
IEEE COMMUNICATIONS LETTERS, ACCEPTED FOR PUBLICATION 1

Optimal Detector Randomization in Cognitive Radio Systems in the
Presence of Imperfect Sensing Decisions
Ahmet Dundar Sezer, Sinan Gezici, and Mustafa Cenk Gursoy

Abstract—In this study, optimal detector randomization is
developed for secondary users in a cognitive radio system in the
presence of imperfect spectrum sensing decisions. It is shown
that the minimum average probability of error can be achieved
by employing no more than four maximum a-posteriori proba-
bility (MAP) detectors at the secondary receiver. Optimal MAP
detectors and generic expressions for their average probability
of error are derived in the presence of possible sensing errors.
Also, sufficient conditions are presented related to improvements
due to optimal detector randomization.

Index Terms—Cognitive radio, spectrum sensing, detector
randomization, probability of error.

I. INTRODUCTION

IN cognitive radio systems, spectrum sensing is one of
the crucial tasks to be performed by secondary users in

order to limit the interference to primary users. Therefore,
various spectrum sensing methods have been proposed in
the literature such as matched filtering, energy detection, and
cyclostationary detection [1]. Once secondary users make a
sensing decision, they adapt their communication parameters
accordingly. Specifically, they perform communications when
the channel is sensed as idle (i.e., no primary user activity is
detected), whereas they either do not transmit at all or transmit
at a reduced power when the channel is sensed as busy [1].
In practical systems, sensing decisions of secondary users are
never perfect; hence, there can be cases in which the sensing
decision is idle (busy) but primary user activity actually exists
(does not exist). In most of the studies in the literature,
communications systems of secondary users are designed
independently of the sensing decision, or, the sensing decisions
are considered as perfect. However, the optimal design of sec-
ondary systems requires the consideration of imperfect sensing
decisions. In [2], interactions between spectrum sensing and
channel estimation are studied, and the dependence of channel
estimators on sensing decisions is investigated. In addition, an
approach is proposed in [3] to perform spectrum sensing and
data transmission simultaneously for optimizing the sensing
time and the throughput of the secondary system.

In this study, the aim is to design the optimal secondary
communications system in the presence of detector random-
ization by taking imperfect channel sensing decisions into
account. Detector randomization is a technique to employ
multiple detectors at the receiver with certain probabilities
(certain fractions of time) [4], [5]. By adapting the trans-
mitted power level according to the employed detector at
the receiver, performance improvements can be achieved via
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detector randomization (i.e., via switching between multiple
transmit power-detector pairs). As investigated in [4], [5],
benefits of detector randomization are observed commonly
in non-Gaussian channels. By noting that secondary users in
cognitive radio systems experience non-Gaussian channels in
practice due to imperfect sensing decisions, we propose the
use of detector randomization for the design of secondary
communications systems. The main contributions of this study
are as follows: (i) Detector randomization is studied for
cognitive radio systems for the first time; (ii) optimal detector
randomization is developed in the presence of imperfect
sensing decisions; (iii) optimal MAP detectors are derived
and generic probability of error expressions are obtained in
the presence of possible sensing errors.

II. OPTIMAL DETECTOR RANDOMIZATION IN THE

PRESENCE OF CHANNEL SENSING ERRORS

Consider a cognitive radio system in which secondary users
first sense the channel in order to identify whether the channel
is being utilized by primary users. Let H0 and H1 represent
the hypotheses that correspond to the absence and presence of
primary user activity, respectively. In addition, let Ĥ1 denote
the event in which the secondary user decides that primary
user activity exists in the channel; i.e., declares H1 as the true
hypothesis. Similarly, let Ĥ0 denote the event in which H0 is
declared as the true hypothesis by the secondary user. Note
that the true underlying hypothesis can be either H0 or H1.

