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Abstract

Accurate positioning systems can be realized via ultra-wideband (UWB) signals due to their high time reso-
lution. In this article, position estimation is studied for UWB systems. After a brief introduction to UWB signals
and their positioning applications, two-step positioning systems are investigated from a UWB perspective. It is
observed that time based positioning is well-suited for UWB systems. Then, time based UWB ranging is studied in
detail, and main challenges, theoretical limits, and range estimation algorithms are presented. Performance of some
practical time based ranging algorithms is investigated and compared against the maximum likelihood estimator
and the theoretical limits. The trade-off between complexity and accuracy is observed.
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[. INTRODUCTION

Ultra-wideband (UWB) signals differ from widely used narrowband and wideband signals by their very
large bandwidths [1]-[3]. A common signaling scheme for UWB systems is known as impulse radio (IR)
UWB, which consists of short duration pulses (on the order of a nanosecond) with low duty cycles and
employs different time-hopping and polarity codes [4], [5].

UWB signals have some very important properties which make them good candidates for many ap-

plications. First, due to their large absolute bandwidths, UWB systems can employ very short duration
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waveforms, and hence, they can achieve high time resolution and facilitate accurate range and position
estimation [2]. Large bandwidths of UWB signals also enable high speed data transmission. In addition,
since UWB signals can cover a large portion of the frequency spectrum, including low frequencies as
well as high frequencies (that is, they can have large relative bandwidths), they achieve high penetration
capability through obstacles. Furthermore, UWB systems can be operated in baseband in a carrier-free
manner, which makes it possible to design low cost and low power systems [2].

Due to their high time resolution, UWB signals can be employed in applications that require high
positioning accuracy. Especially, the capability of performing very accurate positioning based on range
estimation makes UWB signaling a well-suited choice for short range wireless sensor networks (WSNs)
[6]. UWB WSNs can be employed in many different areas. For example, they can be used for security
purposes to locate an unusual activity or authorized people in high security areas. Also, after disasters
such as an earthquake or avalanche, UWB WSNs can be used to locate lost people. In addition, UWB
positioning systems can locate military personnel, fire-fighters, and police officers, and they can also be
used to track medical equipment or patients in a hospital. Furthermore, in daily life, UWB WSNs can be
employed to locate and control home and office appliances [2].

In this study, an overview of positioning via UWB signals is presented. First, position estimation is
studied, and various approaches for position estimation are evaluated from a UWB perspective. Then, time
based UWB ranging, which is well-suited for UWB positioning systems, is investigated in detail. The
main challenges for time based UWB ranging, theoretical limits on ranging accuracy, and range estimation

algorithms are studied. Comparisons of practical algorithms and theoretical limits are also presented.

II. POSITION ESTIMATION

In a wireless positioning system, the position of a target node, such as a wireless sensor or a cellular
phone, is estimated based on signals traveling between that node and a number of reference (anchor)
nodes. Depending on whether the position is estimated at a central unit or by the node itself, the system
is called a remote-positioning (network-centric positioning) or self-positioning system, respectively [7].
Commonly, position estimation is performed in two steps as shown in Fig. 1. In the first step, position
related parameters, such as time of arrival (TOA) and angle of arrival (AOA), are extracted from the signals
traveling between the target and reference nodes. Then, in the second step, the position is estimated based

on the position related parameters obtained in the first step. Although it is also possible to estimate



the position directly from the signals traveling between the nodes, the two-step approach is commonly
preferred since it can have significantly lower complexity than the direct approach, and the performance of
the two approaches is usually quite close for sufficiently high signal-to-noise ratios (SNRs) and/or signal
bandwidths [8], [9]. In fact, a two-step approach is a natural choice for remote-positioning systems since
it would be significantly more costly to send the received signals to a central unit than to send just the
position related parameter estimates (see Fig. 2).

In the following, a two-step positioning system as in Fig. 1 is considered, and various algorithms that

can be employed in each step of the system are discussed.

A. Estimation of Position Related Parameters

In the first step, certain position related parameters are estimated based on signals between target and
reference nodes. Those parameters are commonly related to timing, energy and/or direction of the signals
traveling between the target node and a number of reference nodes [10]. The choice of the parameter type
depends on the trade-off between positioning accuracy and system complexity/cost, which is investigated
below from a UWB perspective.

