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Abstract— Optimal channel switching that provides the highest It is shown that the optimum jamming performance can be
performance over a set of Gaussian channels with variable achieved via time sharing between at most two different powe
utilization costs is investigated in the presence of averagpower levels, and a necessary and sufficient condition is provided

and average cost constraints. First, generic cost functianare the i bility of the i . ’ ia ti hari
considered, and it is shown that the optimal channel switclig 1€ IMProvability o the jamming performance via ime shari

strategy performs channel switching (time sharing) amongit most ~ Of the power compared to fixed power jamming schemes.
three different channels and always operates at the average power Time sharing among multiple detectors, which is also
and average cost limits. Also, for channel switching between to  called detector randomizatignpresents another approach for
channels, relations between the optimal power levels are tdined improving error performance of average power constrained

depending on the average power limit, and it is proved that tle icati t that t dditive ti
ratio of the optimal power levels is upper bounded by the ratp COMMunication systems that operateé over an addiive ume-

of the larger noise variance to the smaller one. In addition for invar_iant noise ch_annel [6]-[9], [15], [16]. In this appia a

logarithmic cost functions, the convexity properties of tte error ~ receiver has multiple detectors and employs one of them at
probability are investigated as a function of power and costand any given time according to a certain time sharing strategy.
the optimal channel switching strategy is shown to employ at In [6], an average power constrained binary communication

most two channels, which can easily be determined based on ¢ . idered d th timal ti haring betw
specific formulas, when the average power limit is larger tha a  SYSI€M IS considered, and the optimal ime sharing between

certain threshold. Numerical examples are presented to prdde w0 antipodal signal pairs and the corresponding maxinaum

illustrations of the theoretical results. posterioriprobability (MAP) detectors is investigated. Signifi-
Index Terms- Channel switching, Gaussian channel, time cant performance improvements can be achieved as a result of
sharing, probability of error. the proposed approach in the presence of symmetric Gaussian
mixture noise for a certain range of average power limits. In
|. INTRODUCTION [7], the results in [2] and [6] are generalized by considgrin

Time sharing among different power levels, detectors, 80 average power constrain@d-ary communication system
channels can provide performance improvements for comntlat can employ time sharing among both signal levels and
nication systems that operate under average power cantstrafletectors over an additive noise channel with some known
and in the presence of additive time-invariant noise [1flistribution. It is proved that the joint optimization ofeth
[12] For examp|e, the average probab|||ty of error for Sorrféansmitted Signals and the detectors at the receivertseisul
communication systems that are subject to multimodal noid&€ sharing between at most two MAP detectors correspond-
can be reduced by performing time sharing between tvd to two deterministic signal constellations. [9] invgates
different signal levels for each information symbol [2]. Irthe benefits of time sharing among multiple detectors for the
other words, instead of transmitting a constant signal ezal@ownlink of a multiuser communication system and charac-
for each information symbol, performing “randomizationterizes the optimal time sharing strategy. In a related ystud
(t|me Sharing) among mu|t|p|e Signa| values can result me form of the Optlmal additive noise is obtained for valéab
performance improvements in certain cases [2], [13], [14fetectors in the context of noise enhanced detection urudier b
Similarly, jammer systems can achieve improved jammirf§eyman-Pearson and Bayesian frameworks [8].
performance by time sharing among multiple power levels In the presence of multiple channels between a transmit-
[1], [4], [5]. In [1], it is shown that a weak jammer shouldter and a receiver, performing time sharing among different
employ on-off time sharing in order to maximize the averagdannels, which is callecthannel switching can provide
probability of error of a receiver that operates in the pnese certain performance improvements [1], [10], [11], [12]7]1
of zero-mean symmetric noise, such as Gaussian noise. Thethe channel switching approach, communication occurs
study in [5] investigates the optimum power allocation ppli 0ver one channel for a certain fraction of time, and then it
for an average power constrained jammer Operating over %NitCheS to another channel during the next transmission. |
arbitrary additive noise channel, where the aim is to minill, the channel switching problem is studied under an ayera
mize the detection probability of an instantaneously ariy fu Power constraint for the optimal detection of binary antigb
adaptive receiver that employs the Neyman-Pearson criteriSignals over a number of channels that are subject to additiv

unimodal noise. It is shown that the optimal solution is &ith
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obtained as one of the following strategies: determinisitic
naling (i.e., use of one signal constellation) over a simlan-
nel; time sharing between two different signal constediadi )
over a single channel; or switching (time sharing) between
two channels with deterministic signaling over each channe
[12]. In a different context, the concept of channel switghi | rransmitter | C: P! Recetver
is employed for cognitive radio systems with opportunistic
spectrum access, where a number of secondary users try to
access the available frequency bands in the spectrum [18]-
[20] . Channel K
Although the channel switching problem has been inves- CK
tigated thoroughly under an average power constraint,(e.g.
[1], [12]), no studies have considered the cost of communidag. 1. A communication system that employs channel swigiimongk
tions over different channels in obtaining the optimal afeln gddltlve Gaussian noise channels, Whé?;-edenotes the cost of using channel
. L . i, and IN; is the noise component at thith channel.
switching strategy. In practical systems, each channelbean

