observable at the Mth sampling instant, obviously it must be true that
L <= M — k. If more than O temporally contiguous observables are avail-
able to the O-tab Su-Wong-Ho estimator, guidelines are offered below to
pick which O contiguous observables for the estimator. This Section
will rigorously prove that for a preset O, the QO-tab data-window
should centre around the th time-sample as much as possible.

Theorem 4.1: Suppose that {e/%, k < M} is to be estimated using a con-
tiguous QO-tap observation-window taken from {r,,m =1,2,... M}.
The following will minimise the MSE:

() FkE(Q—-1/2,.. . M- Q—l/z},sethLQq/zJ
(i) fk>M—Q—1/2,set L = M — k.
(i) Fk<Q—1/2,set L=0—k and /% = 1/4 Z Wely

Proof: Define
MMSE(L) = inf MSE(L, w) = MSE(L, w&-?) 6)
w

(L,0) — [y 0> w0
Wy o,

where w9 = [w{ wg’o) ] denotes the LMMSE weights
at latency L. Let L* denote the ‘best’ latency over L=10, 1, ..., O —
1, in the sense of

MMSE(") = mLin MMSE(L) (7)
As shown in [3], the LMMSE weights w{"” ng % ...wg’”) must be
positive real numbers, so the following will consider only

wy € (0,0),¥g =1, ..., 0. These LMMSE-estimator weights satisfy
8/dw,MSE(L,w) = 0, Vg:

0_2
wgf-”>(A2) + Z wholdlaml — (O=L=dl  wg=1,...,0 (8

Equivalently,

- a>
> whodem = fe-l-al _ Wi (A—;), Vg=1,....,.0 9

m=1
g o2
2 W I = T O S8 Vg = 1,0 (10)
=

As (5) implies
MMSE(Q —L — 1) = MMSE(Z), VL=0,1,...,0—1 (11)

it would suffice to consider only L < |Q — 1/2] below.
Suppose L < [Q — 1/2], or equivalently Q > 2L + 3. Then,

MMSE(L) — MMSE(L + 1)
= MSE(L, ) — MSE(L + 1, w+1o)

0 7 7
— L,o)\2 [ Zn (L,0) “n
-roin(g) (o) @
; % a?
+(§W(L )(C»Q Ldl _ ik 0>A2>

0
| oor(R) (-

Q a
(L+1.0) [ |Q—L—q| (L.0)
+q=1 K (c ’ ~ A2)}
13
- W(L ,0) (L+1 0) 02 (13)
0-L ~Wo-1-1 A2

_ { (a1 — oy — (ap-1-2 — ap-r-1) :| 1—&
B—oag-p-1 —a)B—ag 1 2—a1)| c

>0

The above (12) is obtained by setting ¢ = Q — L in (9) and setting
g =0 —L —11n (10). That gives

(0) o,

n

Q
& —L—q| _
qu 0)lO=-L—ql — 1 _ W L

g=1

2 o

(L+1,0) JO—L—-1—g| _ 1 _ . (L+1,009n
E W, c =1 WQ—L—IA_z
g=1

To prove (13), it would be sufficient to show that (az_; — az) >
(ag-r-2 — ag-1-1). Towards this end, note that oy | = 1/B — a; Vg >
0is equivalent to 8 — oty = /0y and oy = B — 1/ay41, Yg > 0. So,
(ar—1—ap)—(agp-2—ag-1 N=B—1/ag —ar) = (B—1/ap_1
— aQ_L_l) =ap— a9 — L— l/ozLaQ,L,l(l 55 ozLaQ_L_l). Because
0 >2L+3 and a,, both strictly decrease with m, it holds that O —
L—1>L and 1> a; > ap_; -1 > 0. This proves (13) and com-
pletes the proof of the theorem. O

Recursive update of Su-Wong-Ho estimator weights to incorporate new
sample: For a O-tab estimator, what happens if both the Q-tab obser-
vation-window and the to-be-estimated time-sample (e/%) slide to the
right along the discrete-time axis, but L remains the same? How may
the correspondingly right-shifted Su-Wong-Ho LMMSE estimator’s
weights be related to the original ‘pre-shift” Su-Wong-Ho LMMSE esti-
mator’s weights? The LMMSE estimator’s O-taps {w\”, ¢ = 1,..., 0},
that respectively weighting the observables {74/ 0t+e> 4= Lo Q} in
/%% those taps would be applicable also in e/% i Weight
{rtrr—0rq+1,9 = 1, ..., O} after the aforementioned ‘shifting’. This is
because

(i) between 6;,; and 6,,, is a time lapse equal to that between 6, and
6,7, and

(i1) the phase noise is modelled to have stationary independent
increments.