1) Received Signal Strength: When a signal propagates from a transmitter to a receiver, the amount of
energy collected by the receiver depends on the distance (“range”) between the transmitter and the receiver.
Therefore, the received signal strength (RSS) can be considered as a parameter that carries position related
information.

In wireless environments, the received signal power can vary significantly over short distances, on
the order of the signal wavelength, due to constructive and destructive addition of multiple signal paths.
Such small-scale effects are averaged out in order to obtain a useful relation between received power and
distance. When small scale-scale multipath effects are averaged out, the resulting average received power
on the dB scale can be modeled as a Gaussian random variable, which has a mean determined by the
path-loss effect and a variance that is specified by the shadowing variance [11].! In practice, the path-loss
parameter (path-loss exponent) and the shadowing variance vary from environment to environment; hence,
they can also be modeled as random variables with specific distributions in different types of environments

"For a more accurate model of the average received power, the effects of directional antennas and the frequency dependence of path-loss
in UWB systems can be considered. For example, in UWB channels, the frequency dependence of the path-loss is commonly modeled as
being proportional to f~ 2", where & is called the frequency decaying factor. A detailed investigation of UWB channels can be found in
Chapter 2 of [12].



[13].

In order to investigate the theoretical ranging accuracy that can be achieved via the RSS parameter,
the Cramer-Rao lower bound (CRLB) can be considered [14]. The CRLB specifies the lower limit on the
standard deviation of an unbiased estimator. For the RSS parameter, the CRLB on the standard deviation
of an unbiased range estimator is specified by (In10)og, d/(10n), where d is the distance (“range”)
between the nodes, n is the path-loss exponent, and oy, is the standard deviation of the shadowing [15].
Therefore, the theoretical lower bound on the ranging accuracy reduces as the standard deviation of the
shadowing decreases (which reduces the random variations of the received power), and the path-loss
exponent increases (which makes the average power more sensitive to distance changes). Also, as the
range between the nodes increases, the lower bound increases as well [10].

Commonly, the RSS parameter does not provide very accurate range estimates due to its strong
dependence on the channel parameters, which is also true for UWB systems. For instance, in a non-
line-of-sight (NLOS) residential environment, modeled according to the IEEE 802.15.4a UWB channel
model [16], with n = 4.58 and oy, = 3.51, the CRLB can be calculated to be around 1.76 m. at d = 10
m. [10].

2) Angle of Arrival: The AOA parameter provides information about the direction over which a target
node resides. A common technique to estimate the AOA parameter is to employ multiple antennas in
the form of an antenna array. Then, the differences in arrival times of an incoming signal at different
antenna elements can be used to obtain the AOA information based on the known array geometry [17].
For narrowband signals, those differences in arrival times can be represented by phase shifts of the signals.
Therefore, the combinations of the phase shifted versions of received signals at antenna array elements
can be tested for different angles in order to estimate the AOA [18]. However, for UWB systems, time
differences cannot be represented by phase shifts; hence, time delayed versions of received signals should
be considered for AOA estimation [10].

In order to compare the accuracy of the AOA parameter with that of the RSS parameter, consider a
uniform linear array, which has its antenna elements located along a straight line with equal spacing. The
CRLB calculations in [19] indicate that the lower bound on the standard deviation of an unbiased AOA
estimator is inversely proportional to the effective bandwidth [14] of the signal and the square-root of the

SNR. Therefore, unlike the RSS parameter, the accuracy of the AOA parameter can be enhanced when



the signal bandwidth is increased, which implies that UWB signals can facilitate accurate AOA estimation
[10].

3) Time of Arrival: Another parameter that provides information about the range between two nodes
is the TOA parameter. When the nodes are synchronized, the TOA of the signal can be used to obtain
a range estimate. If the nodes are not synchronized, they can exchange timing information by certain
protocols such as the two-way ranging protocol in order to estimate the range [20], [21].