associated with a certain cost depending on its quality-[2econdary user, there can exist multiple available frequen
[26]. For example, a channel that presents high signabteen pands (channels) with different costs in this frameworle (se
ratio (SNR) conditions has a high cost (price) compared ffq. 1). Then, the aim of a secondary user is to optimize its
channels with low SNRs [22], [25]. Therefore, it is importanperformance under a certain cost constraint (budget). More
to consider costs of different channels while designing gyecifically, among the available channels in the spectrum
channel switching strategy. In this study, the optimal ct@n (which have certain cost values), a secondary user canrperfo
switching problem is formulated for Gaussian channels Whtimal channel switching in order to minimize its average
the presence of average power and average cost constrajgfispability of error under an average cost constraint (foge
First, generic cost values are considered for the chanmels gjth power constraints that are related to hardware coinssra
the optimal channel switching strategy is characterizé@nl ang/or battery life). Hence, the proposed problem formula-
logarithmic cost functions are employed in order to relaigyn is important for cognitive radio systems in terms of
the cost of a channel to its average noise power [26], apdiformance optimization of secondary users under realist
specific results are obtained about the optimality of chenn&nstraints. In addition, the formulation also carrietieical
switching between two channels or among three channelgnificance since the costs of different channels have @em b
Finally, numerical examples are presented to explain t@gnsidered in the previous studies on channel switching [1]
theoretical results. The main contributions of this study c [10], [11], [12], [17].

be summarized as follows: The remainder of the manuscript is organized as follows:

« The optimal channel switching problem over Gaussighhe system model and problem formulation are introduced
channels is investigated under an average cost and averSection Il, and the optimal channel switching problem is
age power constraint for the first time. studied for generic cost functions in Section Ill. In Sewtly/,

» For generic cost functions, it is shown that the optimabgarithmic functions are considered for the optimal chelnn
channel switching strategy is to switch amoagmost switching problem, and numerical examples are presented in
three different channels (Proposition 2), and that th&ection V. Finally, various extensions and some concluding
optimal strategy must operate at the average emst remarks are provided in Section VI and Section VII, respec-
average power limits (Proposition 1). tively.

o For channel switching between two channels, relations
between the optimal power levels are obtained depending Il. SYSTEM MODEL AND PROBLEM FORMULATION

on the average power constraint, and it is proved that theConsider a communication system in whidti additive
ratio of the optimal power levels is upper bounded by thepise channels are available between the transmitter and th
ratio of the larger noise variance to the smaller one undgiceiver, as shown in Fig. 1. The transmitter-receiver pair
certain conditions (Proposition 3). synchronously switch among thosé channels over time; i.e.,

« When cost values are related to average noise powggy can perform time sharing among different channels by
according to a specific logarithmic relation [26], it isesmploying only one channel at a given time [1], [12]. The
shown for sufficiently high power limits that the optimalchannels are corrupted by independent zero-mean Gaussian
channel switching strategy involves at most two channedgise components, denoted by, for i € {1,...,K}.
(Proposition 5) and that the optimal channel switchingor channeli, the components ofV, are independent and
between two channels can easily be specified based jggntically distributed with a variance of2. In addition, there
the average cost limit (Proposition 4). is a cost associated with the usage of each channel, denoted

A motivating application scenario for the proposed probleimy C; for i € {1,..., K}. The cost values are specified by

is a cognitive radio system in which primary users are thexrmatonnegative numbers and they satiéfy> C; if o7 < 072- for
owners of the spectrum, and secondary users can utilize tile; # j. In other words, if a channel has a smaller (larger)
frequency bands of primary users under certain conditidas. average noise power, it has a higher (lower) cost. Assigning
discussed in [21], the frequency owners (primary users) caosts to different channels or measurement devices hamugari
sell certain part of their spectrum to secondary users fer tmotivations and implications, as discussed for examplg1i-[
aim of maximizing their revenue. From the perspective of [26].

Ne



A generic M-ary communication system is consideredyptimization problem can be expressed as

where the received signal corresponding to itie channel %
is expressed as min X gi( P

