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Abstract—The optimum power randomization problem is stud-
ied to minimize outage probability in flat block-fading Gaussian
channels under an average transmit power constraint and in the
presence of channel distribution information at the transmitter.
When the probability density function of the channel power gain
is continuously differentiable with a finite second moment, it
is shown that the outage probability curve is a nonincreasing
function of the normalized transmit power with at least one
inflection point and the total number of inflection points is
odd. Based on this result, it is proved that the optimum power
transmission strategy involves randomization between at most
two power levels. In the case of a single inflection point,
the optimum strategy simplifies to on-off signaling for weak
transmitters. Through analytical and numerical discussions, it
is shown that the proposed framework can be adapted to a wide
variety of scenarios including log-normal shadowing, diversity
combining over Rayleigh fading channels, Nakagami-m fading,
spectrum sharing, and jamming applications. We also show
that power randomization does not necessarily improve the
outage performance when the finite second moment assumption
is violated by the power distribution of the fading.

Index Terms– Power randomization, outage probability, fading,
jamming, wireless communications.

I. INTRODUCTION

Under fading, the signal power at a wireless receiver varies

randomly over distance or time due to shadowing and/or

multipath propagation [1], [2]. Depending on the properties of

the channel and the delay-constraint of the application, various

performance metrics have been proposed in the literature to

assess system performance under fading. When the coherence

time is much smaller than the codeword duration such that

the fading process is fast enough to reveal its statistics during

the transmission of a single codeword, ergodic capacity is an

appropriate performance criterion [3], [4]. In this case, a few

simultaneous errors due to a deep fade within a codeword

transmission period can be corrected using error correction

and interleaving techniques. On the other hand, for several

practical situations in wireless communications, such as wire-

less local area networks (LANs) and mobile users moving

at walking speed, the channel coherence time is comparable

to the coding block length. In this case, a block-fading (BF)

channel model is assumed where the channel fading coefficient

is constant over the entire duration of a codeword but changes
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randomly from codeword to codeword [4]–[7]. Due to slow

variations of the channel, a deep fade lasts for the entire

duration of a codeword transmission. Although burst error-

correcting codes that can achieve the ergodic capacity for

the slow fading case still exist, they usually require longer

codewords that take longer time to transmit. This may not be

an adequate choice in the case of delay-sensitive applications

such as voice and video for which long delays due to channel

variation cannot be tolerated [3], [8]. Since the messages must

be transmitted and decoded successfully within a certain time

to satisfy the delay constraint, the frequency with which the

instantaneous channel parameters cannot support the transmit-

ted data rate arises as a natural performance criterion to assess

the quality of communications. To this end, the information

outage probability has been defined as the probability that the

instantaneous mutual information of the channel is less than

the considered code rate [3], [9].

In delay-sensitive applications, it is desirable to maintain a

minimum mutual information rate over all fading conditions

through optimal transmit power control [8]. This is possible

only when the instantaneous channel gains, called the channel

state information (CSI), are available both at the receiver and

transmitter. This goal may still not be achievable under a

finite average transmit power constraint since much power is

needed to maintain a constant rate during severe fading (e.g.,

the Rayleigh fading channel [10]). However, by suspending

data transmission under severe fading conditions, a higher in-

stantaneous mutual information rate can be supported continu-

ously during non-outage without violating the average transmit

power constraint. In this particular case, the outage probability

is described as the probability of suspending transmission to

prevent data loss, and the transmit power during non-outage

is adjusted such that the instantaneous mutual information is

exactly equal to the required rate of transmission for reliable

communications [3], [8], [9].

Over the last two decades, the design of transmit power

control mechanisms that aim to minimize the information

outage probability for a given rate has been studied exten-

sively under various constraints and frameworks assuming that

perfect channel state information is available at the receiver

(CSIR) while either perfect or partial channel state information

is available at the transmitter (CSIT) [3], [9], [11]–[38]. In

the following, we briefly mention some of these. A single-

user M−block block-fading additive white Gaussian noise

(BF-AWGN) channel is considered in [9], with an extension

to transmit and receive antenna diversity in [12]. Optimal

power control for outage minimization is addressed for flat-

fading broadcast channels under different spectrum sharing

techniques in [13], and for fading multiple-access channels



(MACs) in [16]. The optimal power allocation problem for

minimizing outage probability has also been studied exten-

sively in more recent research areas such as cooperative

communications, secure communications and cognitive radio

(CR). The case for the BF relay channel is analyzed in [17] for

different relaying protocols, and under the low signal-to-noise

ratio (SNR) and low outage probability regimes in [21]. The

same problem is also addressed for fading broadcast channels

with confidential messages (BCC) in [23] by utilizing different

interpretations for outage. In [20] and [29], the authors derive

the optimum power allocation policy that minimizes the outage

probability of the cognitive user in a spectrum-sharing CR

network assuming various fading distributions and average/-

peak transmit/inteference power constraints. In [35], outage

minimization and optimal power control are investigated in

state estimation of linear dynamical systems using multiple

sensors. It is assumed that the messages are propagated to a

fusion center over wireless fading channels and an outage is

described as the event that the state estimation error exceeds

a pre-determined threshold.

In the absence of CSIT, the transmitter cannot employ any

form of power control and always transmits at a constant

rate. Since the channel experiences block-fading, the channel

gain stays constant during a codeword transmission [4], [6],

[7], [9]. When the instantaneous mutual information falls

below the designated rate due to a deep-fade, the channel

code designed for this rate cannot successfully recover the

transmitted codeword. In this particular case without CSIT, the

outage probability can be interpreted as a close approximation

to the decoding error probability implying its operational

significance [9], [16], [39].

In general, both the accuracy and the availability of the

CSIT are limited due to channel measurement errors (e.g. low

SNR) and limitations of the feedback channel. The outage

minimization problem and the corresponding optimal power

control strategies have been studied in great detail for the

cases of perfect CSIT as mentioned above. Most results

that take into account the uncertainty of CSIT are limited

to the ergodic capacity due to its concavity and analytical

tractability [40]–[43]. In an attempt to alleviate this problem,

simplifying assumptions are employed to establish convexity

and/or analytically tractable special cases for which optimal

power control strategies can be derived to minimize the

outage probability [6], [7], [44]–[47]. In [44], independent

and identically distributed Rayleigh fading is considered for a

multiple-input-single output (MISO) communications system.