The weights are thus independent of &, even though {6;} and {e/%} are
non-stationary. This independence of & is because the estimator multi-
plies r;* with r,,, Vm.

Conclusion: The Su-Wong-Ho phase-estimator of [3] was for a limited
range of latency, and for a pre-specified number of taps equal to the
observation-window size. That estimator is herein extended to accom-
modate a wider range of latency, to select the optimum estimator-taps
window from a wider observation-window, and to handle newly
arrived samples.
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Average Fisher information maximisation in
presence of cost-constrained measurements

B. Dulek and S. Gezici

An optimal estimation framework is considered in the presence of cost-
constrained measurements. The aim is to maximise the average Fisher
information under a constraint on the total cost of measurement
devices. An optimisation problem is formulated to calculate the
optimal costs of measurement devices that maximise the average
Fisher information for arbitrary observation and measurement statistics.
In addition, a closed-form expression is obtained in the case of
Gaussian observations and measurement noise. Numerical examples
are presented to explain the results.

Introduction: In estimation problems, the Cramer-Rao lower bound
(CRLB) provides a lower bound on mean-squared errors (MSEs) of
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unbiased estimators. In addition, when the prior distribution of the

unknown parameter is known, the Bayesian CRLB (BCRLB) can be cal- -

culated to obtain a lower bound on the MSE of any estimator [1]. The
CRLB and BCRLB are quite useful in the analysis of estimation pro-
blems since (a) they provide lower bounds that can (asymptotically)
be achieved by certain estimators (e.g. the maximum likelihood estima-
tor), (b) they are easier to calculate than the MSE as their formulations
do not depend on any specific estimator structure. Recently, a novel
measurement device model has been proposed, and the problem of
designing the optimal linear estimator is studied under a total cost con-
straint on the measurement devices [2]. Unlike previous studies, it is
considered that each observation is measured by a measurement
device, the accuracy of which depends on the cost spent on that
device. In that way, a total cost constraint is taken into account and
the optimal linear estimator design is performed under that constraint.
In this Letter, we consider the problem of minimising the BCRLB
(equivalently, maximising the average Fisher information) at the
outputs of measurement devices under the total cost constraint intro-
duced in [2]. In other words, we propose a generic formulation for deter-
mining the optimal cost allocation among measurement devices in order
to maximise the average Fisher information. We also obtain a closed-
form expression for the Gaussian case, and present numerical examples.

Optimal solution: Consider a scenario as in Fig. 1 in which a K-dimen-
sional observation vector x is measured by K measurement devices, and
then the measured values in vector y are processed to estimate the value
of parameter 6. The measurement devices are modelled to introduce
additive measurement noise denoted by m. In other words, the prob-
ability density function (PDF) of x is indexed by parameter 6, and the
aim is to estimate that parameter based on the outputs of the measure-
ment devices. Although a linear system model and a different problem
formulation are considered in [2], motivations for that study can also
be invoked for the system model in Fig. 1. It should be emphasised
that the model in Fig. 1 presents a generic estimation framework in
which measurements are processed by an estimator in order to determine
the value of an unknown parameter. For example, in a wireless sensor
network application, measurement devices correspond to sensors,
which are used to estimate a parameter in the system, such as the
temperature.

X measurement y=x+m . 0
2 estimator —
devices

Fig. 1 Observation vector x measured by K measurement devices, and
measurements X + m are used by estimator to estimate value of unknown
parameter 6

To consider practical system constraints, we assume that there is a
total cost constraint on the measurement devices, as proposed in [2].
Specifically, the total cost budget of the measurement devices cannot
exceed C, which is specified by

1 X o
5210;;(1—1— 2‘) <C (1
i=1 (Tm,

where ai denotes the variance of the ith component of observation
vector X, and ofn is the variance of the ith measurement device (i.e.,
the ith component of m). In other words, it is assumed that a measure-
ment device has a higher cost if it can perform measurements with a
lower measurement variance (i.e. with higher accuracy). Various motiv-
ations for the cost constraint in (1) can be found in [2].

To maximise the estimation accuracy, we consider the maximisation
of average Fisher information, or equivalently the minimisation of the
BCRLB at the output of the measurement devices. The main motivation
for the suggested approach is that an optimal cost assignment strategy
can be obtained by solving such an optimisation problem without
assuming a specific estimator structure. In addition, it is known that
some estimators, such as the maximum a-posteriori probability estima-
tor, can (asymptotically) achieve the BCRLB; hence, the minimisation
of the BCRLB corresponds to the (approximate) minimisation of the
MSE for certain estimators.