() . . NP Zl g ( )
Y =/Ps+N;, je{0,1,....M—1},ic{l...K}, - p

1) ,

wheres®, sV .. s~ represent the signal constellatiorsUCIect toz/\ipi <4y Z)‘i Ci< A, @)
employed for communication over channelP; denotes the 1;1 =1
average power of the transmitted signal (assuming normaliz o _ _ _
tion for the average energy of the signal constellationg, Ah Z; Ai=1, A 20, B €0, Pna], Vi€ {1... K}

is the Gaussian noise over chanfelvhich is independent of

s It is assumed that the symbols are equally likely; thdd Other words, the aim is to obtain the optimal channel
is, the prior probabilities of the signals are equallig/ for SWitching strategy that minimizes the average probabdity
each channel. error under constraints on the average power, average cost,

and peak power.
In the remainder of the manuscript, it is assumed that the
Let \; denote the fraction of time during which channehoise variances?’s of the channels are distinct without loss of
i is employed for transmission, which is called tbleannel generality. This is mainly because of the fact that if there a
switching factorfor channeli. The channel switching factorsmultiple channels with the same noise variances, it is away
satisfyzfil Ai=1and); >0Vie{l...K}. In practice, better to employ only one of them due to the convexity of
channel switching is performed by utilizing ti# channel for the error probability. Hence, the problem formulation that
100); percent of time fori = 1, ..., K. The aim of this study considers only the channels with distinct noise varianses i
is to jointly optimize the channel switching factors andnsiy sufficient to achieve the overall optimal solution.
powers in order to minimize the average probability of error In the proposed problem formulation in (2), stochastic sig-
(symbol error rate) under average power and cost congraimtaling [12], [13] is not considered and the power levélss,
The error probability of channelfor a transmit power of? are modeled as deterministic quantities for each chanmés. T
is represented by;(P), and the following assumptions areis mainly due to the convexity of the error probabilify( P)
employed. with respect toP, which implies that stochastic signaling
(i.e., time sharing among different power levels) over agiv
. . channel increases the error probability under an averagepo
Assumption 1: The error probability over channel, de- .,nstraint. For example, instead of performing stochasitie
noted byg;(F), is a convex and a monotone decreasinf,jing over channel via time sharing between power levels
function of P. Py and P, and time sharing factors\, and (1 — \;),
respectively, performing deterministic signaling withwsy
Assumption 2: For C; > C; (equivalently, foro? < 032_), AiPi1 + (1 — \;) P2 yields a lower error probability since
gi(P) < g;(P),YP >0. Aigi(Pin) + (1 = XNi)gi(Pi2) > gi (NP + (1= Xi)Pi2).
7 J 1 . o
Based on this argument for each channel, it is concluded
that the proposed formulation in (2) covers the scenarios in
As studied in [3], for maximum likelihood (ML) detectionthe presence of stochastic signaling as well since the joint
over additive Gaussian channels, the error probability isoptimization of channel switching and stochastic sigrglin
convex function of the signal power for dltdimensional and results in channel switching with deterministic signalimg
2-dimensional constellations (such as BPSK, PAM, QPSlhe considered scenario.
and QAM, which are commonly employed in practice), and Finally, it is worth mentioning that the results in this
it is convex also for higher dimensional constellationsighh study can also be applied to multipath channels with block
SNRs. In addition, for Gaussian channels, the error prdibabi frequency-flafading under the assumption of perfect channel
is a monotone decreasing function of the signal power ancestimation at the receiver. In that case, the proposed ehann
monotone increasing function of the noise power. Thereforavitching approach can be employed for each fading state.
Assumption 1 and Assumption 2 are applicable in practical

scenarios. [1l. OPTIMAL CHANNEL SWITCHING

In this section, a detailed theoretical investigation of th
When power P; is allocated to channel, the average optimal channel switching problem in (2) is presented. k& th
probability of error is expressed @fil i gi(P;), where);’s  following analysis, it is assumed without loss of geneyalit
are the channel switching factors. In practical systemseth
exist an average power constraint and a peak power C()rtstrainlln order to verify this statement, let channeland channel; have the

; K y p ! same noise variances specifieddy = 02 = o2, and letg(P) denote their
which can be expressed gs,;,_, \; P, < A, and P; € error probability expression. Then, it can be shown thaeas of employing

[_Ov _PmaX]v where A, and Pma_x represent .the average POWeEthanneli and channelj with powersP; and P; and channel switching (time
limit and the peak power limit, respectively. It is assumesharing) factors of\; and);, respectively, it is always better to employ only

that Ppax > A, > 0. In addition, an average transmissior¢ne of these channels with powex; P;+A; P;) /(i +2,) and a time sharing

. factor of (A;+X;). This is because of the convexity @fP) for P > 0, which
cost constraint can be stated E‘{il Ai Ci < Ac, whereAc  implies thath;g(P:) + \;9(P;) > (\i + A)g((Ai Pi + A P;) /(i -+ Ap))
denotes the average cost limit (budget). Then, the proposedall \;,\; € (0,1) and P;, P; > 0.