In [45], the CSIT is restricted to the feedback of channel fading

mean and covariance, and the optimum transmit covariance

matrix is designed based on the assumption that the channel

coefficients are jointly Gaussian. In [46], a similar problem

is discussed for a MIMO system. Assuming that the channel

distribution is known to the transmitter as a sampled data set

with equally likely channel instances, a convex optimization

problem is formulated via relaxation. In [7], it is assumed that

the channel or its distribution is not known at the transmitter

but the fading distribution belongs to a class of distributions

that are within a certain distance from a nominal distribution

in relative entropy sense. It is shown that the input distribution

Fig. 1. Illustrative example demonstrating the benefits via time sharing
between two power levels under an average power constraint.

optimized for the nominal outage probability under the power

constraint is also optimal over the class.

Recently, power randomization techniques have been ap-

plied successfully to decrease the average probability of error

in M -ary communications systems [48]–[50], to improve the

average detection probability in a Neyman-Pearson framework

[51]–[54] and to reduce the Bayesian cost of a given estimator

[55] under average power constraints. Fig. 1 depicts how

power randomization helps improve the error probability under

an average power constraint via a simple illustration. Suppose

that the average power constraint is denoted with Savg. It is

seen that the average probability of error can be reduced by

randomizing between power levels S1 and S2 with respect to

the constant power transmission with Savg. More precisely,

power randomization exploits the nonconvexity of the plot

of error probability with respect to the transmitted signal

power. Although the area of optimizing the transmit power

over a fading channel is well-studied even with imperfect CSIT

and the assumption of an average power constraint is widely

employed in the analysis of outage performance, the benefits

of power randomization are not addressed to the best of our

knowledge.

In this paper, we propose the idea of optimum power ran-

domization to minimize the outage probability of an average

power constrained communications system that operates over

a flat BF-AWGN channel. We assume that the channel distri-

bution information (CDI) is perfectly known at the transmitter

but the instantaneous CSI is not available. In order to focus on

the power randomization technique without the technicalities

associated with diversity, it is assumed that a single antenna

is used at the receiver. The proposed approach exploits the

nonconvexity of the outage probability with respect to the

transmit power to improve the outage performance over the

fixed power transmission scheme, which is the only alternative

in the absence of CSI for this model. In Section II, it is

shown that when the probability density function (PDF) of the

channel power gain is continuously differentiable with a finite

second moment, the outage probability curve is a nonincreas-

ing function of the normalized transmit power with at least

one inflection point and the total number of inflection points

is odd. Based on this result, optimum power randomization

strategies are proposed to minimize the outage probability

under an average transmit power constraint. In Section III, we

apply the proposed power transmission strategy to a variety

of fading scenarios including log-normal shadowing, diver-



sity combining over Rayleigh fading channels, Nakagami-m
fading, spectrum sharing, and jamming applications. We also

present a CR system in Section III.D, for which we show

that the power randomization does not necessarily improve the

outage performance when the finite second moment condition

is violated by the power distribution of the fading. Some

concluding remarks are provided in Section IV.

Notation: Throughout this paper, we use ph(·) to denote

the PDF of the continuous channel power gain h. Pr(·)
denotes the probability of the event inside the parentheses.

Pout(β) denotes the outage probability as a function of the

normalized transmit power β. The prime symbol ′ and the

double prime symbol ′′ denote the first and second derivative

of a function, respectively, e.g., P′
out(β) = d(Pout(β))

dβ and

P′′
out(β) =

d2(Pout(β))
dβ2 . β̂ and βt denote an inflection point and

a tangent point of the outage probability curve, respectively.

β̄ and βp denote the average and peak power constraints,

respectively.

II. CONVEXITY PROPERTIES OF OUTAGE PROBABILITY

AND OPTIMUM POWER RANDOMIZATION

Consider a communications system operating over a

flat BF-AWGN channel. Due to the Gaussian channel

assumption, information outage probability can equivalently

be described as the probability that the instantaneous received

SNR falls below a minimum target SNR value required

for proper operation [1], [2]. We express the received

SNR as γ , ρh/N , where ρ denotes the transmit power,

h is the channel power gain between the transmitter and

the receiver, and N represents the effective noise power

at the receiver. The channel power gain h is described

with the PDF ph(·). We also assume that ph belongs to

the class of continuously differentiable PDFs and h has a

finite second moment. Mathematically stated, ph ∈ P ,
{
p(x) ∈ C1 : p(x) ≥ 0,

∫
p(x)dx = 1,

∫
x2p(x)dx < ∞

}
,

where C1 is the class of continuously differentiable functions

on (0,∞). Almost all fading distributions employed in

practice such as Rayleigh, Hoyt, Rice, Nakagami-m, and

log-normal have power distributions that belong to this class

[56].

Suppose that a target minimum SNR level γ0 is imposed

to ensure acceptable communication performance. If the re-

ceived SNR value at the detector is below this value, outage

is declared. In this paper, we consider an average power

constrained communications system in which the transmitter,

having perfect knowledge of the channel distribution, can

randomize/time-share its transmit power in order to decrease

the outage probability. To this end, it is also assumed that the

transmitter is informed of the noise power N at the receiver

via a feedback mechanism. Due to sufficiently long coherence

time of block-fading, the receiver can learn the channel gain

although it is not essential for our purposes [4], [7].

