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Abstract—In this study, we investigate the use of Gaussian mix-
ture probability hypothesis density (GM-PHD) filters for multiple
person tracking using ultra-wideband (UWB) radar sensors in
an indoor environment. An experimental setup consisting of a
network of UWB radar sensors and a computer is designed,
and a new detection algorithm is proposed. The results of this
experimental proof-of-concept study show that it is possible to
accurately track multiple targets using a UWB radar sensor
network in indoor environments based on the proposed approach.

Index Terms—Multiple person detection, target tracking, PHD
filter, ultra-wideband, radar.

I. INTRODUCTION

W IRELESS sensor networks (WSN) have received
tremendous attention in last decade due to their crit-

ical importance in a wide variety of applications such as
surveillance, and due to the theoretical and practical challenges
they introduce [1], [2]. For indoor scenarios, ultra-wideband
(UWB) sensors can be employed because of their extraordi-
nary resolution and localization precision [3], [4]. There are
also additional advantages of UWB signals such as low power
consumption, low probability of interception, and co-existence
with a large number of devices [5]. For multi-sensor multi-
object tracking applications, UWB is a well-suited technology.
Since UWB signals are characterized by the transmission of
a few nanosecond duration pulses [6]–[9], they have very
high time resolution and localization precision, which make
UWB sensors an ideal equipment for short range radar sensor
network applications [10], [11]. In this study, UWB radar
sensors are employed for detecting and tracking multiple
moving objects in an indoor environment in the context of
passive localization [12]–[17].

Multiple target tracking is a subfield of signal processing
with applications spanning many different engineering disci-
plines [18]. In this subfield of signal processing, the random
finite set (RFS) approach is one of the newest developments
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that provides a general systematic framework for multi-target
systems by modeling the multi-target state as an RFS [19],
[20]. The RFS approach is considered to be a very promising
alternative to handle the multi-target multi-detection associa-
tion problem faced in multi-target tracking applications. The
RFS approach treats the collection of individual measurements
and the individual targets as a set-valued measurement and
set-valued state, respectively. It is shown that the sequential
estimation of multiple targets buried in clutter with associa-
tion uncertainties can be formulized in a Bayesian filtering
framework by modeling set-valued measurements and set-
valued states as RFSs [19]. The probability hypothesis density
(PHD) filter, an approximation of this theoretically optimal
approach to multi-target tracking, propagates the first-order
statistical moment of the RFS of states in time and avoids the
combinatorial data association problem. The dimension of the
PHD filtering is equal to the dimension of the single target
state. Despite its advantages, the recursions of the PHD filter
involve multiple integrals having no closed form solutions.
There are two implementations of the PHD filter; one is
using sequential Monte-Carlo (SMC) method, and the other
one is using Gaussian mixtures (GM). Each implementation
method has its own pros and cons [19]. GM implementation is
very popular since it provides a closed form analytic solution
to PHD recursions under linear Gaussian target dynamics
and measurement models [19]. Moreover, contrary to SMC
implementation, GM implementation provides reliable state
estimates extracted from the posterior intensity in an easier
and efficient way. Alternatively, SMC implementation imposes
no such restrictions and has the ability to handle nonlinear
target dynamics and measurement models. It can be said that
SMC implementation is a more general framework for PHD
recursions. On the other hand, its performance is affected by
different kind of problems in reality [21]–[23]. Therefore, in
general, the GM based approach is easier, effective and more
intuitive.

Multiple target tracking via UWB sensors has been consid-
ered in some studies in the literature. In [24], time of flight
information of the targets is used for tracking via PHD filters.
A single scenario with targets moving in a straight line (no
maneuvers) is considered, and directional horn antennas are
used for powerful signal reception. Each sensor is equipped
with one transmitter and two receivers, which are synchronized
via a digital resonance oscillator. The blind zone problem and
its solution are explained in [25] and new approaches are
developed for this problem in tracking. In [26], multiple person
tracking via UWB radar sensors is performed by utilizing
time variations of the channel impulse response due to the
presence of people between the transmitter and the receiver.
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Background subtraction and constant false alarm rate (CFAR)
algorithms are employed for person detection, and GM-PHD
filter is used for tracking. In a similar study, [27] proposes
an indoor UWB person detection and ranging technique that
does not require any information about the environment and
exploits the temporal variations in the received signal due to
the presence of a person. Finally, in [28], localization of a
passive reflector based on backscattering range measurements
is studied, and theoretical performance bounds are presented.