that the noise variances of the channels satisfy< 02 < {\;, P/}X, denote the solution of the optimization problem
-+ < 0%, which implies that the cost values are ordered as (2). Then, "%, A\*Pr = A, and>. 5| \7C; = A.; that s,
C1 > Cy > --- > Ck. In addition, the average cost limif. in  the optimal channel switching strategy utilizes the maximu
(2) is assumed to be larger than or equal to the minimum of thg@erage power and the maximum average cost.
cost values; i.e.A. > Cf, since (2) would yield no solution  proof. The claims in the proposition can be proved via
otherwise. Then, the following remark, which specifies tWegnradiction. In order to prove the claim about the uttiza
simple cases, is presented first. . _ of the maximum average power, suppose that P, } £, is an
Remark 1: (i) If Ac = C, the optimal solution 0f(2) is  optimal solution of (2) with>* | \, P, < A, and channel is
to transmit over channek” exclusively with powerl,,. ~ one of the employed channels (i.&;, > 0) with P; < Py,..
(i) If Ac > ¢y, the optimal solution of(2) is to transmit Note that such a channel must exist sintg < Pia.. Next,
over cr}annhe[l fexcluswely Wgh powerl,,. A f A define another solution s\, P, } /<, whereP, = P, V1 # i
Proof: The first part is obvious since the use of anot [ , K , i
channel apart frompchannﬁf would violate the average costec{ndpi/ o {Pl+ (Ap Zl:-l )\lpl)/)-\“ Pmax}' ftis n_oted
Lo ) that P, > P,;. Then, the following relation can be derived:
constraint in (2) ag’; > Cy > -+ > Ckg = A.. Also, since

gi(P) is a monotone decreasing function &f the optimal K K
strategy operates at the average power lisjtin (2). Y Nag(P) = Nigi(P)+ > Nai(P)
To prove the second part, consider a generic strategy that =1 llz

employs channel switching with pow&t and channel switch- x x
ing factor \; for channeli, which achieves an average prob- o p N /

ability of error given by>> A, g:(P;). Then, the following > XigilPy) + ;)\l alh) = ; Avgu(Fi) “)
inequalities can be obtained: 1£i B

K K K where the inequality is obtained due to the facts thats

> Xigi(P) > Nigi(P) > g (Z /\ipi> (3) monotone decreasing?, = P, YI # i, and P, > Pi.

i=1 i=1 i=1 From (4), it is concluded that the solutidn\;, P} ,, which
The first inequality follows from the fact that (P) < g;(P) OP€rates at an average power beldy, has a higher average
for all P > 0 andi € {2,...,K} since channel has the probability of error tha{)\;, P, }/<,. This leads to a contradic-
smallest noise variance (the largest cost). On the othed,hation since{)\;, P;}/<, was assumed to be an optimal solution
the second inequality follows from the strict convexity gf Of (2). Therefore, a solution that operates at an averagepow
for positive arguments. It is noted that the expression en thelow A, cannot be optimal. In other words, an optimal
right-hand-side of (3) is the probability of error that iseved solution must utilize all the available power; i.e., operat
by employing channel exclusively with powery~ ), P,. the average power limitd,.
Therefore, it is concluded from (3) that employing chanhel In order to prove the claim about the operation at the
exclusively always achieves a smaller average probalafity maximum average cost, first suppose that the optimal selutio
error than any strategy that employs channel switchinguogSi employs at least two different channels, say channehd
A > (4, it is possible to employ channelexclusively.) In  channelj with powersP; and P; and channel switching factors
addition, sincey; (P) is a monotone decreasing function®f \; and )\;, respectively, wheré < j (hence,C; > C;), and
the optimal strategy operates at the average power iyl it operates at an average cost df, which is strictly less

Remark 1 presents intuitive results for two simple casethan A,; that is,A; < A.. For notational convenience, define

which can be summarized as follows: If the budget (average; £ \; P, + \;P; and C, = \,C; + \;C;. Then, consider
cost limit) allows the use of the worst (cheapest) channbi onan alternative solution which employs a similar strategtht®
then the only feasible approach is to employ that channgbtimal solution except that it uses channelith power P,
exclusively, which becomes the optimal solution of (2). @@ t and channel switching factoy, and channelj with power
other hand, if the budget allows the use of any channel with, and channel switching factox; + A; — v, where \; <
any switching factors, then the optimal solution is to emgploy < X, + \; with vP, + (\; + \; — 7)P; = P;; (the
the best channel all the time by using all the available ppwefame average power as the optimal one) aft + (\; +
th_at is, cha_nnel_swnchlng can onI)_/ degrade the perform&nce)\j — )0 = Cx + A. — A’C (larger average cost than the
this scenario. Since the solutions in these two speciakcase optimal one). By equating the average power terms (that is,
obtained in a simple manner, we focus on the other scenar;@si’ + N+ A =P = NP+ \P)), pi' can be obtained

for which the average cost limit satisfi€sc < A. < C1in a5p/ — AiP;/v+ (1= X;/7)P;. Then, the following relations
the remainder of this study. can be obtained:

Instead of trying to solve the problem in (2) directly for ob- ,
taining the optimal channel switching strategy, the prtpsr 7 9:(F;) + (Xi +A; —7)g;(F;)
of the optimal solution are investigated first in order togwee =~ g;(MiPi/v + (1 = Ni/V)P;) + (A + N —v)g,(P;) (5)
alternative_approaches that yield_ the optimal channebi;n'm’g <X gi(P)H (v = M) gi(P) + (A + A —)g; (P} (6)
strategy with reduced computational complexity. To that,ai <X gi(P) + A g5(P;) )
the following proposition states that the optimal solutadrf2) = Mgkt 7 93\
always satisfies the average power and average cost cotstraihere the first inequality is obtained from the strict corityex
with equality. of ¢g; and the second inequality follows from the fact that
Proposition 1: Assume thatCx < A. < C; and let g;(P;) < g;(P;) since channel has a smaller noise variance



(higher cost) than channgl The inequality in (5)-(7), namely,  Proposition 2: The optimal channel switching strategy is to
N gi(P) + X g5(Py) > v gi(Py) + (\i+ X\ — 7)g;(P;), leads switch among at moshin{K, 3} channels.

to a contradiction since the optimal solution results inghler Proof: If K < 3, the statement in the proposition is satisfied
average probability of error than the alternative solutighich trivially. Assume thatK” > 3 and define the following sets:

uses the same average power but operates at the maximum K K %
average cost. Therefore, it is concluded that a solutioh thaw { < \ P Z)"g'(P') Z/\’ C-)
X3 () 1 J 1) 7 K2 k)
i=1 i=1 i=1

employs at least two channels and operates below the average

cost limit A, cannot be optimal. In order to complete the proof, K B
suppose that an optimal solution employs a single channel VA > 0 Z/\' =1, VP € [0, Py 9)
(say, channel) and operates belout,; that is, channet is e e

employed exclusively with poweP; and its costC; is strictly — (P a(P).C, . 1 K P p
smaller thanA,; that is, C; < A. < Ci. Next, consider an U={(P,g:i(P),Ci), Vi€ {l,.... K}, VP €0, ma}z]l}O)
alternative solution that employs ch/anﬁ;eind channel with

channel switching factors; and1 — \;, respectively, and with It is noted that seU is the set of all tripleg P, g;(P), C;),

the same poweP;, where); € (0,1). Then, fori € {1,...,K} and P € [0, Pnax], Which consists of
, , infinitely many elements. Also, by definition, sgf contains
Aigi(F) + (1= X)g1(5;) the optimal solution of (2) since it consists of all possible
< /\;gi(pi) +(1- )\;)gi(pi) = g:(P) (8) average power, average probability of error and average cos

triples. In addition, it is observed from (9) and (10) that

where the inequality follows from the fact that(P) < g:(P), is a subset of the convex hull of s&t i.e., W C hull(l/).
VP, by definition (note that”; > C;). The inequality in (8) Thjs is because of the fact that all the triples)ivi can be
leads to a contradiction since the alternative solutioriea®$ gptained as the convex combinations &f elements ini/
a smaller average probability of error than the optimal onghereas some convex combinations of the elements,of
by using the same average power. Therefore, a solution thaich involve the use of at least one channel multiple tifes,
employs a single channel and operates below the maximgi not included V. SinceW is contained in the convex
average cost cannot be optimal. Overall, since any chanpgl| of set 1/, any element of/W can be expressed as a
switching strategy either uses a single channel or switch@snvex combination oflim(U/) + 1 = 4 elements in/ as a
among multiple channels, the previous arguments prove thakyit of Carathéodory’s theorem [27], whelien(1/) denotes
an optimal channel switching strategy must always operatetge dimension of the space in whici resides. (Note that
the maximum average cost. B 7/ c R3) In addition, since the aim is to achieve the minimum

Proposition 1 states that the optimal channel switchirag-str average probability of error (see (2)), the optimal solutio
egy utilizes all the average power and average cost. Therefaorresponds to a point on the boundary lofll(Z/), which
the optimization problem in (2) can be solved by consideringan be achieved by a convex combinationdafn (/) = 3
equality constraints (instead of inequality constrairits)the elements ini/ by Carathéodory’s theorem [27]. Finally, it is
average power and average cost, which leads to an importasted that all such convex combinations are guaranteed to be
reduction in computational complexity. Another implicatiof  elements of sexV due to the following reason: The difference

Proposition 1 is presented in the following corollary. of hull(i/) from W (that is, hull(Z/) \ W) consists of the
Corollary 1: Assume thatCx < A, < C). If C; # points corresponding to strategies that use at least omneha
A., Vi € {1,...,K}, then the optimal solution off2) multiple times. However, such strategies cannot be optimal
involves channel switching among multiple channels; that isolutions since the use of a channel multiple times always
transmission over a single channel is not optimal. increases the average probability of error compared to $kee u

Proof: Let {\7, P} X | denote the solution of the optimiza-of that channel once with the same average power (which

tion problem in (2). Proposition 1 states t@{il \iC; = A, can be proved by an argument similar to that in Footnote 1).