For a fixed noise power N and a target SNR γ0, let β ,

ρ/(Nγ0) represent the normalized transmit power. The outage

probability as a function of β is given by

Pout(β) = Pr(γ < γ0) = Pr

(

h <
Nγ0
ρ

)

= Pr(h < β−1) =

∫ β−1

0

ph(x)dx . (1)

Similar to [7], we assume that a particular channel realization

stays fixed for the whole duration of codeword transmission

and changes from codeword to codeword due to block-fading.1

At the beginning of each codeword transmission, a normalized

transmit power value is selected randomly from a given finite

set according to the probability distribution pβ(x) = α1 δ(x−
β1) +α2 δ(x− β2) + . . .+αk δ(x− βk), where δ(x) denotes

the Kronecker delta function which is equal to one if x =
0 and to zero otherwise. More precisely, the probability that

any given codeword is transmitted using normalized power βi

is equal to αi. The actual transmit power is obtained from

the relation ρ = βNγ0 based on the randomly selected value

β. Assuming that the transmitted signal, channel fading and

the receiver noise are independent of each other, the optimal

transmit power randomization problem can be stated as

min
k,{αi,βi}

k
i=1

k∑

i=1

αiPout(βi)

subject to

k∑

i=1

αiβi ≤ β̄

k∑

i=1

αi = 1 and αi ≥ 0 ∀i ∈ {1, 2, . . .} (2)

where αi denotes the probability that a codeword is transmitted

with normalized power βi, β̄ denotes the average normalized

transmit power limit, and k is the cardinality of the set of βi’s.

The objective function in (2),
∑k

i=1 αiPout(βi), is the average

probability of outage over all possible power allocations.2

Therefore, the aim is to find the optimal power randomization

scheme (i.e., pβ(x)) that minimizes the average probability of

outage under an average transmit power constraint.

As an initial observation, if Pout(β) is nonincreasing and

convex, the power randomization does not provide any im-

provements over the constant power transmission strategy

at the average power limit as can be noted from Jensen’s

inequality [57]:

k∑

i=1

αiPout(βi) ≥ Pout

(
k∑

i=1

αiβi

)

≥ Pout(β̄) . (3)

However, in general, it is possible to reduce the average

probability of outage via power randomization. To discover

such scenarios, the problem in (2) is investigated for generic

forms of function Pout(·).

1This model can be generalized to the case where multiple codeword
transmissions see a fixed channel realization [4].

2Alternatively, (2) can be interpreted as time-sharing among different power
levels. If we consider a time interval [0, T ] that is split into k subintervals
each of which spans multiple codeword transmissions, then one can view
αi as the fractional length of the ith subinterval and βi as its normalized
transmitted signal power.



Although the optimization problem in (2) is quite chal-

lenging to solve in its current form, the following arguments

can be used to simplify it significantly for practical scenarios.

Assume that the normalized transmit power is finite and takes

values from a closed interval in the form of [0, βp]. Consider

the set of all possible (βi,Pout(βi)) pairs, and denote this

set as U . The average probability of outage and the average

normalized transmit power expressions in (2) are the convex

combinations of Pout(βi) and βi terms, respectively. There-

fore, the set of all possible
(∑k

i=1 αiβi,
∑k

i=1 αiPout(βi)
)

pairs is recognized as the convex hull of set U . From

Caratheodory’s theorem in convex analysis [58], it follows

that any
(∑k

i=1 αiβi,
∑k

i=1 αiPout(βi)
)

pair at the boundary

of the convex hull of set U can be obtained as a convex

combination of at most two elements in U ; that is, k ≤ 2.

Since a minimum value of
∑k

i=1 αiPout(βi) must lie at the

boundary of the convex hull, an optimal solution to (2) can be

obtained via the following simpler problem:

min
α1,β1,β2

α1Pout(β1) + (1− α1)Pout(β2)

subject to α1β1 + (1− α1)β2 ≤ β̄ , α1 ∈ [0, 1] . (4)

Compared to (2), the optimization problem in (4) is signifi-

cantly simpler since it is only over three variables. Also, it is

noted that α1 = 1 (equivalently, k = 1 in (2)) corresponds to

the trivial case of no power randomization.

In the following, the convexity properties of the outage

probability in (1) are investigated in order to determine

whether improvements in outage performance are possible via

power randomization.

Proposition 1: For any PDF of the channel power gain that

belongs to set P , Pout(β) is a nonincreasing function of the

normalized transmit power β with at least one inflection point.

Furthermore, the total number of inflection points is odd.

Proof: The proof can be established in a similar manner to

that of [59, Theorem 2]. Differentiating Pout(β) given in (1)

with respect to β,

P′
out(β) = −β−2ph(β

−1) ≤ 0 , ∀β > 0. (5)

It is observed that Pout is nonincreasing in normalized transmit

power β. Differentiating once more, we have

P′′
out(β) = β−3

(
2ph(β

−1) + β−1p′h(β
−1)
)
. (6)

If we let z , β−1 and g(z) , 2ph(z) + zp′h(z), then for any

t > 0 we have
∫ t

0

zg(z)dz =

∫ t

0

(
2zph(z) + z2p′h(z)

)
dz = t2ph(t) . (7)

The fact that the fading channel power gain h has a finite

second moment implies that limt→∞ t2ph(t) = 0. Since

the function zg(z) integrates to 0 over (0,∞), g(z) must

change sign. Recalling that ph is continuously differentiable

(ph ∈ C1), g(z) = 0 must have at least one positive root.

Consequently, from (6), Pout(β) has at least one inflection

point.

To analyze the behavior of Pout(β) at the high transmit

power region (large β), we take a sufficiently small value for

t > 0 in (7). Since t2ph(t) ≥ 0 and t is very small, we

can conclude that g(z) ≥ 0 for small z by continuity. Hence,

P′′
out(β) ≥ 0 and Pout(β) is convex in the high transmit power

region. For the low transmit power case (small β), we take a

sufficiently large yet arbitrary value for t > 0. Employing the

finite second moment argument once more, we have
∫ ∞

t

zg(z)dz = −t2ph(t) ≤ 0 (8)

which implies that g(z) ≤ 0 for large z. Hence, P′′
out(β) ≤ 0

and Pout(β) is concave in the low transmit power region.

Finally, since Pout is concave for small β and Pout is convex

for large β, there must be an odd number of inflection points,

P′′
out(β) = 0, in between by the continuity of the second

derivative. �

Proposition 1 implies that it is possible to improve outage

performance via power randomization under the fixed average

transmit power, unless the average transmit power limit is

large, in which case the best strategy is to always transmit

at the fixed average power limit. This conclusion can also

be made based on the formulation in (4) since the optimum

outage probability is expressed as a convex combination of

(at most) two outage probabilities corresponding to different

power levels. Therefore, due to the presence of the concave

regions in Pout (as implied by Proposition 1), it is possible to

achieve a lower outage probability via power randomization

(convex combination) than the minimum outage probability

that is obtained without power randomization (i.e., transmitting

always at the fixed average power limit). Also, since Pout

is nonincreasing and convex for high transmit powers (as

stated in the proof of Proposition 1), no improvements can

be achieved via power randomization if the average transmit

power limit is sufficiently large.