For an arbitrary estimator 6, the BCRLB on the MSE is expressed as
(1]

MSE{8} = E{(8(y) — 6)*} = (Jp-+Jp)"" @)

where Jp and Jp denote the information obtained from observations and
prior knowledge, respectively, which are stated as

| o108 p8 )\ | (2108 w(e))’
JD‘E{<89) } JP_E{<T> 3)

with pd(y) and w() representing the PDF of Y and the prior PDF of the
parameter, respectively. As Jp depends only on the prior PDF, it is inde-
pendent of the cost of the measurement devices. Therefore, the aim is to
maximise Jp, which is defined as the average Fisher information, under
the cost constraint in (1). To specify this optimisation problem, it is
assumed that the observation is independent of the measurement
noise; hence, p%(y) in (3) can be expressed more explicitly as the con-
volution of the PDFs of x and m; i.e. p(y) = [ p%(y — m)pm(m)dm.
In addition, it is reasonable to assume that each measurement device
introduces independent noise, in which case pp(m) becomes
pm(m) = pyy (my) ... pag (mg). As discussed in [2], the cost of a
measurement device can be expressed as a function of its measurement
noise variance (see (1)). Each measurement noise component can be
modelled as m; = a;,,77;, where 7; denotes a zero-mean unit-variance
random variable with a known PDF p;; , and olml represents the variance
of the measurement device, which determines its cost as defined in (1).
Hence, the PDF of the ith measurement noise can be expressed as
pu(m) = 0-77_11] D M[(O’,;il m).

Based on (1) and (3), the optimal cost assignment problem can be for-

mulated as
1 (dply)\°
max JW(Q)j - ( pv(Y)) dy
{3, 1 rEPY()\ dO

bject t ! 1 14+ = (%
- g
supjec 022 og ) =

n;

It is noted that the expectation operator for the calculation of Jp in (3)
is over both # and Y, resulting in the objective function in (4). From
the discussions in the previous paragraph, we have pY(y)=

K
I %Gy —m) T 07, pyy, (07, ms)dm, which becomes
=i

K joe]
vy = _H1 o, j Py 0 — m)pjg (07, my)dm;
= —0c0
- (5)
k 6
=11 j DPx i — Omm)piy (m)ydm
i=1J -0

in the case of independent observations. In fact, the objective function in
(4) can be written as the sum of K components in that case (see (3)) as

2

K > 1 (dpf®)
0 ! a
EJW”jwp%m( a6 > g

o) = [ P4 — Cpmpyy (m)dm

where

Since the optimisation problem in (4) provides a generic formulation that
is valid for any observation PDF, the problem can be non-concave in
general. Hence, global optimisation tools such as particle swarm optim-
isation and differential evolution can be used to obtain the solution [3].

Special case: In the case of independent Gaussian observations and
measurement noise, it is possible to obtain closed-form solutions of
the optimisation problem in (4). To that aim, let the observation
vector x have independent Gaussian components denoted as
X; ~ N(6, of) fori=1,...,K, and let each measurement noise com-
ponent have ilndependent zero-mean Gaussian distribution with variance
o2, . In that case, the average Fisher information J, can be calculated as
YK, (2, +0a2)7". Hence, the aim becomes the maximisation of
YK (@, +02) " over 0 ..., 02, under the constraint in (1). It is
noted that both the objective function and the constraint are convex in
this optimisation problem. Since the maximum of convex functions
over convex sets has to occur at the boundary [4], the cost constraint
becomes equality, and the solution of the optimisation problem can be
obtained by using Lagrange multipliers [4], resulting in the following
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algorithm for the optimal cost allocation:

U—i . 1/18k !
g}znl i Foun 0'%[. s lfoi, < ywithyi (22(1 I U]Z{]) 6)
i =y =
where Sy = {i € {I,..., K} : 0}, # oo} and |Sx| denotes the number
of elements in set Sg. In other words, if the observation noise variance
is larger than a threshold vy, a measurement device with infinite variance
(that is, with zero cost) is considered; namely, that observation is not
measured at all. On the other hand, for observations with variances
smaller than v, the noise variance of the corresponding measurement
device is determined according to the formulation in (6), which
assigns low measurement variances (high costs) to observations with
low variances.