The theoretical limits on TOA estimation and various TOA estimation algorithms are investigated for
UWRB systems in Section III. At this point, in order to provide some intuition about why the TOA parameter
is well-suited for UWB positioning systems, consider a simple scenario in which the time-delayed version
of a transmitted signal arrives at a receiver in the presence of zero-mean additive white Gaussian noise

(AWGN). In that case, the CRLB on the standard deviation of an unbiased TOA estimator 7 is given by

1
= 2v/27v/SNR 3

where SNR is the signal-to-noise ratio, and ( is the effective bandwidth [14], [22]. Therefore, the

Var(7) (1)

theoretical lower bound on TOA estimation accuracy reduces with the SNR and effective bandwidth
parameters. Hence, large bandwidths of UWB signals can facilitate very accurate TOA information. For
instance, for the second derivative of a Gaussian pulse [23] with a pulse width of 1ns, the CRLB for the
standard deviation of an unbiased range estimator (obtained by scaling a TOA estimator by the speed of
light) is less than one centimeter at an SNR of 5dB [10].

4) Time Difference of Arrival: When the reference nodes are synchronized, the time difference of
arrival (TDOA) parameter can be used to obtain position related information [18]. For remote positioning,
the reference nodes measure the arrival times of the signal coming from the target node, which is not
synchronized with the reference nodes. Then the TDOA parameters are calculated by taking the difference
between the TOA estimates, which removes the timing offset due to the asynchronism between the target
node and the reference nodes. In this case, similar to the discussion for the TOA parameter, the accuracy
of the TDOA parameter increases as the effective bandwidth and/or the SNR increase [17].

For self-positioning, the target node measures the signals transmitted from synchronized reference
nodes, and calculates the TDOA values. One way to estimate the TDOA value in this case is to perform

cross-correlations between the signals coming from a pair of reference nodes, and to determine the time



difference value corresponding to the maximum cross-correlation value [24].

5) Other Types of Position Related Parameters: In addition to RSS, AOA and T(D)OA parameters
or their combinations [2], two other types of position related parameters are the multipath power delay
profile (PDP) and the channel impulse response (CIR) related to a received signal [25]-[28]. Although
the PDP and CIR parameters can provide significantly more positioning information than the previously
studied parameters in some cases, position estimation based on PDP/CIR information is usually more
complex as it commonly requires a database consisting of previous PDP/CIR measurements at a number

of known positions [10].

B. Position Estimation

In the second step of the two-step positioning approach in Fig. 1, the position of a target node is
estimated based on the position related parameters obtained in the first step. Two common techniques that
can be employed in that second step are statistical and mapping (fingerprinting) techniques [17].

1) Statistical Techniques: The statistical techniques assume certain statistical models for the parameter
estimates obtained in the first step, and try to estimate the position based on those models. Consider the

following model for the parameters obtained from the first step:

z=f(1)+n 2)

where z is a vector of size Ny, that contains the parameter estimates obtained in the first step, 1 is the
noise vector that represents the estimation errors in the first step, { denotes the position of the target, and
f(1) contains the true values of position related signal parameters. Depending on the type of the position
related parameter, f(l) can correspond to the distances between the target node and the reference nodes
(for the TOA and RSS parameters), the arrival angles of the target signal at the reference nodes (for the
AOA parameter), or the differences in the arrival times of the target signal at the reference nodes (for the
TDOA parameter) [17]. The model in (2) can be valid also in the presence of non-line-of-sight (NLOS)
and multipath propagation, which mainly affect the probability distribution of the noise components [2].

Depending on the amount of information about the statistics of the noise term 7) in (2), two classes of
statistical techniques can be considered:

a) Nonparametric Techniques: The nonparametric approach assumes no information about the form of



the probability density function (PDF) of the noise, p,(-). However, there exists some generic information
about the noise statistics [29], such as its variance and symmetry properties, which can be employed
for designing nonparametric estimation rules, such as the least median of squares technique in [30], the
residual weighting algorithm in [31] and the variance weighted least squares technique in [32].

b) Parametric Techniques: In the parametric approach, the PDF of noise n7 is known except for a set
of parameters, denoted by A. Therefore, the unknown parameter vector in the estimation problem based
on the model in (2) can be expressed as 6 = [l }\]T, which consists of the position of the target node
[, as well as the unknown parameters of the noise distribution. Depending on the availability of prior
information about €, Bayesian or maximum likelihood (ML) estimation techniques can be employed, as
investigated in [10], [17], [33].