In this paper, a new approach is developed for multi-target
tracking via a network of UWB radar sensors based on GM-
PHD filtering. A novel detection technique is proposed for
removing a significant part of clutter, which facilitates robust
localization. The performance of the proposed tracking method
shows that multiple targets can be tracked efficiently in an
indoor environment. Although the PHD filtering approach
has been considered for multi-target tracking in [24], the
considered system has high cost and complexity due to the
use of six experimental sensors, each equipped with one
transmitter and two receivers, which employ directional horn
antennas. Also, a single scenario is considered with targets
moving in a straight line without any maneuvers [24]. In our
study, four small off-the-shelf UWB radar sensors produced
by TimeDomain [29] are employed, where each sensor has a
single transmitter and a receiver. Scenarios containing multiple
maneuvering targets are also investigated. In addition, the
proposed approach does not make any specific assumptions
about the environment and positions of the targets. To sum
up, there are two main contributions in this paper: Firstly, we
propose a new detection technique which effectively handles
severe multipath. Secondly, the GM-PHD filter is successfully
used in the tagless multi-person tracking problem using off-
the-shelf UWB radar sensors.

The remainder of the manuscript is organized as follows:
In Section II, sensor and measurement models are presented,
and the proposed detection method is examined in Section III.
Section IV presents the RFS based filtering. The details of
the radar sensors are explained in Section V and Section VI
discuses the experimental results. Finally, conclusions are
given in Section VII.

II. SENSOR AND MEASUREMENT MODEL

Before describing the sensor and measurement models, the
transmitted signal model for the UWB system is given first:

s(t) =

Nf−1∑
j=0

Np∑
i=1

p(t− iTp − jTf ) (1)

where p(t) represents the UWB pulse, Tf is the duration of
a frame, Tp is the duration between UWB pulses in a frame
(which is larger than the pulse duration), Nf is the number of
frames, and Np is the number of pulses in a frame. Signal s(t)
is produced by a UWB transmitter and the reflected signals
are collected by a UWB receiver to determine the distances
between targets and sensors in an indoor environment. In the
process, time-of-arrival (ToA) parameters are estimated from
the incoming signal, and distances corresponding to arriving
signal paths are calculated based on ToA values [6].

In the measurement model, there are a number of (four in
the experiments) UWB radar sensors, which constantly trans-
mit signals, and the reflected signals from moving objects (in

our case single/multiple person(s) in an indoor environment)
are collected by each of these sensors as depicted in Fig. 1.

Fig. 1: Indoor environment with four UWB radar sensors.
Blue signals and red signals represent transmitted and

received signals, respectively.

The output of each sensor is the range measurements related
to moving objects. It is assumed that the locations of the
sensors are known to the fusion center and each sensor sends
its measurements to the fusion center. The state vector of a
target at time k is represented by xk = [xk, yk, ẋk, ẏk]T , where
[xk, yk] is the position, [ẋk, ẏk] is the velocity of the target and
T denotes transpose operation. The target dynamics is modeled
by the nearly-constant-velocity model [30], [31]:

xk = Fxk−1 + vk (2)

where k is the discrete time index, F is the state transition
matrix given as

F =

[
I2 4I2
02 I2

]
(3)

and vk∼ N (v;0,Q) is the white Gaussian process noise, the
covariance matrix of which is expressed as

Q = σ2
v

[
43

3 I2
42

2 I2
42

2 I2 4I2

]
. (4)

In (3) and (4), 4 denotes the sampling interval, σv is the
standard deviation of the process noise, and In, and 0n denote
n × n identity and zero matrices, respectively. This model is
also known as the white-noise-acceleration model due to the
fact that the accelerations along x-direction and y-direction
are modeled as white noise. Note that the word “nearly” used
in name of the model, nearly-constant-velocity model, implies
that these accelerations are actually small [30]. This model
is simple, widely used, very appropriate for indoor tracking
applications (i.e., in indoor areas, the motion of a target
is constrained by the structured corridors and rooms), and
effectively handles random maneuvers [32]– [34]. Moreover,
by changing the value of the process noise standard deviation,
σv, one can adjust the acceleration noise intensity and can
handle target maneuvers up to a certain level.