must hold. IfC; # A., Vi € {1,..., K}, then the condition Therefore, the optimal solution cannot behill(Z/)\ W; i.e.,

of ZK_l A:C; = A. cannot be satisfied unless at least twi is always inW, which implies that the optimal solution can

of A*'s are nonzero, which implies switching among multipl®€ expressed as a convex combination of ufs telements

channels. m in U that correspond to different channel indices (see index
It should be noted that the converse of Corollary 1 i&n (10)). Hence, channel switching among up3talifferent

not necessarily true. That is, whefy — A. for somei ¢ channelsis optimal. - n

{1,..., K}, the structure of the optimal solution depends on Based on Proposition 1 and Proposition 2, the optimal

the cost values and the average power constraint. In otlf@@nnel switching corresponds to one of the following three

words, either transmission over a single channel or chang&idtegies: o .

switching can be optimal depending on the system parametersStrategy 1 — Transmission over a Single Channelin
Although the optimization problem in (2) is formulated tdniS case, one of the channels is employed exclusively.@ase

search over strategies that involve channel switching anupn On Corollary 1, this strategy cannot be an optimal solution

to K channels, a similar approach to those in [8], [12], [1 f.(2) unless there exi;ts a channel yvith cokt. If there
can be employed to restrict the optimal solution to a small&KSts such a channel antidenotes the index of that channel

subset of strategies. Namely, the following propositicatest éror example, the convex combination ofP;,g:(P1),C1) and
that the optimal solution of (2) can be expressed as chanpg| ;, (p,), c,) is not included i, which involves the use of channél

switching amongnin{ K, 3} or fewer channels. twice.



(that is, C;+ = A.), then the minimum average probability\*P; + (1 — \*)P; = A,. From (13), it is observed that the
of error achieved by this strategy is given by (A,), which optimal solution for Strategy 2 requires a search over a one-
corresponds to transmission over chanifelexclusively by dimensional space only (for each possible channel pair). In
utilizing the maximum available power (cf. (2)). Note thaaddition, it can be shown that the objective function in (13)
this strategy may or may not be the optimal solution of this strictly convex forp; € (0, Ap /A" ).3 Therefore, convex
problem in (2) depending on the system parameters. optimization algorithms can be employed to obtain the tesul
Strategy 2 — Channel Switching between Two Channels: in polynomial time [29]. In fact, as stated in the following
In this strategy, channel switching is performed between tvproposition, the structure of the objective function alsads
different channels. Let channéland channelj denote those to additional properties, which result in further simplfimns.
channels. Then, based on Proposition 1, the problem in (2)Proposition 3: Suppose thatC; > A. > Cj, Ppax >

2

2 2
can be formulated under Strategy 2 as APUJQ_/UE’ and defined,; 2 o7 aj62 log (% . wherelog

k2(02—02)

min - Agi(F;) + (1 —A) g;(F) denotes the natural logarithm.” Then, the optimal solution

A’.Pi'PJ of (11) denoted by{\*, P}, P;}, satisfies the following
subject tOA P; + (1 — A F; = A, (11) relations depending on the average power limit:
ACi+(1-XN)Cj=Ac, Ae0,1], (i) If Ay = Ay, thenPy = P¥ = Ay;.
P; € [0, Prax], Pj € [0, Pnax] - (i) If Ay, > Ay, thenPr > A, > P > Ay

It is observed from the average cost constraint in (11) foat, |(:1”)a|(]; dﬁfo: ’11;]76 tg?i':)Aéjé t\>NéDén>tri P o> 5rjn I power levels
the optimal channel switching between two channels, one é)af\nnot excee'd2/ 2 that is P P
the channels should have a cost higher tharand the other il % ’

channel should have a cost lower thapn Therefore, in order P*  p* o2
to obtain the optimal solution for Strategy 2, the problem in max P_J* , P_l* < —JQ . (14)
(11) should be solved fak K, channel pairs, wher& (K,) i i

is the number of channels the costs of which are lower (higher proof: Please see Appendix A.

than A.. In other words, the problem in (11) should be solved ynder the conditions in Proposition 3, the search space for
for all channel pairgi, j) € Sz, whereS; = {(i,j) : Ci > the optimization problem in (13) can be reduced. Specificall
Ac>Cjand i, je{l,...,K}}. for each channel paifi, j) with C; > C;, the value ofA,; is

In order to investigate the properties of the solution 0f)(11¢4cyated first, as defined in the proposition. Then, therapt
a specific expression is considered for the error pl’ObybIh'SO\Ner levels are obtained as follows:

over each channel.
Assumption 3: The error probability for channeli is
expressed as

o If A, = A;;, the optimal solution is given by = P =
Aij .
o If A, > A;;, the optimization problem in (13) is

solved forP; € A 02A o2V AL ), which is
gz(P) :nQ <I€ P) (12) (max{ j1 7 P/O']} p)

obtained from (14) and the relation in the second part of

the proposition.

where Q denotes theQ-function, P is the average symbol .« If 4, < A;;, the problem in (13) is solved foP; €

energyo? is the noise variance, angandr are some positive (Ap,min {A;; , A, /A" 02A,/0?} ), which is obtained

constants that depend on the modulation type and order [28]. from (14) and the relation in the third part of the
As discussed in [28], the error probability for many cohéren  proposition.

modulation schemes can be represented either exactly e the optimal value ofP;, denoted by P*, is ob-
approximately in the form of (12); hence, Assumption 3 P'%ined, the optimal value ofP; is calculatedzasP?* _
vides a generic expression that can represent variousetitfe (Ap — XN*P7)/(1 =A%), where)ﬁj‘ = (A — C;)/(Cs — Cy).
scenarios.