In the following, we investigate the optimum power random-

ization strategy in more detail for the case of a single inflection

point. As shown in Section III, this assumption is valid

for a wide range of outage scenarios including log-normal

shadowing, Nakagami-m fading, and diversity combining over

Rayleigh fading channels. Before stating the optimal strategy

in this case, we derive the following lemma in a similar manner

to that in [59, Lemma 2].

Lemma 1: Let β̂ be the only inflection point obtained from

the solution of P′′
out(β) = 0 given in (6). There exists a unique

point βt with βt ≥ β̂ such that the tangent to Pout(β) at βt

passes through the point (0, 1) and this tangent lies below

Pout(β) for all β > 0.

Proof: With a single inflection point and a finite limit,

Pout(β) is concave for β < β̂, and convex for β > β̂. As

a result, the tangent at β = β̂ lies above Pout(β) for all

β < β̂. The y−axis intercept of the tangent to Pout(β) at

an arbitrary point β ≥ 0 is given by f(β) = Pout(β) −
βP′

out(β). Since both Pout(β) and P′
out(β) are continuously

differentiable functions, so is f(β), and its derivative is

f ′(β) = −βPout
′′(β). Therefore, f ′(β) is negative for β > β̂.

Furthermore, it can be seen that f(β̂) ≥ Pout(0) = 1 and

limβ→∞ f(β) = 0. As a result, f(β) is a monotonically

decreasing function for β > β̂, with an initial value that is

greater than or equal to 1, and the limit at the infinity is

equal to 0. This implies that there exists a unique βt satisfying



f(βt) = 1.

The proof about the tangent lying below Pout(β) for all

β > 0 is as follows. Since Pout(β) is convex over (β̂,∞),
the tangent at βt lies below Pout(β) for β > β̂. On the

other hand, the line segment connecting the point (0, 1) to

the point (β̂,Pout(β̂)) lies below Pout(β) and its slope can

be expressed as (Pout(β̂)− 1)/β̂. Similarly, the line segment

connecting the point (0, 1) to the point (βt,Pout(βt)) has a

slope of (Pout(βt)− 1)/βt. In the interval β̂ ≤ β ≤ βt,

d

dβ

Pout(β)− 1

β
=

1− f(β)

β2
≤ 0 . (9)

Therefore, line segments originating from the point (0, 1) and

passing through the point (β,Pout(β)) have decreasing slopes

as β is increased in the interval [β̂, βt]. This, in turn, suggests

that the tangent line lies below the first line segment, and

consequently below Pout(β) in the interval [0, β̂] as well. �

Next, we state the optimum power transmission strategy

for the case of a single inflection point under average power

constraint β̄ and peak power constraint βp (βp ≥ β̄).

Proposition 2: For βt ≤ β̄ where βt is as defined in

Lemma 1, the best strategy is to exclusively transmit at the

average power β̄, i.e., power randomization does not help.

When β̄ < βt < βp is satisfied, the optimal strategy is to

randomize between powers 0 and βt with the probability of

on-power β̄/βt. For βt ≥ βp, the optimal solution randomizes

between powers 0 and βp with the probability of on-power

β̄/βp.

Proof: The proposed strategy achieves the following outage

probability:

Popt
out(β̄) =







Pout(β̄), βt ≤ β̄

1− β̄ (1− Pout(βt))

βt
, β̄ < βt < βp

1− β̄ (1− Pout(βp))

βp
, βt ≥ βp

(10)

The proof can be established in a straightforward manner by

noticing that Popt
out(β) is the largest convex function that lower-

bounds Pout(β) for β ∈ [0, βp], and thus the outage probability

cannot be further decreased by power randomization [58], [59].

�

From Proposition 2, it is seen that a weak transmitter can

benefit from on-off power randomization to reduce its outage

probability. Furthermore, the optimal power randomization

strategy is solely determined by the value of tangential point

βt and its relation to average and peak power constraints.

Depending on the specific form of the fading distribution, a

closed form solution for βt may not be available. In this case,

βt can be solved numerically under the constraint βt ≥ β̂
via the equation βtP

′
out(βt) = Pout(βt)− 1, or equivalently

solving for x from

x ph(x) =

∫ ∞

x

ph(τ)dτ , (11)

and substituting βt = x−1.

We also present a numerical algorithm that is guaranteed

to converge globally to the true value of βt with desired

accuracy. The proposed method relies on a bisection search

algorithm that facilitates rapid convergence and the solution

of a convex optimization problem at each iteration [60]. This

is given below.

Algorithm

λmin = P′
out(β̂), λmax = 0

βmin = β̂, βmax = ∞
do

λ = (λmax + λmin) /2
βX = argmin

β∈(βmin,βmax)

Pout(β)− λβ

if Pout(βX)− P′
out(βX)βX > 1 ,

then λmin = λ, βmin = βX

else λmax = λ, βmax = βX

while |Pout(βX)− P′
out(βX)βX − 1| > ǫ

At each iteration, either λmin increases towards P′
out(βt) or

λmax decreases towards P′
out(βt), and λmax ≥ P′

out(βt) ≥
λmin is assured. Thus, λ converges to P′

out(βt). At conver-

gence, we have βX = argmin
β∈(βmin,βmax)

Pout(β) − P′
out(βt)β =

βt. In practice, a sufficiently small value is selected for ǫ to

control the accuracy of the solution at convergence.

III. VARIOUS APPLICATIONS AND NUMERICAL EXAMPLES

In this section, we apply the results from the previous

section to improve the performance of some commonly em-

ployed systems in the wireless communications literature,

which include log-normal shadowing, diversity combining

over Rayleigh fading channels, Nakagami-m fading, cognitive

radio, and jamming applications.