After the channel sensing phase, cognitive secondary users
start digital communications. Specifically, the secondary trans-
mitter sends information carrying signals to the secondary
receiver in a certain manner depending on the channel sensing
decision. It is assumed that the secondary radio channel is
subject to slow frequency-flat fading. Then, depending on the
channel sensing decision and the true state of the channel
(i.e., the presence and absence of primary user activity), the
following four scenarios exist:

(H1, Ĥ1) : x = h
√
P1 d+ n+ s (1)

(H1, Ĥ0) : x = h
√
P0 d+ n+ s (2)

(H0, Ĥ1) : x = h
√
P1 d+ n (3)

(H0, Ĥ0) : x = h
√
P0 d+ n (4)

where (Hi, Ĥj) denotes the scenario in which the sensing
decision is Ĥj while the true hypothesis is Hi, and Pi denotes
the power level of the information symbol when the sensing
decision is Ĥi.1 Also, x is the observation at the receiver of
the secondary user, h denotes the fading coefficient in the
channel between the secondary transmitter and receiver, n
denotes the zero-mean complex Gaussian noise with variance

1For the theoretical investigations in this study, we consider generic values
for P0 and P1. For example, if no secondary communication is performed
when the channel is sensed as busy, then we can set P1 = 0.
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Fig. 1. Basedband model of the communications system for the secondary
users. The secondary transmitter generates a signal, the power Pi of which
is determined according to the PDF fPi

for i ∈ {0, 1}. The information
signal,

√
Pi d is multiplied with the complex channel coefficient h, and it is

corrupted by additive noise n. Also, if primary users exist, their faded signals,
denoted by s, interfere with the desired signal.

σ2
n, s is the sum of the faded primary users’ signals arriving

at the secondary receiver, and d denotes the complex infor-
mation symbol. Without loss of generality, it is assumed that
E{|d|2} = 1. Considering M -ary modulation, the complex in-
formation symbol d takes values from set {d0, d1, . . . , dM−1}.
Furthermore, it is assumed that the channel coefficient h is
known at the secondary receiver; i.e., channel estimation is
performed perfectly before the communications start.

It is noted that in the presence of primary user activity, the
additive disturbance is noise plus the primary users’ received
sum signal, i.e., n+ s, as in (1) and (2), while only additive
noise is present when the channel is not occupied by the
primary users. Since errors are possible in channel sensing, the
true state of the channel (busy or idle) and consequently the
statistics of the additive disturbance are not perfectly known
by the secondary receiver. Hence, the optimal communication
system needs to be designed in the presence of such sensing
errors and ambiguities.

We consider a secondary communications system as in
Fig. 1, where the secondary transmitter can randomize the
power levels, P0 and P1 in (1)-(4), and the secondary receiver
can perform a corresponding randomization (time-sharing)
among multiple MAP detectors. The power levels P0 and P1

are generated according to PDFs fP0 and fP1 , respectively,
depending on the sensing decision. It is assumed that for
each possible power level used by the secondary transmitter,
the secondary receiver can employ the corresponding optimal
MAP detector for that power level. Hence, there exist as many
MAP detectors at the secondary receiver as the number of
different transmit power levels. Although we start with such
a generic formulation in order to obtain the optimal error
performance that can be achieved by the secondary system, we
show in the following that no more than four MAP detectors
are necessary for obtaining the overall optimal solution.

Remark 1: MAP detectors are employed in Fig. 1 since
they minimize the average probability of error among all
possible detectors. �

Based on the formulation in (1)-(4) and the system model
in Fig. 1, the aim is to find the optimal power distributions for
P0 and P1 in order to minimize the average error probability
of the secondary system under the following average and peak
power constraints:

E{Pi} ≤ Pav,i and Pi ≤ Ppk,i for i ∈ {0, 1} (5)

where Pav,i and Ppk,i are the limits on the average and peak
powers, respectively. Note that the average power constraints

in (5) also imply limits on the average transmit power at the
secondary transmitter and on the average interference power
to primary users.