Range measurements are collected by each sensor in the
area. The measured range value by the i-th sensor located at
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[xi, yi] is given by

hi(xk) =

√
(xk − xi)2 + (yk − yi)2 + εk,i (5)

for i = 1, . . . , Ns, where Ns is the number of sensors and
εk,i is measurement noise in sensor i, which is modeled as
εk,i ∼ N (ε; 0, σ2

ε).
The Jacobian of hi(xk), Hk,i, to be used in the filtering

equations, is obtained as follows:

Hk,i =
[

∂hi(xk)
∂xk

∂hi(xk)
∂yk

∂hi(xk)
∂ẋk

∂hi(xk)
∂ẏk

]
(6)

where the elements are expressed as

∂hi(xk)

∂xk
=

xk − xi√
(xk − xi)2 + (yk − yi)2

(7)

∂hi(xk)

∂yk
=

yk − yi√
(xk − xi)2 + (yk − yi)2

(8)

∂hi(xk)

∂ẋk
= 0 (9)

∂hi(yk)

∂ẏk
= 0 (10)

III. RANDOM FINITE SETS (RFS) BASED FILTERING

The RFS framework for multiple target tracking proposed
by Mahler combines the problems of combinatorial data
association, detection, classification and target tracking within
a unified compact Bayesian paradigm [19]. In the following
subsections, the basic RFS notation, multiple target general-
ization of the Bayes filter and its first order approximation
PHD filter are described.

A. RFS Formulation
The RFS approach treats the collection of the individual

targets and individual measurements as a set-valued state and
set-valued measurement, respectively, as

Xk = {xk,1, ...,xk,M(k)} ∈ F(X ) (11)
Zk = {zk,1, ..., zk,N(k)} ∈ F(Z) (12)

where M(k) is the number of targets at time k, N(k) is the
number of measurements at time k, F(X ) and F(Z) are
the set of all possible finite subsets of state space X and
measurement space Z , respectively. An RFS model for the
time evolution of a multi-target state Xk−1 at time k − 1 to
the multi-target state Xk at time k is defined as

Xk =

 ⋃
ζ∈Xk−1

Sk|k−1(ζ)

 ∪ Γk (13)

where Sk|k−1(ζ) is the RFS of surviving targets from previous
state ζ at time k and Γk is the RFS of spontaneous target births
at time k. The RFS measurement model for a multi-target state
Xk at time k can be written as

Zk = Kk ∪

[ ⋃
x∈Xk

Θk(x)

]
(14)

where Kk is the RFS of clutter or false measurements, and
Θk(x) is the RFS of multi-target state originated measure-
ments, which can take values of either zk if target is detected,
or ∅ if no target is detected.

B. Multi-target Filtering
Having very briefly summarized some key points of the

RFS framework, we can define the RFS based multi-target
Bayes filter. The optimal multi-target Bayes filter propagates
the multi-target posterior density pk(·|Z1:k) conditioned on
the sets of measurements up to time k, Z1:k, in time with the
following recursion:

pk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|X)pk−1(X|Z1:k−1)δX

(15)

pk(Xk|Z1:k) =
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫
gk(Zk|X)pk|k−1(X|Z1:k−1)δX

(16)

where fk|k−1 is the multi-target transition density, gk(Zk|Xk)
is the multi-target likelihood and the integrals are set integrals
as defined in [19]. The multi-target Bayes recursion involves
multiple integrals and the complexity of computing it grows
exponentially with the number of targets. Therefore, it is not
practical for scenarios where there exist more than a few
targets.

C. The Probability Hypothesis Density (PHD) Filter
To alleviate the computational burden in calculating the op-

timal filter given above, the PHD filter was proposed as a prac-
tical suboptimal alternative [19]. The PHD filter propagates
the first-order statistical moment of the posterior multi-target
state, instead of propagating the multi-target posterior density.
Let the intensities associated with the multi-target posterior
density pk and the multitarget predicted density pk|k−1 in the
optimal multi-target Bayes recursion be represented by vk and
vk|k−1, respectively. Then, the PHD recursion is defined as

vk|k−1(x) =

∫
psfk|k−1(x|ζ)vk−1(ζ)dζ + γk(x) (17)

vk(x) = (1− pD)vk|k−1(x) (18)

+
∑
z∈Zk

pD gk(z|x) vk|k−1(x)

κk(z) +
∫
pD gk(z|ξ)vk|k−1(ξ)dξ

where ps is the probability of target survival, γk(x) is the
intensity of spontaneous birth RFS at time k, pD is the
probability of target detection and κk(z) is the intensity of
clutter RFS at time k.