Table 1: Measurement variances and corresponding Fisher infor-
mation for optimal strategy (see (6)), strategy 1, strategy 2

oy, oz, % 0., | Fisher information
Optimal | 0.0097 | 0.3973 | 3.533 5] 10.45
Strategy 1 | 0.4373 | 0.4373 | 0.4373 | 0.4373 4.252
Strategy 2 | 0.0032 ) o 0 9.688

Parameters are C = 2.5, 0,,> = 0.1, 0;,> = 0.5, 0;,> = 0.9, and 7, 2 =
1.3

12+ 7
104 =
<
2
E o
S
=
& 64 f
=
]
i
4
optimal
2 i strategy 1
i - — strategy 2
T v T
0 2 4 6 8 10 12 14 16 18 20

Fig. 2 Fisher infor matzon against zafal cost C /0; optimal strategy, strategy
1, strategy 2 where o, 2=01, O, 2=0.5, o 2=10.9, and o7 =13
——  optimal

—, =, — , Strategy 1

— — — — strategy 2

Alternative strategies: Instead of the optimal cost assignment strategy
specified in (4), one can also consider the following simple alternatives.
Strategy 1 (equal measurement device variances): In this strategy, it is
assumed that measurement devices with equal variances are used for
all observations; i.e. 0% = 0%,i=1,..., K. Then, the cost constraint

in (4) can be used w1th equahty, and uﬁz is simply obtained as the smal-

lest positive real root of H 4o/ oi) = 22€_ If the observation var-
i=1

iances are also equal, o7, becomes o2, = o2 /(2°°/% —1).

Strategy 2 (all cost to the best observanon). In this case, the total budget
C is spent on the best observation, which has the smallest variance. If the
bth observation is the best one, the cost constraint in (4) can be used to
calculate the variance of the measurement noise for that observation as
02, = 03, /(22€ — 1). For all the other observations, the corresponding
measurement variances are set to infinity (i.e. no measurements are

taken from those observations).

Results and conclusions: To provide numerical examples of the results
in the preceding Sections, consider a scenario with independent
Gaussian observations and measurement noise. Let C = 2.5,
o2 =0.1, 02 =05 a =09, and02;13InTablelthevar-
iances of the measurement devices and the corresponding Fisher infor-
mation values are shown for the proposed optimal strategy (see (6)),
strategy 1 and strategy 2. It is observed that the optimal strategy
assigns smaller variances (larger costs) to observations with smaller var-
iances, and achieves the maximum Fisher information as expected. For
further investigations, Fig. 2 illustrates the Fisher information versus the
total budget C for different strategies. It is observed that the Fisher

information in strategy 2, which assigns all the cost to the best obser-
vation, converges to 1/02 as expected (since o2, converges to zero
as C increases). On the other hand, strategy 2 and the optimal strategy
converge for very small values of C since the optimal strategy involves
assigning all the cost to the best observation if C is small. Regarding
strategy 1, it converges to the optimal strategy for large C, and signifi-
cant deviations are observed for intermediate values of C. Overall, the
optimal cost assignment strategy yields the highest Fisher information
in all the cases, and indicates the opportunity to achieve high estimation
accuracy.
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Detecting DNS-poisoning-based phishing
attacks from their network performance
characteristics

H. Kim and J.H. Huh

Most of the existing phishing detection techniques are weak against
domain name system (DNS)-poisoning-based phishing attacks.
Proposed is a highly effective method for detecting such attacks: the
network performance characteristics of websites are used for classifi-
cation. To demonstrate how useful the approach is, the performance
of four classification algorithms are explored: linear discriminant
analysis, naive Bayesian, K-nearest neighbour, and support vector
machine. Over 10 000 real-world items of routing information have
been observed during a one-week period. The experimental results
show that the best-performing classification method — which uses
the K-nearest neighbour algorithm — is capable of achieving a true
positive rate of 99.4% and a false positive rate of 0.7%.

Introduction: Over the years, many techniques have been developed to
help identify phishing websites; some of these include whitelisting of
legitimate sites, blacklisting of fraudulent sites and identifying
common heuristics. Unfortunately, when it comes to detecting domain
name system (DNS)-poisoning-based phishing attacks, such techniques
tend to achieve low performance [1]: Abu-Nimeh and Nair introduced
an attacking scenario in which a rogue access point (with stronger
signal range) is setup at Starbucks, and a user connects to the Internet
through this access point rather than Starbucks’ hotspot [1]. As the
local DNS in this access point is poisoned, when the user types a
URL in her browser, she is directed to a phishing website hosted at
the access point’s local server. Here, her usual security toolbars and
phishing filters will not provide any warning message. This is because
most of these techniques merely check the domain names of websites
and/or rely on remote verification servers to perform the necessary
phishing detection tasks. In practice, however, the communication
channel between client software and a remote server is not often
secured, allowing attackers to easily forge the server’s response.
Keeping the IP addresses alongside the domain names could be effective
only if the TP addresses were all static. Content-based phishing detection
methods too have inherent weaknesses: phishing contents can be sophis-
ticatedly created to avoid the (publicly known) properties that are being
checked by heuristics.
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