Assume, without loss of generality, thét;, > A, > C;
for the problem in (11). Then, the optimal value &fcan
be obtained from the average cost constrainfas= (A, —
C;)/(C;—C;). Also, suppose thak,,.x is sufficiently large so
that the optimal power levels for Strategy 2 are always bel

g;

Strategy 3 — Channel Switching among Three Channels:
In this strategy, channel switching is performed amongethre
different channels. Let channe¢l channelj, and channek
denote those channels. Then, based on Proposition 1, the
0[%oblem in (2) can be formulated under Strategy 3 as

Po.x. (The condition for this assumption is specified in Propo- N Ami}g . Xi 9i(Bi) + A g5 (P) + M g (Pr)
sition 3 below.) Then, due to the average power constrdiat, t (SR
powers are related & = (A, — \*P;)/(1— \*). From (12), subject toA; P; + A Pj + Ay P, = Ap,
the optimization problem in (11) can then be expressed as NCi+ X Ci+ M. Cp = Ac, (15)
follows: AN A =1, An A A >0,
min A*ﬁQ r R Pi,Pj,PkG[O,PmaX].
Pie(0, Ap/X*) O

Due to the strict average cost constraint, it is required #ba
k A, — XD,
F(1-A)MQ (; ;1 = z) (13) least one of the channels must have a cost lower thaand
; _
) ) ) . 3The first-order derivative of the objective function is meted in (25),
where the constraint fo®; is obtained from the relation which is a monotone increasing function Bf for P; € (0, Ap/A*).



at least one of the channels must have a cost higherfhan Cin < Cax < 0. Let g(P, C) denote the error probability
Therefore, in order to obtain the optimal solution for Stggt when transmission is performed by utilizing a power level of
3, the problem in (15) should be solved féf, K,(K —2) P over a channel with cosC. Then,g(P,C) is a strictly
channel triples, wheré{s (K,) is the number of channelsconvex function over s&., which is a convex set defined as
the costs of which are lower (higher) thahy, and K is the g & {(P,C): P>b/(5*(eC +1)), C € (Crnin, Comax) }-
total number of channels. In other words, the problem in (15) proof: Please see Appendix B.
should be solved for all channel tripl¢s j, k) € S3, where | emma 1 describes the convexity properties of the error
83 ={(i,j,k) : C; > Ac > Cjandi,j,k € {l,...,K}}.In  probability, which is considered as a function of power and
addition, it is observed that the solution of (15) can be biet cost. Based on Lemma 1, the solutions of the optimal channel
via optimization over ahree-dimensionaspace instead of six switching problem can be specified in certain scenarioshdo t
by utilizing the three equality constraints. aim, the following proposition presents the optimal salnti

It is noted from Proposition 2 that Strategy 3 is guarantegghen channel switching is performed between two channels
to provide the optimal solution of the channel switchinglpro (j.e., Strategy 2).
lem in (2). In addition, it covers Strategy 2 and Strategy 1 as proposition 4: Suppose there exist channels and each

special cases, which may be suboptimal in general. Th&efathannel has a cost value obtained from the cost function
in order to obtain the optimal channel switching solutidn, (16). If the power limits satisfyd, > bol and
. P

can be necessary in general to solve the optimization pmobl 9 o i = w0205 +b)
in (15), which is computationally more complex than obtagni _ ™ > AIF]UK/U_ll : tgenh the OP“mha' solution for Strategy 2
the optimal solutions under Strategy 1 and Strategy 2. HoRMPIOYs channel and channelj, where

ever, in some cases (see Proposition 5), it is guaranteed tha i = argmin C} subjecttoCy > A. , a7)
Strategy 1 or Strategy 2 can provide the optimal solutiomef t ke{l,...,K}
channel switching problem in (2); that is, it is not necegsar j = argmax C} subject toC), < A. . (18)
to solve the optimization problem in (15) for obtaining the ke{l,...K}

optimal channel switching solution. Therefore, whenever t  pyqof: From Proposition 1, it is known that the optimal