As mentioned before, PHD filters can be implemented
either by using GM [35] or SMC [36]–[38] based methods.
In the next section, we describe the main steps of the GM
implementation.

IV. THE GAUSSIAN MIXTURE PHD (GM-PHD) FILTER

The closed-form solution to the PHD filter, called the
Gaussian mixture PHD (GM-PHD), is originally derived for
linear Gaussian multi-target models, since it makes use of
the Kalman filter to propagate the mean and covariance of
each Gaussian [39]. In addition, to accommodate nonlinear
dynamics and measurement models, several different nonlinear
extensions of the GM-PHD are also proposed in the literature
[40], [41]. These nonlinear extensions of the GM-PHD filter
have successfully been used in many different applications, in
which nonlinear target dynamics and measurement models are
employed [42]– [48]. In this work, in order to accommodate
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nonlinear Gaussian models, an adaptation of the GM-PHD
filter (called as EK-PHD) is employed based on the idea of
extended Kalman filter (EKF), where the local linearization of
the nonlinear measurement function h(x) (i.e., Hk defined in
(6)) is used [39]. We use this adaptation approach to handle
the nonlinearities in the measurement model in (5).

There are several assumptions used in the GM-PHD recur-
sions. The first one is that each target follows a linear Gaussian
dynamical and measurement model:

fk|k−1(x|ζ) = N (x;Fζ,Qk−1) (19)

gk(z|x) = N (z;Hkx, σ
2
ε). (20)

Secondly, the detection and survival probabilities are state and
time independent; that is, pD,k(x) = pD and pS(x) = pS .
Lastly, the intensity of the birth RFSs is Gaussian mixture of
the form

γk(x) =

Jγ,k∑
i=1

w
(i)
γ,kN (x;m

(i)
γ,k,P

(i)
γ,k) (21)

where Jγ,k, w(i)
γ,k, m(i)

γ,k and P
(i)
γ,k are the given model param-

eters that determine the birth intensity. The posterior intensity
at time k−1 can be written as a sum of Gaussian components
with different weights, means and covariances as

vk−1(x) =

Jk−1∑
i=1

w
(i)
k−1N

(
x;m

(i)
k−1,P

(i)
k−1
)

(22)

and an identifying label `ik−1 is assigned to each created
Gaussian component. A label table, Lk−1, is formed as

Lk−1 =
{
`
(1)
k−1, ..., `

(Jk−1)
k−1

}
. (23)

At time k, the predicted intensity is also a Gaussian mixture:

vk|k−1(x) = vS,k|k−1(x) + γk(x) (24)

where

vS,k|k−1(x) = pS

Jk−1∑
j=1

w
(j)
k−1N (x;m

(j)
S,k|k−1,P

(j)
S,k|k−1) (25)

m
(j)
S,k|k−1 = Fm

(j)
k−1 (26)

P
(j)
S,k|k−1 = Qk−1 + FP

(j)
k−1F

T (27)

Each birth component is assigned a new label and concate-
nated with the previous time labels, i.e.,

Lk|k−1 = Lk−1 ∪ Lγ,k−1 . (28)

The posterior intensity at time k is also a Gaussian mixture
and can be written as

vk(x) = (1− pD,k)vk|k−1(x) +
∑
z∈Zk

vD,k(x; z) (29)

where

vD,k(x; z) =

Jk|k−1∑
j=1

w
(j)
k (z)N (x;m

(j)
k|k(z),P

(j)
k|k) (30)

w
(j)
k (z) =

pD w
(j)
k|k−1q

(j)
k (z)

κk(z) + pD
∑Jk|k−1

l=1 w
(l)
k|k−1q

l
k(z)

(31)

qjk(z) = N (z;Hkm
(j)
k|k−1, σ

2
ε+HkP

(j)
k|k−1H

T
k ) (32)

m
(j)
k|k(z) = m

(j)
k|k−1 + K

(j)
k (z −Hkm

(j)
k|k−1) (33)