Let Pe,i denote the average probability of error for the
secondary receiver when the sensing decision is Ĥi, where
i ∈ {0, 1}. Then, the proposed optimal detector randomization
problem can be formulated under the constraints in (5) as
follows:

min
fP0 , fP1

Pr{Ĥ0}Pe,0 + Pr{Ĥ1}Pe,1

subject to E{Pi} ≤ Pav,i , Pi ≤ Ppk,i for i ∈ {0, 1} .
(6)

where Pr{Ĥi} is the probability that the sensing decision is
Ĥi, and fPi denotes the PDF of the power parameter Pi for
i ∈ {0, 1}.

Due to the structure of the optimization problem in (6), the
optimal power distributions can be obtained separately for P0

and P1 as follows:

min
fPi

Pe,i subject to E{Pi} ≤ Pav,i , Pi ≤ Ppk,i (7)

for i ∈ {0, 1}. In order to obtain a solution of the optimization
problem in (7), Pe,i is evaluated for optimal MAP detectors
in the following proposition (cf. Remark 1).

Proposition 1: Consider a scenario in which the sensing de-
cision is Ĥi. Suppose that the secondary transmitter employs a
power randomization strategy according to PDF fPi , and the
secondary receiver employs the corresponding randomization
of MAP detectors. Then, Pe,i in (7) can be expressed as

Pe,i = 1− E{φi(Pi)} (8)

with

φi(Pi) �
∫

max
l∈{0,1,...,M−1}

{
Pr{dl}

(
Pr{H0|Ĥi}f(x|dl, Ĥi,H0)

+ Pr{H1|Ĥi}f(x|dl, Ĥi,H1)
)}

dx (9)

where Pr{dl} is the prior probability of information symbol
dl, Pr{Hj |Ĥi} is the conditional probability of Hj when
the sensing decision is Ĥi, and f(x|dl, Ĥi,Hj) denotes the
conditional PDF of observation x when information symbol
dl is sent, the sensing decision is Ĥi and the true hypothesis
is Hj .

Proof: When the sensing decision is Ĥi, the following MAP
decision rule is employed in order to estimate the information
symbol for a given value of Pi :

d̂ = dk where k = arg max
l∈{0,1,...,M−1}

Pr{dl|x, Ĥi} . (10)

Then, the following manipulations can be performed to derive
alternative expressions:

k = arg max
l∈{0,1,...,M−1}

Pr{dl, Ĥi}f(x|dl, Ĥi) (11)

= arg max
l∈{0,1,...,M−1}

Pr{dl}f(x|dl, Ĥi) (12)

= arg max
l∈{0,1,...,M−1}

Pr{dl}
(
Pr{H0|Ĥi}f(x|dl, Ĥi,H0)

+ Pr{H1|Ĥi}f(x|dl, Ĥi,H1)
)

(13)

where (11) is obtained from (10) based on Bayes’ rule, (12)
follows from the independence of dl and Ĥi, and (13) is
obtained by conditioning on the true hypotheses.
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When the sensing decision is Ĥi, the average probability of
error for a given value of Pi can be expressed as follows:

Pe,i(Pi) = 1−
M−1∑
l=0

Pr{dl}Pr{d̂ = dl|dl, Ĥi} (14)

= 1−
M−1∑
l=0

Pr{dl}
∫
Γl,i

f(x|dl, Ĥi) dx (15)

= 1−
M−1∑
l=0

∫
Γl,i

Pr{dl}
(
Pr{H0|Ĥi}f(x|dl, Ĥi,H0)

+ Pr{H1|Ĥi}f(x|dl, Ĥi,H1)
)
dx (16)

where Γl,i denotes the decision region for symbol l
of the MAP decision rule corresponding to sensing
decision Ĥi. Based on (13), Γl,i is specified as the set
of x for which Pr{dl}(Pr{H0|Ĥi}f(x|dl, Ĥi,H0) +
Pr{H1|Ĥi}f(x|dl, Ĥi,H1)) ≥ Pr{dm}(Pr{H0|Ĥi}
f(x|dm, Ĥi,H0) + Pr{H1|Ĥi}f(x|dm, Ĥi,H1)), ∀m �= l.
Therefore, (16) can be stated as