A. Log-normal Shadowing

Empirically, the Gaussian (normal) distribution has been

found to accurately model the medium-scale variations of

the received power, when represented in dB scale, due to

changes in the reflecting surfaces and scattering objects in

the signal path [1]. More explicitly, the channel power gain

h can be modeled by a log-normal random variable where

log h is Gaussian distributed with mean µ and variance σ2. In

practice, log-normal shadowing is usually identified in terms of

its dB-spread via the relation σ = 0.1 log(10)σdB . By defining

γ = ρh/N , ρeµ+σz/N , the outage probability is given by

Pout(β) = Q

(
log β

σ

)

(12)

where β , (ρeµ)/(Nγ0) represents the normalized transmit

power, and Q(x) = (
√
2π)−1

∫∞

x
e−t2/2dt denotes the tail

probability of the standard normal distribution. Then, the first

and second derivatives of the outage probability can be derived

as

P′
out(β) = −(

√
2πσβ)−1e−(log β)2/(2σ2) and (13)

P′′
out(β) = (

√
2πσ)−1β−2e−(log β)2/(2σ2)

(

1 +
log β

σ2

)

.

(14)
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Fig. 2. Outage probability versus normalized transmit power for fixed power
transmission (solid lines) and optimum power randomization (dashed lines)
for various values of shadow fading standard deviation.

From (13) and (14), it is deduced that Pout is a monotonically

decreasing function of β with a single inflection point at β̂ =
e−σ2

. As a result of Proposition 2, the outage probability can

be reduced via on-off power randomization for small values

of the average power constraint.

In Fig. 2, we investigate the effects of shadow fading

standard deviation on the outage performance under the opti-

mum power randomization strategy. The solid lines correspond

to the outage probability under fixed power transmission,

whereas the dashed lines depict the outage probability under

optimum power randomization as stated in Proposition 2. For

small σdB values, the performance improvement due to power

randomization becomes much more evident. For β = 1 and

σdB = 1 dB, it is possible to decrease the outage probability

from 0.5 down to 0.3286. However, if σdB = 0.5 dB, the

outage probability can be decreased even further down to

0.2138. Table I summarizes the optimal power randomization

parameters employed to achieve these performance figures un-

der log-normal shadowing. β̂ represents the unique inflection

point of the outage curve, βt denotes the normalized transmit

power at the tangent point, Pout(βt) is the corresponding

outage probability, and P′
out(βt) is the slope of the curve at the

tangent point. Using this table, it can be determined that if the

average transmit power limit is greater than the tangent value

(β̄ > βt), transmission should be continuous at the average

power value. On the other hand, if the average transmit power

limit is less than the tangent value (β̄ < βt), the optimum

solution employs transmit power βt with probability β̄/βt or

aborts transmission otherwise. In other words, the optimal on-

off transmitter employs the following PDF for the normalized

power parameter: pβ(x) = (β̄/βt)δ(x−βt)+(1− β̄/βt)δ(x).

B. Diversity Combining over Rayleigh Fading Channels

In this part, we assume that measurements are acquired from

M receive antennas associated with independent and identi-

cally distributed (i.i.d.) Rayleigh fading paths. Suppose also

TABLE I
PARAMETER VALUES FOR OPTIMAL POWER RANDOMIZATION UNDER

LOG-NORMAL SHADOWING

σ2 β̂ βt Pout(βt) P′

out(βt)
0.25 0.9967 1.1207 0.0239 -0.8710
0.5 0.9868 1.2038 0.0536 -0.7862
1 0.9484 1.3079 0.1218 -0.6714
2 0.8089 1.3165 0.2752 -0.5505
3 0.6205 1.1274 0.4311 -0.5046
4 0.4281 0.8413 0.5744 -0.5059

that the effective noise powers in all branches of the combiner

are equal. Then, the SNR at the combiner input from branch i
is given by γi , ρhi/N where ρ denotes the transmit power,

hi is the channel power gain between the transmitter and the

receive antenna i, and N represents the noise power. Under

Rayleigh fading, the channel power gain is exponentially

distributed; that is: phi
(x) = λ−1e−x/λ for x ≥ 0, where

λ denotes the average channel power gain due to Rayleigh

fading [1]. Next, we examine the outage performance of two

widely employed combining techniques.

1) Maximal-Ratio Combining (MRC): In this case, the sig-

nals in all the branches are combined coherently to maximize

the output SNR. The resulting combiner SNR is given by

γΣ =
∑M

i=1 γi = (ρ/N)
∑M

i=1 hi , ρλheq/N , where the

distribution of heq is Erlang with shape parameter M and

scale parameter 1 [1]:

pheq
(x) =

xM−1e−x

(M − 1)!
, x ≥ 0 (15)

Let β , (ρλ)/(Nγ0) denote the normalized transmit power.

The corresponding outage probability can be calculated from:

Pout(β) = Pr(γΣ < γ0) = Pr

(

heq <
Nγ0
ρλ

)

= 1− e−1/β
M∑

m=1

β1−m

(m− 1)!
. (16)

The first and second derivatives of the outage probability can

be obtained by directly differentiating (16), or equivalently

from (5) and (6), which give

P′
out(β) = − e−1/β

(M − 1)!βM+1
, and (17)

P′′
out(β) =

e−1/β

(M − 1)!β(M+3)
((M + 1)β − 1) . (18)

From the equations above, it is observed that Pout(β) is a

monotonically decreasing function for all β > 0 with a single

inflection point at β̂ = 1/(M + 1). Since Pout(β) is concave

for β < 1/(M + 1), it is possible to improve the outage

performance via power randomization for weak transmitters

or under strict average transmit power constraints.

In Fig. 3(a), the outage probability is plotted versus the

normalized transmit power for various values of the number

of antennas M under MRC at the receiver. In accordance

with Proposition 2, power randomization results in superior

outage performance over the fixed power transmission scheme

for small values of the average transmit power constraint.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Transmit Power ( β)

O
u

ta
g

e
 P

ro
b

a
b

ili
ty

 

 
M=1

M=2

M=3

M=4

M=8

M=16

M=32

M=64

M=128

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Transmit Power ( β)

O
u

ta
g

e
 P

ro
b

a
b

ili
ty

 

 M=1

M=2

M=3

M=4

M=8

M=16

M=32

M=64

M=128

(b)

Fig. 3. Outage probability versus normalized transmit power for fixed power
transmission (solid lines) and optimum power randomization (dashed lines)
for various values of the antenna number M under (a) MRC, (b) SC at the
receiver.