P
(j)
k|k = [I−K

(j)
k Hk]P

(j)
k|k−1 (34)

K
(j)
k = P

(j)
k|k−1H

T
k (HkP

(j)
k|k−1H

T
k + σ2

ε)−1 (35)

There will be |Zk|+1 Gaussian components for each predicted
term, where |·| is the cardinality of a set. Then, the identifying
label at time k is

Lk = Lvk|k−1

k|k−1 ∪ L
z1
k|k−1 ∪ ... ∪ L

z|Zk|
k|k−1 . (36)

As time progresses, the number of Gaussian components
increases and computational problems occur. To alleviate
this problem, a simple pruning and merging can be used
to decrease the number of Gaussian components propagated
[35]. Firstly, the weights below a predefined threshold are
eliminated. Then, the closely spaced Gaussian components are
merged into a single Gaussian component. Starting with the
strongest weighted component, wjk, components are merged in
a set W (j)

k as

W
(j)
k :=

{
i : (m

(i)
k −m

(j)
k )T (P

(i)
k )−1(m

(i)
k −m

(j)
k ) ≤ ρ

}
(37)

and the resulting merged component parameters are

w̃
(l)
k =

∑
i∈W

w
(i)
k (38)

m̃
(l)
k =

1

w̃
(l)
k

∑
i∈W

w
(i)
k x

(i)
k (39)

P̃
(l)
k =

1

w̃
(l)
k

∑
i∈W

w
(i)
k (P

(i)
k + (m̃

(l)
k −m

(i)
k )(m̃

(l)
k −m

(i)
k )T )

(40)

In order to extract multi-target states, the means of the
Gaussian components that have weights greater than some
predefined threshold, are selected:

L̂k =
{
L(i)
k : w

(i)
k > ρ

}
(41)

and the estimated target states set is expressed as

X̂k =
{

(m
(i)
k ,P

(i)
k ) : L(i)

k ∈ L̂k
}
. (42)

V. UWB RADAR SENSORS

In the experiments, four UWB radar sensors named P410
Monostatic Radar Module (MRM) are used [29]. P410 MRM,
shown in Fig. 2, is a small and affordable monostatic radar
platform that provides more than 2 GHz of RF bandwidth at
a center frequency of 4.3 GHz. Each radar sensor is equipped
with an UWB transmitter and an UWB receiver. The radar
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Fig. 2: P410 MRM with attached broadspec antennas [29].

sensors use different code channels in order to prevent inter-
ference among the sensors. In addition, for reducing the effects
of severe multipaths at the receiver, there is an environment
scanning phase for a 30 ns duration, which is used as a
reference for determining signals reflected from non-stationary
objects. The UWB pulses are sent from the radar sensors
at every 0.1 second by the transmitter (TX) antenna and all
reflected signals are collected by the receiver (RX) antenna.
P410 MRM UWB sensors provide four types of information;
raw signal, bandpass signal, motion filtered signal, and detec-
tion list. In some cases, the motion filtered data and detection
lists may not be sufficient to detect the targets accurately
since there can be many unnecessary measurements (due to
the very high resolution of UWB signals) that are originated
from the reflections from other equipments or objects in the
environment. Therefore, we use the bandpass data (see Fig. 3
for an example) in our algorithm in order to eliminate clutter,
and then obtain the motion filtered data, as explained in the
next section. Fig. 4 presents an example of motion filtered data
when a person is present in the environment.
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Fig. 3: Bandpass signal.

VI. PROPOSED DETECTION/TRACKING ALGORITHM

In order to perform accurate detection and tracking of mul-
tiple persons via UWB radar sensors, the following algorithm
is proposed. The input to the algorithm is the bandpass signal
sets from the UWB radar sensors. Fig. 3 illustrates an example
of bandpass signal at an arbitrary time stamp. After getting the
bandpass signal sets from the radar sensors, the start time (ts)
and stop time (tf ) of the experiment are calculated. In total,

Nd sets of measurements are obtained from the sensors, where
Nd is given by

Nd =
tf − ts
Ts

(43)

with Ts representing the sampling period of the signal set,
which is equal for all sensors. The bandpass signal set is
filtered by a motion filter in order to mitigate the effects of
the signals coming from stationary objects in the environment.
The following motion filtering method is employed:

mi
k[n] = h[1]rik[n] + h[2]rik[n− 1]