Pe,i(Pi) = 1−
∫

max
l∈{0,1,...,M−1}

{
Pr{dl}

(
Pr{H0|Ĥi}

× f(x|dl, Ĥi,H0) + Pr{H1|Ĥi}f(x|dl, Ĥi,H1)
)}

dx.
(17)

Since the expression in (17) is conditioned on a given value of
Pi, the average probability of error for a power randomization
strategy corresponding to PDF fPi can be expressed as the
expectation of (17), which results in

Pe,i =

∫
fPi(t)Pe,i(t) dt = 1− E{φi(Pi)} (18)

where φi(Pi) is as defined in (9).2 �
Proposition 1 provides an explicit expression for the average

probabilities of error under both sensing decisions when a
generic power randomization strategy (denoted by fP0 or fP1)
and the corresponding MAP detectors are employed as shown
in Fig. 1. Based on the proposition (specifically, based on
the expression in (8)), the optimal detector randomization
problems in (7) can be formulated for i ∈ {0, 1} as

max
fPi

E{φi(Pi)} subject to E{Pi} ≤ Pav,i , Pi ≤ Ppk,i.

(19)

Although it is challenging to obtain a closed-form solution
for the optimal fPi in (19), the form of an optimal solution
can be obtained based on the arguments similar to those in
[6]. Specifically, when φi’s are continuous functions and Pi’s
take values from finite closed intervals (i.e., [0, Ppk,i] ), it can
be shown that an optimal solution to (19) lies at the boundary
of the convex hull of set U , which is defined as the set of all
possible (Pi, φi(Pi)) pairs [6]. Therefore, from Carathéodory’s
theorem [7], an optimal solution can be obtained as the convex
combination of at most two different pairs from set U . Hence,
an optimal solution to (19) can be expressed in the form of

fopt
Pi

(Pi) = λi δ(Pi − Pi,1) + (1− λi) δ(Pi − Pi,2) , (20)

for i ∈ {0, 1}, where Pi,1 and Pi,2 are power values within

2The dependence of φi(Pi) in (9) on the value of Pi is through the
conditional PDFs f(x|dl, Ĥi,H0) and f(x|dl, Ĥi,H1) (please see (1)-(4)).

[0, Ppk,i], λi ∈ [0, 1], and δ(·) denotes the Dirac delta function.
The form of the optimal solution in (20) implies that,

for each sensing decision, the secondary transmitter should
perform randomization between at most two different power
levels and the secondary receiver needs to perform correspond-
ing detector randomization between at most two different
MAP detectors. Therefore, the secondary receiver illustrated in
Fig. 1 should implement at most four different MAP detectors
considering the two possible sensing decisions, which are the
absence (Ĥ0) and presence (Ĥ1) of primary users.

Based on the expression in (20), the solutions of the opti-
mization problems in (19) can be obtained from the following
formulation:

max
λi,Pi,1,Pi,2

λi φi(Pi,1) + (1− λi)φi(Pi,2)

subject to λi Pi,1 + (1− λi)Pi,2 ≤ Pav,i , λi ∈ [0, 1] (21)

Pi,1 ∈ [0, Ppk,i] , Pi,2 ∈ [0, Ppk,i]

for i ∈ {0, 1}. Compared to (19), the problems in (21) are
easier to solve since they require a search over three scalar
parameters instead of a search over all possible PDFs.

III. PERFORMANCE EVALUATION AND CONCLUSIONS

In order to investigate the error performance of the optimal
detector randomization approach in the previous section, con-
sider a scenario in which noise n in (3) and (4) is modeled as
zero-mean, circularly symmetric, complex Gaussian noise, and
the sum of faded primary signal and noise, s+ n, in (1) and
(2) is modeled as a mixture of complex Gaussian components
each with independent real and imaginary parts having equal
variances. That is, the PDFs of n and s+n � ε are expressed,
respectively, as

pn(x) =
1

πσ2
n

exp

(
−|x|2

σ2
n

)
, (22)

pε(x) =

Nm∑
j=1

νj
πσ2

j

exp

(
−|x− μj |2

σ2
j

)
(23)

where σ2
n is the variance of noise n, Nm is the number

of Gaussian components in the mixture ε, μj and σ2
j are,

respectively, the mean and the variance of the jth component
in the mixture, and

∑Nm

j=1 νj = 1 with νj ≥ 0, ∀j.
The main motivation for employing the Gaussian mixture

model in (23) is that the sum of noise and interference from
primary users can accurately be modeled by a non-Gaussian
random variable as discussed, e.g., in [8]. In addition, the
Gaussian mixture model in (23) is quite generic since it
can model various probability density functions via suitable
selection of its parameters.

