers, the units in the dotted box in Fig. 14 do no exist. On the other hand, other UWB

receivers perform correlation or energy detection operations (depending on the receiver type) in the analog domain,

and then perform the conversion from the analog domain to the digital domain [118]-[120]. For both receiver types,

analog-to-digital conversion is performed by the ADC unit, which is preceded by the automatic gain control (AGC)

that adjusts the level of the UWB signal according to ADC specifications.

An ADC obtains samples from the analog signal and quantizes those samples into a number of levels to represent

a digital signal. How fast those samples are obtained (sampling rate), how many bits are used to represent the digital

signal (resolution), and the amount of power dissipation are the main parameters of an ADC. As the sampling rate

and/or the resolution increases, the complexity and the power dissipation of the ADC increases, as well. Due to

large bandwidths of UWB signals, design of high speed and low power ADCs is an important issue for UWB

receivers.

For UWB receivers that perform correlation (or, energy detection) operations in the analog domain, ADCs can

operate at much lower rates than the Nyquist rate, as sampling per frame or symbol becomes sufficient, which

faciltates the design of low power UWB receivers [118], [96]. However, such receivers commonly experience per-

formance degradation due to circuit mismatches and reduced flexibility. For example, the number of correlators are

usually quite limited in the analog implementation, which prevents the implementation of sophisticated narrowband

interference (NBI) mitigation techniques [115].
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For improved performance, it is desirable to perform analog-to-digital conversion at an early stage, as in all-digital

UWB receivers. However, for those receiver, very high speed ADCs are required, as sampling UWB signals at the

Nyquist rate requires obtaining a few billion samples per second (Gsps). Fortunately, resolution requirement is not

as strict as the sampling rate requirement, and an ADC with a few bits of resolution is usually sufficient for UWB

signals. Specifically, an ADC with more than 4 bits of resolution provides only marginal improvement over a 4-bit

ADC for UWB systems [116], [121], [122]. In order to meet the fast sampling rate requirement with the current

ADC technology, various channelization techniques, such as frequency-domain channelization, [115], [123]-[126],

and subsampling techniques [127], [128] are commonly employed.

After the ADC, the digital signal samples are processed in order to estimate a position related parameter, such

as TOA. Then, the position related parameters corresponding to a number of UWB nodes are used to determine

the position of the target node. In self-positioning systems, the target node itself calculates the position, whereas

in remote-positioning systems, a central node calculates the position of the target. In both cases, the complexity

of the position estimation algorithm sets the signal processing requirements on the related node. For example, if

a mapping technique is implemented, the node needs to manage a training data set and employ it for position

estimation. On the other hand, a statistical technique does not require training data management, but may need to

solve an optimization problem, such as the NLS algorithm in (25).

V. CONCLUSION

In this paper, we have reviewed the problem of position estimation in UWB wireless systems. We have considered

primarily a two-step positioning approach, in which the estimation of position related parameters, such as TOA and

AOA, is performed first, followed by position estimation from those parameters. We have seen that TOA systems

are particularly well-suited for this purpose, and have investigated this technique in more depth. We have also

considered implementation issues for UWB ranging systems.
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