Also noted from the figure is that as the number of antennas

employed at the receiver increases, the improvements due to

power randomization becomes more pronounced. For example,

when M = 8 and β = 0.03, the probability of outage drops

from 0.6146 to 0.3253 under the optimum power random-

ization strategy. If M = 32 and β = 0.02 are selected, the

improvement in outage probability is even higher, from 0.9973
down to 0.5502.

2) Selection Combining (SC): In selection combining, the

combiner outputs the signal on the branch with the highest

SNR. The combiner output has an SNR equal to the maximum

SNR of all branches which can be expressed as γΣ =
maxi∈{1,2,...,M} γi = (ρ/N)maxi∈{1,2,...,M} hi , ρλheq/N ,

where the distribution of heq is given by

pheq
(x) = M

(
1− e−x

)M−1
e−x , x ≥ 0 . (19)

Similar to the previous case, let β , (ρλ)/(Nγ0). Then, the

outage probability is expressed as a function of the normalized

transmit power as follows:

Pout(β) =
(
1− e−1/β

)M
. (20)

The first and second derivatives of the outage probability are

P′
out(β) = −Mβ−2e−1/β

(
1− e−1/β

)M−1
, and (21)

P′′
out(β) = −Mβ−4e−1/β

(
1− e−1/β

)M−2
g(β) , (22)

where g(β) , 1− 2β + (2β −M)e−1/β . Again, Pout(β) is a

monotonically decreasing function for β > 0. However, it is

difficult to find an analytical expression for the inflection point.

Below, we show that there exists a unique point satisfying

P′′
out(β) = 0 (and equivalently g(β) = 0). Notice that

limβ→0 g(β) = 1, limβ→∞ g(β) = −(M + 1), and the

derivative of g(β) with respect to β is

g′(β) = −2 + 2

(

1 +
1

β

)

e−1/β

︸ ︷︷ ︸

<1 ∀β>0

−M

β2
e−1/β

< −M

β2
e−1/β < 0 ∀β > 0 , (23)

which altogether indicate that the zero of g(β) occurs at a

single point for β ∈ (0,∞). Therefore, the outage probability

can be decreased via transmit power randomization in the case

of SC diversity technique as well. Fig. 3(b) demonstrates this

fact for various numbers of antenna.

C. Nakagami-m Fading

Nakagami-m distribution provides an excellent fit to a wide

variety of empirical measurements. The fading parameter m
represents the ratio of the power in the line-of-sight (LOS)

component to the power in the multipath components. Let

the average channel gain be denoted by λ. In the absence

of any diversity combining techniques, the average SNR at

the receiver is given by γ = ρh/N , ρλheq/N . The power

distribution under Nakagami-m fading corresponding to a unit-

mean channel gain heq is expressed as [1]:

pheq
(x) =

mmxm−1

Γ(m)
e−mx , x ≥ 0 and m > 0 , (24)

where Γ(m) =
∫∞

0
tm−1e−tdt denotes the Gamma function.

By defining β , (ρλ)/(Nγ0), the first and second derivatives

of the outage probability can be computed as

P′
out(β) = − mm

Γ(m)
β−(m+1)e−m/β , and (25)

P′′
out(β) =

mm

Γ(m)
β−(m+3)e−m/β ((m+ 1)β −m) , (26)

which confirm that Pout is a monotonically decreasing func-

tion of β with a single inflection point at β̂ = m/(m + 1).
Hence, power randomization can help reduce the outage

probability for weak transmitters as depicted in Fig. 4. Since

the Rayleigh distribution is a special case of the Nakagami

distribution with m = 1, this result agrees with that of

Section III-B.
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Fig. 4. Outage probability versus normalized transmit power for fixed power
transmission (solid lines) and optimum power randomization (dashed lines)
under Nakagami-m fading for various values of m.

D. Spectrum Sharing in Fading Environments (Cognitive Ra-

dio)

In this part, we consider a communications scenario in

which a secondary user operates simultaneously within a

licensee’s spectrum under a constraint on the average interfer-

ence power at the primary receiver. Let hs and hp represent

independent channel power gains from the secondary and pri-

mary transmitters to the secondary receiver, respectively. The

secondary transmitter needs to know the power of the primary

transmitter ρp, which is assumed to be fixed. Additionally, the

secondary transmitter does not have the perfect knowledge

of hs and hp instantaneously, but just their joint statistical

distribution (i.e., CDI). This information can be supplied by

the licensee via a feedback mechanism or by a management

body which mediates the two parties [61]. For simplicity, we

assume that the noise at the secondary receiver is dominated by

the interference from the primary user, hence can be neglected.

The SNR at the secondary receiver can then be expressed as

γ , (ρshs)/(ρphp), where ρs is the power of the secondary

transmitter for which the optimal power transmission strategy

is sought. In this case, outage probability at the secondary

receiver is given by

Pout(β) = Pr(γ < γ0) = Pr

(
hs

hp
<

ρpγ0
ρs

)

= Pr

(
hs

hp
< β−1

s

)

= Pr

(
hp

hs
> βs

)

, (27)

where βs , ρs/(ρpγ0) is the normalized power of the

secondary transmitter. Since the transmitted signal power is

independent of the instantaneous value of the fading distribu-

tion, the average interference power constraint at the primary

receiver can be equivalently described as an average power

constraint at the secondary transmitter after proper scaling

with the expected value of the channel power gain between

secondary transmitter and primary receiver.

1) Log-normal Shadowing: Let hs and hp be independent

log-normal random variables such that log hs and log hp are

zero-mean Gaussian random variables with variances σ2
s and

σ2
p, respectively. Then, heq , log(hs/hp) is also Gaussian

distributed with zero-mean and variance σ2 , σ2
s + σ2

p. The

rest of the analysis is exactly the same as in Section III-A,

which indicates that power randomization can be employed

to improve the outage performance under stringent transmit

power constraints in this framework as well.