+ h[3]rik[n− 2] + h[4]rik[n− 3] (44)

for i ∈ {1, . . . , 4} and k ∈ {1, . . . , Nd}, where rik[n]
represents the bandpass signal of the ith radar sensor for
the kth measurement set, h[n] denotes the coefficients of the
motion filter with values [1 −0.6 −0.3 −0.1], and Nd is the
number of measurement sets as defined in (43). In other words,
for each measurement set and for each sensor, the motion
filter in (44) is applied to the bandpass signal, and the motion
filtered signal mi

k[n] is generated. The peaks of the motion
filtered signal correspond to possible target distances as can
be observed from Fig. 4.
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Fig. 4: Motion filtered data.

Next, each motion filtered signal is divided into (Nb) blocks
as follows:

mi
k,j [n] = mi

k[n+ (j − 1)K], n = 1, . . . ,K (45)

for j ∈ {1, . . . , Nb}, where K is the number of samples in
each block, which is considered as constant.1 An example
illustration is presented in Fig. 5, where Nb = 5. The aim of
dividing the motion filtered signal into blocks is to increase
both the efficiency and the speed of the proposed algorithm,
which can be justified as follows. Due to the very high time
resolution of UWB signals, there exist many peaks in the
motion filtered signal, most of which are originated from
the same targets (that is, each moving object/person results
in many peaks in the motion filtered signal). In order to
determine the number of targets accurately (hence, to track

1For simplicity of notation, the size of signal mi
k[n] is assumed to be

an integer multiple of K. Extensions in the absence of this assumption are
straightforward.
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them efficiently), only a few significant motion filter peaks
should be considered, which is facilitated by the proposed
block operation in (45) (and the energy thresholding technique
explained below). This operation also increases the speed of
the algorithm since a smaller set of measurements are input to
the tracking part of the algorithm. The number of blocks, Nb,
is an important parameter, which should be selected according
to the number of expected targets in the environment. As
the number of targets increases, Nb should be set to a larger
number.
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Fig. 5: Blocks of motion filtered signal.

Once the motion filtered signal is divided into blocks, the
average strength of each block is calculated as follows:

Eik,j ,
1

K

K∑
n=1

∣∣mi
k,j [n]

∣∣ (46)

for j ∈ {1, . . . , Nb}, i ∈ {1, . . . , 4}, and k ∈ {1, . . . , Nd}.
Then, these values are compared to a threshold τi for each
sensor in order to eliminate the blocks that do not contain
signals from the targets. In other words, if the average strength
of a block is below the threshold, then that block is not
considered in the next steps. This process both reduces the
computational complexity and number of detections. If the
average strength of a block is larger than the threshold, then
the sample index of the strongest motion filter output in that
block is converted into distance (meters) and stored into the
measurement vector Zik. Mathematically, for j ∈ {1, . . . , Nb},
if Eik,j > τi, then the sample index

arg max
n∈{1,...,K}

∣∣mi
k,j [n]

∣∣ (47)

is converted into distance and saved into Zik. Therefore, Zik is
a vector with Gik measurements, where Gik ∈ {0, 1, . . . , Nb}
is the number of blocks that satisfy Eik,j > τi.2 Measurements
from all four sensors are collected into measurement set Zk
as in (11); that is, Zk = [Z1

k ;Z2
k ;Z3

k ;Z4
k ]. Then, Zk is input

to the GM-PHD filter described in Section IV, and tracking is
performed. The proposed detection and tracking algorithm is
summarized in Table I.

2If the strengths of all the blocks are below τi, then Zi
k becomes an empty

vector, Zi
k = ∅.