2) Mapping Techniques: A mapping (fingerprinting) technique uses a training data set to determine a
position estimation rule (pattern matching algorithm/regression function), and then employs that rule to
estimate the position of a target node for a given set of position related parameter estimates [10]. Common
mapping techniques are %k nearest neighbor (k-NN), support vector regression (SVR), and neural networks
[28], [34]-[38]. For efficient utilization of mapping techniques, the training data set should provide an
accurate representation of the environment. Therefore, it should be updated at certain intervals, which can

be costly in dynamic environments, such as in outdoor positioning scenarios [10].

III. TIME-BASED UWB RANGING

The discussions in Section II-A indicate that the large bandwidths of UWB signals can facilitate accurate
positioning based on T(D)OA or AOA estimation. Since AOA estimation commonly requires multiple
antenna elements and increases the complexity of a UWB receiver, timing related parameters, especially
TOA, are usually preferred for UWB positioning systems [10]. In the following, TOA estimation for UWB

signals is investigated in more detail.

A. Main Challenges

For the ideal case in which the signals arrive at a receiver only over a line-of-sight (LOS) path in
the absence of any interfering signals from other sources, it is possible to perform time based UWB
ranging with high accuracy using perfectly synchronized clocks. However, in a practical scenario, there

exist various challenges [10], [39]. First of all, in most cases there does not exist an LOS path between



the transmitter and the receiver. Even if there is an LOS path, signals arrive at the receiver not only
over that path but over multiple paths. Also since UWB signals have a very high time resolution, clock
imperfections can cause significant errors. These challenging issues, which affect the performance of
practical time based UWB ranging, are discussed in the following.

1) Propagation Effects: Propagation effects on range estimation can be categorized into two groups
depending on whether or not there is an LOS path between the transmitter and the receiver. In the presence
of an LOS path, positioning errors can occur mainly due to multipath propagation and thermal noise. Since
signals arrive at the receiver over multiple paths, it can be challenging to determine the exact TOA of
the received signal. Using UWB signals can help resolve the incoming multipath components due to the
very high time resolution of UWB signals. In LOS scenarios, the arrival time of the first component of
the received signal corresponds to the true time delay between the transmitter and the receiver. Therefore,
in order to perform time based ranging successfully, the TOA of the first component of the received
signal should be estimated accurately, which can be achieved by using first-path detection algorithms
[20], [40]-[42].

In the absence of an LOS path between the transmitter and the receiver; that is, when there exists an
obstacle between them, two types of challenges can be encountered in time based ranging (see Fig. 3)
[39]. First, the signal component traveling over the LOS path can be attenuated or totally blocked by
the obstacle in such a way that the first-path detection algorithms would identify one of the multipath
components as the first path [43]-[45]. The second type of challenge is encountered when the transmitted
signals propagate slower in the obstacle than they do in the air. Even if the transmitted signal is not
attenuated significantly in the obstacle, it can be delayed so significantly that the first incoming signal at
the receiver does not correspond to the true LOS delay [39].

Non-LOS (NLOS) situations can significantly complicate the time based ranging task [10]. First of all,
it becomes important to identify a link between two nodes as an LOS or NLOS link. In some cases, it
is possible to identify an NLOS link by using the measurement statistics obtained from that link [46]-
[48]. Also, the information embedded in the multipath components of the received signal can be used to
detect NLOS scenarios [49], [50]. Once two nodes are identified to be in NLOS of each other, several
techniques can be employed to mitigate NLOS induced errors. One of the common ways of performing

time based ranging in NLOS scenarios is to employ a mapping technique that utilizes training data obtained



from the environment in which positioning will be performed [28], [34]-[38]. Another way of mitigating
NLOS errors is to simply ignore NLOS measurements [51]. Also using several scattering models for an
environment, the statistics of time based parameters, such as TOA, can be obtained for that environment,
and then MAP and ML estimators can be employed to perform time based ranging in NLOS scenarios
[33], [52].

2) Interference: There are two basic sources of interference for UWB systems; narrowband interference
(NBI) and multiple-access interference (MAI). Since a UWB system uses a very large portion of the
frequency spectrum, there exist many other narrowband systems that operate in the same frequency band
as the UWB system. Therefore, the NBI coming from those systems can affect the performance of time
based UWB ranging, as investigated in [39], [53].