For the simulations, the receiver is assumed to have perfect
channel state information (CSI), and h in (1)-(4) is set to 1
without loss of generality. In addition, Pr{H0} = 0.75 and
Pr{H1} = 0.25 are employed.

In order to quantify the improvements achieved via the pro-
posed optimal detector randomization approach, the following
approaches are considered as well.

Optimal Single Detector in the Presence of Channel
Sensing Errors: In this case, no detector randomization is
employed, and the optimal MAP detector is obtained by taking
the channel sensing errors into account. As this scenario is a
special case of the one in Section II when there is only a
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Fig. 2. Average probability of error versus 1/σ2 and versus Pf =
Pr{Ĥ1|H0} for different approaches.

single detector, the optimal power values can be obtained as
(cf. (19))

max
Pi

φi(Pi) subject to Pi ≤ min{Pav,i, Ppk,i} (24)

for i ∈ {0, 1}, and the resulting conditional probabilities of
error can be calculated from 1 − φi(P

∗
i ) (cf. (8)), where P ∗

i

denotes the maximizer of (24).3 The following proposition
presents sufficient conditions [9] for this approach to have the
same error performance as optimal detector randomization:

Proposition 2: Define Pmax,i = max{Pav,i, Ppk,i}. The
problems in (21) and (24) achieve the same maximum value
if at least one of the conditions holds:

• φi(P ) is a concave function for P ∈ [0, Pmax,i].
• arg max

P∈[0,Pmax,i]

φi(P ) ≤ min{Pav,i, Ppk,i}.

Detector Randomization Assuming Perfect Sensing: In
this scenario, the secondary receiver assumes that the sensing
decision is perfect (i.e., does not take channel sensing errors
into account), and designs the optimal MAP detectors and the
detector randomization factors according to the signal models
in (1) and (4).4 (This approach is called suboptimal detector
randomization in the following.)

Single Detector Assuming Perfect Sensing: In this case,
the secondary receiver assumes that the sensing decision
is perfect, and performs MAP detector design without any
detector randomization; i.e., employs a single detector. (This
approach is called suboptimal single detector in the following.)

Consider binary phase-shift keying (BPSK), where d ∈
{−1, 1} with equal priors, and assume that the power levels
are limited by the peak power constraint which is set as
Ppk,i = 3 for i ∈ {0, 1}. In Fig. 2, the average probabil-
ities of error are plotted for the four approaches described
above, where σ2 = σ2

n = σ2
j ∀j in (22) and (23), and

the parameters of the complex Gaussian mixture in (23) are
given by Nm = 3, μ = [μ1 μ2 μ3] = [−1 0 1], and
ν = [ν1 ν2 ν3] = [0.25 0.5 0.25]. Also, the average power
limits Pav,0 and Pav,1 in (5) are set to Pav,0 = 1.3 and
Pav,1 = 0.4, and Pr{Ĥ1|H1} = 0.9. In the figure, the

3For practical cases, min{Pav,i, Ppk,i} = Pav,i in (24).
4The solution for this approach can be obtained similarly to Proposition 1

and (21), which is not presented here due to the space limitation.

TABLE I
SOLUTIONS FOR OPTIMAL SINGLE DETECTOR AND OPTIMAL DETECTOR

RANDOMIZATION APPROACHES.