2) Nakagami Fading: With channel fading following the

Nakagami distribution, suppose that hs and hp are indepen-

dently distributed as shown in (24) with fading parameters ms

and mp, respectively.3 In this case, heq , hp/hs is known to

have the beta-prime distribution [61, Appendix I]:

pheq
(x) =

(
ms

mp

)ms xmp−1

B(ms,mp)
(

x+ ms

mp

)ms+mp
, (28)

where B(υ, ϕ) = Γ(υ)Γ(ϕ)/Γ(υ + ϕ) is the Beta function.

From the nonpositivity of the first derivative P′
out(βs) =

−pheq
(βs) ≤ 0, it is observed that the outage probabil-

ity decreases monotonically with increasing βs. The second

derivative is given by

P′′
out(βs) =

(
ms

mp

)ms xmp−2

B(ms,mp)
(

x+ ms

mp

)ms+mp+1

·
(

(ms + 1)x− ms

mp
(mp − 1)

)

. (29)

From (29), it is noted that mp ≤ 1 (severe fading over the

channel from the primary transmitter to the secondary receiver)

provides a necessary and sufficient condition for nonimprov-

ability of the outage probability via secondary transmit power

randomization for all βs ≥ 0. For mp > 1, there exists a

single inflection point at β̂s =
ms(mp−1)
mp(ms+1) , which suggests that

power randomization can help reduce the outage probability

of the secondary user when the average transmit power should

be limited. As an example, consider identical and independent

Rayleigh fading on both channels, i.e., ms = mp = 1. In this

case, heq has a log-logistic distribution [61]:

pheq
(x) =

1

(1 + x)2
, x ≥ 0 . (30)

Correspondingly, the outage probability and its second deriva-

tive are given by

Pout(β) =
1

1 + β
, P′′

out(β) =
2

(1 + β)3
> 0 ∀β > 0.

(31)

As expected from the condition mp ≤ 1, the power random-

ization does not help reduce the outage probability in this

scenario due to convexity. From another point of view, log-

logistic distribution does not have a finite second moment:

(limx→∞ x2/(1 + x)2 = 1), which justifies why Propositions

1 and 2 are not applicable.

3Means of hs and hp can be captured into βs if they are not equal to one
as discussed earlier in Sections III-A, III-B and III-C.



E. Jammer’s Perspective

In this part, we investigate the convexity properties of

the outage probability in the presence of an average power

constrained Gaussian jammer. Assuming that the jammer has

only the knowledge of the fading distribution (contrary to the

cases in which the jammer has access to perfect CSI [62]–

[64]), the optimum jammer power allocation strategy is studied

in order to maximize the outage probability of the victim

system under different fading scenarios.

1) Fading over only Jammer-Receiver Channel: This sce-

nario considers the case when the received power due to

jamming varies while the received power due to signal trans-

mission is fixed. The random fluctuations in the received

jamming power may result from the inaccuracy of the jammer

to resolve the parameters of the victim receiver such as the

center frequency or the operating band. It may also be the

case that the jammer is moving with respect to the receiver

while the transmitter and the receiver stay at fixed locations,

which allows us to assume that the received jammer power

changes much faster than the received signal power. Under

such circumstances, we express the SNR at the receiver as

γ , ρ/(Ωh), where ρ denotes the fixed received signal power,

Ω is the jammer transmit power, and h is the channel power

gain between the jammer and the receiver. Given a target SNR

γ0, let ω , (Ωγ0)/ρ represent the normalized jammer power.

Then, the outage probability as a function of ω is given by

Pout(ω) = Pr(γ < γ0) = Pr

(

h >
ρ

Ωγ0

)

= Pr(h > ω−1) =

∫ ∞

ω−1

ph(x)dx . (32)

Comparing (32) with (1), it is observed that the outage

probability in the latter case equals one minus the outage

probability of the former assuming the same values for ω and

β. This implies a sign reversal for all the first and second

derivative expressions obtained so far. Therefore, similar con-

clusions can be deduced in a straightforward manner. As an

example, Fig. 5 illustrates the performance degradation in the

outage probability due to jammer power randomization under

Nakagami fading for various values of the parameter m. In

practice, it is desired that the outage probability should be

less than 1% [1]. From Fig. 5, it is observed that jammer

power randomization strategy is very effective in degrading

the outage performance over these regions. For example, when

m = 4 and ω = 0.4, the outage probability under constant

power jamming is 0.0103, whereas the outage probability can

be increased up to 0.1942 via the optimum jammer power

randomization. Also noted from the figure is that the jammer

power randomization strategy is more effective for higher

values of m which indicates less severe fading conditions.

2) Fading over only Transmitter-Receiver Channel: Similar

to the previous case, it is possible to construct scenarios in

which the received signal power varies much faster than the

received jammer power (e.g., the jammer and the receiver are

at fixed locations whereas the transmitter is moving). In other

words, we can assume that the channel between the transmitter

and the receiver is subject to fading while the channel between
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Fig. 5. Outage probability versus normalized jammer transmit power for
fixed power jamming (solid lines) and optimum jammer power randomization
(dashed lines) for various values of fading parameter m.

the jammer and the receiver introduces a fixed power gain.

In such cases, the SNR at the receiver can be specified as

γ , (ρh)/(Ω), where ρ denotes the transmitted signal power,

h is the channel power gain between the transmitter and the

receiver, and Ω is the received jammer power. For a target SNR

γ0, the normalized jammer power is defined as ω , (Ωγ0)/ρ
and the corresponding outage probability can be obtained from

Pout(ω) = Pr(γ < γ0) = Pr

(

h <
Ωγ0
ρ

)

= Pr(h < ω) =

∫ ω

0

ph(x)dx . (33)

Differentiating with respect to ω, the first and second deriva-

tives are given as

P′
out(ω) = ph(ω) , and P′′

out(ω) = p′h(ω) , (34)

which indicate that the outage probability is nondecreasing in

the normalized jammer power and the inflection points are

the stationary points of the PDF ph(ω) assuming continuous

differentiability. For Nakagami-m fading with a unit-mean

channel power gain,

p′h(ω) =
mm

Γ(m)
xm−2e−mx ((m− 1)−mω) (35)

implies that the outage probability is concave for m < 1.