The second source of interference is the other UWB users in the same environment, which result in
MAI. MAI can be handled by using time division multiple-access (TDMA) or frequency division multiple-
access (FDMA) for the users in the same network. Still these precautions may not be enough if there is
another UWB network operating in the same environment. One approach for mitigating MAI is proposed
in [54] in order to improve the ranging accuracy of noncoherent receivers via nonlinear filtering. Also,
codes with good cross-correlation properties can be used to mitigate the effects of MAI [2], [21], [42].
For example, the IEEE 802.15.4a standard assigns two unique ternary codes for each frequency band [2].

3) High Time Resolution and Clock Drift: UWB signals have very large bandwidths; hence, very high
time resolution, which facilitates accurate positioning based on time based ranging. However, this high
resolution property of UWB signals also presents certain challenges for time based ranging. First, since
the time resolution is very high, even very small timing errors can cause significant errors in time based
ranging. The main reason for such timing errors is the clock drift. In both one-way and two-way ranging
protocols, the clock drift can cause significant errors in some cases [39], [55]. However, the effects of
the clock drift can be mitigated by a symmetric double-sided two-way ranging protocol, which relates
the drift to the difference of the processing times at two devices [21], [56]. Another problem with the
high time resolution of UWB signals is that due to the very large bandwidth, it is both costly and power
consuming to sample UWB signals at the Nyquist rate. Therefore, TOA estimation algorithms based on
low-rate samples are desirable for UWB systems. Finally, the high time resolution of UWB signals results

in a large number of possible delay values that need to be searched by a correlation based receiver for



time delay estimation. Therefore, instead of an exhaustive search on the delay space, two-step approaches

are commonly preferred for UWB systems [2], [41].

B. Theoretical Limits

In this section, theoretical limits on time based UWB ranging are presented in terms of the Cramer-Rao
lower bound (CRLB) and the Ziv-Zakai lower bound (ZZLB). The following received signal model is
considered based on a single-user scenario:

N—1 L

r(t) =Y > aw(t -7 —jT1) + n(t) (3)

j=0 I=1

where w(t) represents a UWB pulse with duration T, T} is the frame duration (1t > T,), N, is the
number of frames in the received signal, and n(t) is zero-mean AWGN with spectral density Ny/2 [57].
In addition, a channel model with L multipath components is considered, and «; and 7; denote, respectively,
the channel coefficient and the delay of the /th multipath component for [ = 1, ..., L. Also, it is assumed
that the pulses in different frames do not interfere with each other.

1) CRLB: For an estimation problem with multiple unknown parameters, the CRLB is determined
by the inverse of the Fisher information matrix (FIM) [14]. For the received signal model in (3), there
are 2L unknown parameters corresponding to the channel coefficients and the delays of the multipath
components. For the unknown parameter vector @ = [ay - -+« 71 -7, the FIM can be formed as in

[6], and then the CRLB on the variances of unbiased path delay estimators can be written as?

Noy/2
CRLB(n) = —— 2 __ @)
N; o (Ep — (Ep) /Ep)
for I = 1,...,L, where E, is the energy of w(t), E, = Opr(t)w'(t)dt, and B, = fOTp ' (t)[2dt,

with w'(t) denoting the first derivative of w(t). From Parseval’s relation, Eg can be expressed as E;DI =
Ar? [ f2|P(f)|*df, where P(f) represents the Fourier transform of w(t). In addition, E, = 0 when the

UWB pulse satisfies w(0) = w(7},). Then, (4) can also be expressed as

1

CRLB(7) = 2 5N 77 SNR,

(&)

1t is assumed that no inter-pulse interference exists.



where (3 is the effective bandwidth defined as 32 £ (1/E,) [~ f?|P(f)|?df, and the SNR; denotes the
SNR of the /th path, SNR; £ apr /No . It is observed from (5) that the CRLB depends on the pulse
shape, the SNR, and the number of pulses employed in time delay estimation. Also, the comparison of
(1) and (5) reveals that the CRLB in (5) is in the same form as that in (1) with the exception that the
path SNR is employed and there is a factor of /V, since N, pulses are employed in the estimation.