TABLE I: Proposed Algorithm

1: Calculate the number of measurement sets Nd, (43)
2: for k = 1 → Nd do
3: for i = 1 → Qs do
4: Get bandpass signal rik[n] from radar sensors
5: Obtain motion filtered signal mi

k[n], (44)
6: Divide motion filtered signal into blocks as in (45),

and obtain mi
k,j [n] for j = 1, . . . , Nb

7: for j = 1 → Nb do
8: Calculate Ei

k,j in (46)
9: if Ei

k,j is larger than threshold τi then
10: Find sample index of the peak as in (47)
11: Convert the sample index into distance
12: Store the distance into Zi

k
13: end if
14: end for
15: end for
16: Form Zk = [Z1

k ;Z
2
k ;Z

3
k ;Z

4
k ] as in (11)

17: Input Zk to the GM-PHD filter (Section IV)
18: end for

VII. EXPERIMENTAL RESULTS

Experimental results for single and multiple person are
presented in this section. The experiments are performed in
an office room in the Department of Electrical and Elec-
tronics Engineering at Bilkent University. There are many
equipments/objects which can generate multipaths in the office
environment as seen in Fig 6. In the experiments, four P410

Fig. 6: An illustration of the office environment. Four radar
sensors are placed on the chairs.

MRMs are used. In order to reduce the number of detections
and the computational complexity of the algorithm, the number
of blocks is set to six in the algorithm; that is, Nb = 6
(see (45)). The threshold τi in Section VI is set to 12000
(in units of P410 MRM outputs) in order to determine and
eliminate noise only blocks, and the sampling period Ts is
taken as 0.1 second.

The standard deviation of the process noise is taken as
σv = 2 m/s

2 and the standard deviation of the measurement
noise is taken as σε = 0.2 m. The spontaneous birth intensities
are described in the center of the tracking area since the
birth locations are assumed as unknown. Hence, our method
can be applied to any scenario and we do not need to
describe the birth intensities even though the tracking is lost.
In the algorithm, the initial weights which are described in
Section IV as in (21) are taken as wi = 0.1. In pruning
parameters, the truncation threshold for the weights is chosen
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as ρ = 10−6 and the maximum allowable number of Gaussian
terms is taken as 20. In our scenario, the tracking scenario
is not very complicated; hence, this number is set to 20 in
order to have a faster result. However, in complex cases, this
component number can be increased. In addition, clutter is
modeled according to the highest and smallest measurements.
The detected measurements are immersed in clutter that can
be modelled as Poisson RFS Kk with intensity

κk(z) = λcV u(z) (48)

where u(·) is the uniform density over the surveillance region,
V = 12 m2 is the “volume” of the surveillance region, and
λc = 0.417 m−2 is the average number of clutter returns per
unit volume (i.e., 5 clutter returns over the surveillance region).

Our computer has 8 GB RAM and its processor is 3.40 GHz
Intel(R) Core(TM) i7. The proposed approach runs at real-time
and one iteration of the experiment takes approximately 1 s on
the average.

A. Single-Person Tracking Results

In the first set of experiments, we consider the tracking
of one person and study two different scenarios. In the first
scenario (Scenario-1), the person (target) starts from position
(0, 2.5) m. and walks in a straight line until (2.8, 2.5) m. Then,
he turns right and walks until (2.8, 0.5) m. After that, he again
turns right and goes until (0, 0.5) m. The person walks with
a speed of around 0.4 m/s, and the experiment takes about 19
seconds. The results are shown in Fig. 7, where the blue line is
the ground truth of the target path, and the red circles are the
estimates of the proposed algorithm. The width of the person
is about 0.5 m and reflections from different parts of the body,
such as legs, arms, and the center of the body, are received at
different positions due to the high resolution of UWB signals.
Therefore, the blue line is in fact the approximate ground truth
for the path of the person. Therefore, the red circles slightly
digress from the blue line as expected. (The receiver noise and
multipath can also contribute to position estimation errors.)
The differences between the blue line and the red circles are
always smaller than 0.25 m in this scenario, which indicates
that the positions of the person can be estimated accurately by
the proposed algorithm in this case.

The second scenario (Scenario-2) for the single target case
involves a more challenging target path with target maneuvers
in a small area. In this scenario, the target starts to move from
position (0.6, 0.7) m. and comes back to the same position
after following the blue path in Fig. 8. The duration of the
experiment is approximately 29 s. Similar to the previous
experiment, the red circles in Fig. 8 are very close to the real
path and the algorithm performs very well for this difficult
scenario.