Therefore, jammer power randomization would not help de-

grade the outage performance under severe fading. When

m > 1, the outage probability has a single inflection point at

ω̂ = (m−1)/m suggesting that weak jammers can degrade the

outage performance via power randomization in comparison to

the constant power jamming strategy. Similarly for log-normal

shadowing with parameter µ = 0, Pr(h < ω) = Pr(h > ω−1)
and the single inflection point occurs at ω̂ = e−σ2

, which

points out that benefits from power randomization are limited

to a very small interval for high values of σ.

3) Fading over Both Channels: This case can be treated

in an analogous way to that in Section III-D by noting that



the SNR at the receiver is expressed as γ , (ρht)/(Ωhj),
where ht and hj represent the channel power gains from the

transmitter and the jammer to the receiver, respectively. Hence,

same results are valid.

IV. CONCLUDING REMARKS

In this work, we have analyzed the convexity/convavity

properties of the outage probability curve for flat BF-AWGN

channels in terms of the normalized transmitted signal power.

It is shown that when the PDF of the channel power gain is

continuously differentiable with a finite second moment, the

outage probability is nonincreasing with at least one inflection

point and the total number of inflection points is odd. For

the case of a single inflection point, we have shown that the

outage probability can be reduced via the optimum on-off type

transmit power randomization in low transmit power regime.

Examples from commonly adopted shadowing, fading, and

diversity combining models point out significant performance

improvements over the common practice which is restricted

to constant power transmission in the absence of CSI. Similar

studies show that an average power constrained jammer can

degrade the outage performance of the victim communications

system considerably. For cognitive radio and jammer appli-

cations under Nakagami-m fading, sufficient and necessary

conditions are also provided for the nonimprovability of the

outage performance in terms of the fading parameter m, and its

relation to the finite second moment assumption is discussed.

A future work is to investigate the effects of covariance matrix

randomization to minimize the probability of outage for a

given target data rate vector over a fading MIMO channel,

the distribution of which is known to the transmitter.

It should be noted that the proposed power randomization

strategy is optimal when the channel distribution is perfectly

known at the transmitter but additional information about the

instantaneous state of the channel is not available. On the other

hand, if instantaneous CSI is available, the transmitter can

adapt its power accordingly. This type of power adaptation that

utilizes CSI will perform superior to the proposed approach

which relies solely on CDI. Nevertheless, results of this paper

can be extended to variable power transmission strategies that

utilize CSI. Channel fading varies in a continuous manner,

while power adaptation needs to be performed at discrete time

instants. When the channel power is adapted according to the

current state of the channel fading, the transmitter employs

fixed power transmission for a certain period of time (e.g.,

until the next update of the sensed channel statistics). When

the channel state information is not updated frequently, power

randomization can be employed to help improve performance

by partially compensating for the variations in the channel

fading between consecutive updates.
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Research and Development Group. Since 2012, he
has been a postdoctoral research associate at the
Department of Electrical Engineering and Computer
Science, Syracuse University, Syracuse, NY. His
research interests are in statistical signal processing,

detection and estimation theory, and wireless communications.

N. Denizcan Vanli was born on October 22, 1990, in
Nigde, Turkey. He received the B.S. degree with high
honors from Bilkent University, Ankara, Turkey, in
2013. He is currently working towards the M.S. de-
gree in the Department of Electrical and Electronics
Engineering, Bilkent University. His research inter-
ests include statistical signal processing, adaptive
filtering, and machine learning algorithms for signal
processing.



Sinan Gezici (S’03, M’06, SM’11) received the
B.S. degree from Bilkent University, Turkey in 2001,
and the Ph.D. degree in electrical engineering from
Princeton University in 2006. From 2006 to 2007,
he worked at Mitsubishi Electric Research Labora-
tories, Cambridge, MA. Since 2007, he has been
with the Department of Electrical and Electronics
Engineering at Bilkent University, where he is cur-
rently an Associate Professor. Dr. Gezici’s research
interests are in the areas of detection and estimation
theory, wireless communications, and localization

systems. Among his publications in these areas is the book Ultra-wideband
Positioning Systems: Theoretical Limits, Ranging Algorithms, and Protocols
(Cambridge University Press, 2008). Dr. Gezici is an associate editor for IEEE
TRANSACTIONS ON COMMUNICATIONS, IEEE WIRELESS COMMU-
NICATIONS LETTERS, and the Journal of Communications and Networks.

Pramod K. Varshney (S’72, M’77, SM’82, F’97)
was born in Allahabad, India, on July 1, 1952. He
received the B.S. degree in electrical engineering
and computer science (with highest honors), and
the M.S. and Ph.D. degrees in electrical engineering
from the University of Illinois at Urbana-Champaign
in 1972, 1974, and 1976 respectively.

During 1972-76, he held teaching and research as-
sistantships at the University of Illinois. Since 1976
he has been with Syracuse University, Syracuse, NY
where he is currently a Distinguished Professor of

Electrical Engineering and Computer Science and the Director of CASE:
Center for Advanced Systems and Engineering. He served as the Associate
Chair of the department during 1993-96. He is also an Adjunct Professor of
Radiology at Upstate Medical University in Syracuse, NY. His current research
interests are in distributed sensor networks and data fusion, detection and
estimation theory, wireless communications, image processing, radar signal
processing and remote sensing. He has published extensively. He is the author
of Distributed Detection and Data Fusion, published by Springer-Verlag in
1997. He has served as a consultant to several major companies.

While at the University of Illinois, Dr. Varshney was a James Scholar, a
Bronze Tablet Senior, and a Fellow. He is a member of Tau Beta Pi and is the
recipient of the 1981 ASEE Dow Outstanding Young Faculty Award. He was
elected to the grade of Fellow of the IEEE in 1997 for his contributions in
the area of distributed detection and data fusion. He was the guest editor of
the special issue on data fusion of the Proceedings of the IEEE, January
1997. In 2000, he received the Third Millennium Medal from the IEEE
and Chancellor’s Citation for exceptional academic achievement at Syracuse
University. He is the recipient of the IEEE 2012 Judith A. Resnik Award. He
is on the editorial board of Journal on Advances in Information Fusion. He
was the President of International Society of Information Fusion during 2001.