2) ZZLB: The CRLB is widely used for performance evaluation. However, it is known that it can
result in some loose limits at low SNR values. The ZZLB, on the other hand, provides tight bounds even
at low SNR values. Since the ZZLB cannot be expressed in closed form in many cases, one approach
for evaluating the ZZLB is to consider channel realizations that belong to a random process with a finite
ensemble of realizations {s(*)(¢)}, where N, denotes the number of realizations [39]. Then, the ZZLB

can be obtained as [58]
1 [
Z71.B = T/ (Ty — 2) 2 Prin(2) dz (6)
a Jo

where the time delay is assumed to be uniformly distributed in [0, 7},), and Py, (2) is approximated by
Nch 2
1 Di(z)
Poin(2) & — § t. A I 7
(Z) Nch k=1 Q( 2N0 > ( )

In (7), Q(-) denotes the Q-function that is defined as Q(z) = (1/v/2) [ exp(—t*/2)dt, and D (z) is

given by

)

Di(z) = min/ (s(k) (t—7)— st —7— z))2 dt (8)
Tobs

with T,,s denoting the observation interval [39].
Other approaches for evaluating the ZZLB in multipath channels are discussed in [39], [58]. Although
the ZZLB cannot be evaluated analytically in many cases, it provides a tighter bound than the CRLB for

low-to-medium SNRs, as can be observed in Fig. 5.

C. TOA Estimators

In this section, various TOA estimators are studied for time based UWB ranging. First ML based

estimators are presented under various conditions. Then, some practical TOA estimators are discussed.



1) ML Based Estimators: 1f the received waveform structure is completely known, it is possible to
perform ML estimation by using a correlator with a template signal that is perfectly matched to the
received waveform [6]. However, the incoming signal to the receiver consists of multipath components
with different time delays, channel coefficients and even pulse shapes in some cases. Therefore, it is not
possible to know the exact waveform of the received signal in practice. Hence, the ML estimator based
on a correlator with the received signal template cannot be implemented in practical systems.

In the absence of prior information, it is necessary to jointly estimate the time delays and the channel

coefficients of the multipath components even though the main parameter of interest is the time delay of

the first component of the received signal. The ML estimates for the unknown parameters T = [r; --- 7]
and o = [ -+ «y] are given by [59]
T
+=arg max{ [QT(T)I'} R (7) [QT(T)r] } )
& =Ry (7)Q" (7)r (10)

where r denotes the vector of received signal samples, and Rq(T) = Q7 (7)Q(7) with

Q1) = [wP) w2 ... P and WP = [0p, w On,,,—~.—n,)7 [2]. Note that D; is defined as the
largest integer smaller than or equal to 7;/Tgy, (With Ty, denoting the sampling interval), w denotes a
vector of size NV, that consists of the samples of the UWB pulse, 0; is a vector of i zeros, and Ngyp
represents the number of samples.

The ML estimation of time delays and channel coefficients has very high computational complexity
especially when the number of multipath components is large. To reduce the complexity, a simpler method
called generalized maximum likelihood (GML) is proposed in [20]. GML simply searches the time delay
values smaller than the delay of the strongest multipath component, assuming that the strongest multipath
component has already been identified.

2) Low Complexity Estimators: In this section, some practical estimators that have low complexity
compared to the ML based approaches are presented. Let z[k] denote the samples of an energy detector
output, or the absolute values of the samples of a correlator output for £ = 1,2,..., N,. It is assumed
that the sampling rate is below the Nyquist rate, and the aim is to estimate the TOA as accurately as
possible based on samples z[1], ..., z[Ny].

Possibly the simplest TOA estimator is the one that estimates the TOA based on the index of the largest



sample [60]. In that case, the delay of the first signal component is estimated as 71 = Tmp kmax + Lsmp/2 »
where Ty, is the sampling interval and Ky, is the value of k£ € {1,..., N, } that maximizes z[k]. Since
the strongest signal sample may not correspond to the first signal component in many cases, other low
complexity algorithms have been proposed to improve the accuracy of TOA estimation [39], [61], [62].
For example, in [62], the largest N correlation peaks are considered, and the time delay corresponding to
the peak with the smallest time index is selected (called the largest-N peak detection algorithm). Namely,
if k; represents the time index for the ith largest correlation peak, the TOA of the received signal is
estimated as 7y = Typp min{ky, ko, ..., kn} + Tomp/2-

Another class of TOA estimators with low complexity includes two step TOA estimators, which can
perform accurate TOA estimation based on low rate samples. For example, the two-step estimator proposed
in [41] obtains a coarse time delay estimate in the first step, and then refines this estimate using a statistical
change detection algorithm in the second step.