1/σ2 Single Detector Detector Randomization
(dB) P∗

0 P∗
1 λ∗

0 P∗
0,1 P∗

0,2 λ∗
1 P∗

1,1 P∗
1,2

2 1.300 0.400 1 1.300 N/A 1 0.400 N/A
6 1.300 0.400 1 1.300 N/A 1 0.400 N/A
10 1.300 0.400 1 1.300 N/A 1 0.400 N/A
14 1.300 0.400 0.062 0.818 1.332 0.395 0.079 0.610
18 1.300 0.070 0.318 0.685 1.586 0.380 0.069 0.603
22 0.617 0.065 0.315 0.616 1.614 0.354 0.065 0.583
25 0.591 0.064 0.301 0.590 1.606 0.341 0.064 0.574

average error probabilities are plotted both versus 1/σ2 (for
Pf = Pr{Ĥ1|H0} = 0.1) and versus Pf (for σ = 0.1). Please
note that the x-axis labels are at the bottom and top for 1/σ2

and Pf , respectively. It is observed that the optimal detector
randomization approach achieves the lowest average proba-
bilities of error among all the approaches for all Pf and for
reasonably low values of σ2 (namely, when 1/σ2 is larger than
10 dB, which correspond to practical error rates.) Also, the
optimal single detector and suboptimal detector randomization
algorithms can have various amounts of improvements over
the suboptimal single detector approach in different scenarios
(e.g., 1/σ2 = 16 dB and 1/σ2 = 22 dB). It is also concluded
that improvements obtained via the consideration of possible
sensing errors become significant in the presence of high
sensing error probability (high Pf in this example).

In Table I, the solutions of the optimal single detector and
optimal detector randomization approaches are presented for
the scenario in Fig. 2 (i.e., for Pf = 0.1). The solution of
the optimal single detector approach, which is obtained from
(24), is denoted by P ∗

0 and P ∗
1 , which correspond to the

optimal power levels employed when the sensing decision is
Ĥ0 and Ĥ1, respectively. On the other hand, the solution of
the optimal detector randomization approach, calculated from
(21), is expressed by λ∗

i , P ∗
i,1, and P ∗

i,2 for i ∈ {0, 1} (please
see (20)). That is, when the sensing decision is Ĥi, the optimal
detector randomization approach employs power levels P ∗

i,1

and P ∗
i,2 for λ∗

i and (1 − λ∗
i ) fractions of time, respectively,

with the corresponding MAP detectors. From the table, it is
observed that the two approaches result in the same solution
for large σ values.

REFERENCES

[1] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for
cognitive radio applications,” IEEE Commun. Surveys and Tutorials,
vol. 11, no. 1, pp. 116–130, 2009.

[2] M. C. Gursoy and S. Gezici, “On the interplay between channel sensing
and estimation in cognitive radio systems,” in Proc. 2011 IEEE Global
Telecommun. Conf.

[3] S. Stotas and A. Nallanathan, “Overcoming the sensing-throughput
tradeoff in cognitive radio networks,” in Proc. 2010 IEEE Int. Conf.
on Commun.

[4] A. Patel and B. Kosko, “Optimal noise benefits in Neyman-Pearson and
inequality-constrained signal detection,” IEEE Trans. Signal Process.,
vol. 57, no. 5, pp. 1655–1669, May 2009.

[5] B. Dulek and S. Gezici, “Detector randomization and stochastic signal-
ing for minimum probability of error receivers,” IEEE Trans. Commun.,
vol. 60, no. 4, pp. 923–928, Apr. 2012.

[6] S. Bayram, S. Gezici, and H. V. Poor, “Noise enhanced hypothesis-
testing in the restricted Bayesian framework,” IEEE Trans. Signal
Process., vol. 58, no. 8, pp. 3972–3989, Aug. 2010.

[7] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1968.
[8] F. Moghimi, A. Nasri, and R. Schober, “Adaptive lp-norm spectrum

sensing for cognitive radio networks,” IEEE Trans. Commun., vol. 59,
no. 7, pp. 1934–1945, July 2011.

[9] H. Soganci, S. Gezici, and O. Arikan, “Optimal stochastic parameter
design for estimation problems,” IEEE Trans. Signal Process., vol. 60,
no. 9, pp. 4950–4956, Sep. 2012.