In Fig. 9, the detection data obtained from the four UWB
radar sensors are illustrated for the scenario in Fig. 8. As
discussed in Section VI, the indices of the strongest samples
are calculated for the blocks of motion filtered data that have
an average value larger than the threshold. Therefore, in the
figures, the number of points at each time instant indicates
the number of blocks the average strength of which are above
the threshold (equivalently, the number of elements in Zik for
a given time index k and sensor index i; see Section VI).
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Fig. 7: Scenario-1 for single-person tracking. Blue solid line
and red circles represent the ground truth and filter estimates,

respectively. Black squares are for UWB radar sensors.

0 1 2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x−coordinate (m)

y−
co

or
di

na
te

 (
m

)

Sensor 1 Sensor 2

Sensor 3Sensor 4

Fig. 8: Scenario-2 for single-person tracking. Blue solid line
and red circles represent the ground truth and filter estimates,

respectively. Black squares are for UWB radar sensors.

The points in the figures are color coded in such a way that
the colors blue, green, red, cyan, and magenta are employed
in the order of increasing distances from the sensors; that is,
the blue and purple points are used for the detection points
that are closest to and furthest away from the given sensor,
respectively. It is observed from Fig. 9 that there are many
non-target detections due to the high time resolution of UWB
signals. However, the proposed approach can successfully
eliminate the clutter and provide accurate tracking results, as
shown Fig. 8.

B. Multi-Person Tracking Results
Next, we consider cases in which multiple persons are walk-

ing. First, we choose to perform controlled experiments for
two persons. The first person starts from the position (3, 3) m.
and the other person starts from the position (0, 1.5) m. The
first person walks until (3, 0) m. and turns right. Then, he
walks until (1, 0) m. His velocity is about 0.3 m/s. The second
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Fig. 9: Range measurements of sensors in the single-person
tracking scenario (Scenario-2). (a) Sensor 1, (b) Sensor 2, (c)

Sensor 3, (d) Sensor 4.
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Fig. 10: Scenario-1 for multiple person tracking. Green and
blue solid lines denote the ground truth of the first and
second person, respectively. Black squares are for UWB

radar sensors.

person walks in a straight line and its velocity is about
0.25 m/s. The experiment takes about 16 seconds. The ground
truths are shown in Fig. 10 with the blue and green lines.
The red circles represent the estimation results and they are
commonly in the range of the human body. Therefore, for
the multiple person case, the algorithm performs well in this
scenario. There are some differences between the single and
multiple person tracking scenarios. For instance, the sensor
measurements are more complicated in the multiple person
case, which can be observed by comparing the sensor data in
Fig. 11 with that in Fig. 9. In particular, when there are a larger
number of detection points (represented by different colors)
for a time instant, target originated detections and clutters are
observed more frequently, which makes person tracking more
challenging.

One of the difficult tracking scenarios is the one shown in
Fig. 12 since there is an occlusion problem as the sensors may
not detect the locations of persons when they are in the same
line. In general, the occlusion problem makes the situation
quite complicated. In this experiment, there are two persons
with the first one starting from (1.25, 0) m. and the second one
from (4, 2) m. The first person goes to (1.25, 3) m. and then
continues to walk until (2, 3) m. while the second person goes
to (4, 1) m. and then finishes his walk until (0, 1) m. The red
circles are the location estimates for the persons. In this case,
some points cannot be detected. However, most of the time,
the targets (persons) can be tracked with high accuracy by the
proposed algorithm.

The detection data of the sensors for the scenario in Fig. 12
are shown in Fig. 13. Processing the data is quite difficult
in this case since there are many clutters; in addition, when
the targets are closer to each other, they cannot be detected
separately because of the occlusion problem. However, the
proposed algorithm still provides accurate tracking in this
challenging scenario.
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Fig. 11: Range measurements of sensors in the multi-person
tracking scenario (Scenario-1). (a) Sensor 1, (b) Sensor 2, (c)

Sensor 3, (d) Sensor 4.
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Fig. 12: Scenario-2 for multiple person tracking. Green and
blue solid lines denote the ground truth of the first and
second person, respectively. Black squares are for UWB

radar sensors.

VIII. CONCLUDING REMARKS

In this study, multi-person tracking has been performed in
an indoor environment via UWB radar sensors. A detection
algorithm has been proposed and GM-PHD filtering has been
employed for accurate target tracking. A development kit
from TimeDomain has been used to collect data in an office
environment. Based on the data collection campaigns, the
performance of the proposed algorithm has been evaluated and
it has been shown that it can track single and multiple targets
accurately in various scenarios.
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