An important class of practical estimators is the threshold based estimators, which compare the samples
of the received signal against a threshold in order to determine the first path component of the received
signal [40], [63], [64]. The jump back and search forward (JBSF) algorithm is one of those estimators,
which determines the strongest sample in the received signal first and then jumps a number of samples
back from the strongest one as shown in Fig. 4. After that, the samples are compared against a threshold
sequentially, and the first sample that exceeds the threshold is used to obtain the TOA estimate [40].
The intuition behind the JBSF algorithm is that since the first signal path commonly resides before the
strongest signal sample, it can be helpful to jump backwards from the strongest signal sample and search
in the forward direction starting from that position. Then, a threshold test can be used to distinguish
the first signal path from the noise-only samples. Similar to the JBSF algorithm, the serial backward
search (SBS) algorithm first determines the strongest sample. However, unlike the JBSF algorithm, it then
performs a backward search starting from the strongest sample, and selects the first sample that satisfies
the following: a) the sample value exceeds the threshold, and b) the next sample in the search direction
does not exceed the threshold. In this way, the SBS algorithm aims to detect the first path before which
a noise-only sample resides. (see Fig. 4).

In Fig. 5, some of the time based ranging algorithms discussed in this section are compared, and the

theoretical lower bounds are presented. An uncertainty region of 500 ns is considered for TOA estimation,



100 realizations from the channel model 3 of the IEEE 802.15.4a channel model are used [16], and the
second derivative of the Gaussian pulse [2] with around 1 ns pulse width is used in the training signal
(only one pulse is employed). Also, the thresholds for the JBSF and the SBS algorithms are set to 0.25
times the maximum correlation output (the window size in Fig. 4 is 50 ns), and N = 500 for the largest-
N peak-detection algorithm. The ML estimator (MLE) is presented as a benchmark, and the other three
algorithms are considered due to their practicality. It is observed that the MLE has the best performance
as expected, and it gets quite close to the ZZLB at almost all SNR values and to the CRLB only at
high SNRs [57]. Considering the practical estimators, the JBSF algorithm has better performance than the
largest-N peak detection algorithm, and it also performs better than the SBS algorithm at high SNRs. In

addition, the JBSF and the largest-/NV peak detection algorithms can provide sub-nanosecond accuracy.

IV. CONCLUSIONS

In this study, position estimation has been investigated for UWB systems. First, two-step positioning
systems have been studied from a UWB perspective, and it has been concluded that time based position
estimation is well-suited for UWB systems due to the large bandwidths of UWB signals. Then, time
based UWB ranging has been investigated in detail, and the main challenges, theoretical limits, and TOA
estimation algorithms have been presented. Specifically, the tradeoffs between complexity and accuracy
have been observed for time based UWB ranging algorithms. The performance of various algorithms has

been compared against the theoretical limits.
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Fig. 1. Two-step positioning. In self-positioning systems, the target node first estimates position related parameters based on received signals

coming from reference nodes, and then estimates its position based on those estimated parameters. In remote-positioning systems, position
related parameters are estimated based on the signals at the reference nodes. Then, those position related parameters are sent to a central
unit, which estimates the position of the target node (see Fig. 2).



Central Unit

Fig. 2. Two-step position estimation in a remote-positioning system. Reference nodes (RNs) estimate position related parameters based on
signal exchanges with the target node, and send those parameter estimates to a central unit, which obtains the position estimate.
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Fig. 3. Various LOS and NLOS conditions. With respect to transmitter TX, receiver RX1 is in LOS, receivers RX2 and RX3 are in NLOS.
Due to different obstacle properties, the direct path is observed at RX2 after some attenuation, but it cannot be detected by RX3.
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Fig. 4. Tllustration of jump back and search forward (JBSF) and serial backward search (SBS) algorithms [2]. N\ffb) denotes the search-back
window length in samples, nmaqz is the index of the strongest sample, n;e is the index of the first arriving path’s sample, nsp is the index
of the first sample within the search-back window, and D, is the delay between the index of the first sample within the search window and
the first arriving path’s sample [57].
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Root mean-squared error (RMSE) versus SNR for various algorithms, and the CRLB and the ZZLB.