conditions under which Strategy 1 or Strategy 2 is optimghannel switching solution utilizes the maximum averaggt.co
are satisfied, the optimal channel switching solution can l?‘ﬁerefore, for Strategy 2, the optimal pair of channels, say
obtained in a low-complexity manner as follows: If theresexi (k,1), must satisfyk < i and! > j, wherei and j are
no channels with cost., then Strategy 2 provides the optimabg defined in (17) and (18), respectively. (Note that the cost
solution. If there exists a channel with codt, then the 5,es are ordered a > Cy > --- > Cx.) For simplicity
optimal solution is either to employ that channel exclulgive ¢ notation, definez, 2 (Py,Cy), for k = 1,...,K, and
with the maximum power (Strategy 1), or to switch betweep 2 (Ap, A). In order to prove that the optimal channel
two channels as specified by the solution of (11) (Strateg))éir for Strategy 2 i, j), first consider channel pait, {),
2). In that case, the strategy that achieves the smalleageeryheref; = j and/ > j. The optimal solution for channel pair
probability of error becomes the optimal solution of (2).  (; 1) must utilize the maximum average power and cost due to
Proposition 1. In addition, consider an alternative soluthat
IV. OPTIMAL CHANNEL SWITCHING FORLOGARITHMIC  amploys channel paii, j) and operates at the average power
COSTFUNCTIONS and cost limits. Then, the following inequalities are obéal:

In this section, specific theoretical results are obtaingd b
considering a suitable cost function for the channels. &inc % T (1-XNzj=a and yz; + (1 -7)zr=a, (19)
each channel can be regarded as a measurement device, agiste) = (A.—C;)/(C;—C;) andy = (A.—C})/(C;—C)),
function similar to that proposed in [26] can be adopted fahich are obtained from the average cost constraint. Since
relating the noise power of each channel to a cost value @s> A, > C; > C, it can be shown that > \. Therefore,

follows: z; can be expressed as
b
Cizlog(l—i——), ie{l...K}, (16) _a=A 1-y
o? HBET NI (20)

whereb > 0 is a given system parameter (a constant). ithen, it is shown in the following that channel péirl) can-

is noted that the function in (16) has the desirable propeffyt be optimal since it results in a higher average prokigbili
that it assigns higher (lower) cost values to less (moregynoiof error than channeli, j):
channels; that isg? < 0.72- implies C; > Cj. In addition,

lim C; = 0 and lim C; = co. As in the previous section, it A 9(zi) + (1 — A)g(z;)

0;—00 o;—0
is assumed Without_losg of ggznerality tha2t the _nois_e vgeianc —Ag(z)+(1—-Ng (7 - A Z + 1—7 Zl) 1)
of the channels satisfy; < 05 < --- < o3, which implies I—2A I—A

that the cost values are ordered@s> Cs > --- > Ck. In y—=A 1—x

addition, the error probability expression in (12) is colesed. <Ag(zi) +(1-2) <1 Y 9(zi) + - g(zl)> (22)
Based on the cost function in (16), the following result is _ _ B

obtained first. =79(z:) + (1 =7)9(z) (23)
Lemma 1: Consider infinitely many channels and assumehere g(z;) = ¢g(P;, C;) denotes the average probability of

that the channels take a continuum of cost values in the-interror as a function of power and cost, as defined in (31). In ob-

val [Cinin, Cimax) based on the cost function {@6), where0 < taining the equality in (21), the expression in (20) is eryplh



and the inequality in (22) follows from the strict convexdy at the maximum power level, achieves a smaller average
g, which is guaranteed under the conditions in the propasitigorobability of error than performing optimal channel switng

4

namely, 4, > -2 and P« > A,0% /o2. In order between two channels.
k207 (203 +b) PY K o . . .

to verify the convexity ofg in this scenario, Lemma 1 is Based on Lemma 1, it is also possible to describe scenarios

considered first, which states that the power levels shodfiWwhich Strategy 1 or Strategy 2 is the optimal solution of
satisfy P > b/(k2(eC +1)) for strict convexity. Since the cost the channel switching problem; that is, switching amongemor
values are ordered a8; > Co > --- > Cx (equivalently, than two channels is not needed. The following proposition
02 < 0% <. <0o%), P> b/(k(eCx + 1)) is required to Presents such a scenario: _ o
guarantee that function is strictly convex for all channels. Proposition 5: Consider the optimal channel switching

From Proposition 3, it is concluded that the optimal power le Problem in(2) with the cost values as defined (@6), and

els under Strategy 2 always satishin{ Py, P} > 024, /0? assume t_haPmax — oo. Then, the opuma! channel switching
for channel pair(k, 1) with C;, > A, > C.% Therefore, if strategy involves at mgcjljst4two channels if the average power
0} A, /0% > b/(k?*(e“% +1)) holds, then it is guaranteed thadimit satisfiesA,, > WZI}“ZW :

the optimal power levels for any channel pair for Strategy 2 Proof: Please see Appendix C.

satisfy the convexity condition in Lemma 1. Mathematically Proposition 5 states that in the absence of peak power
stated, constraints, if the average power limit is larger than aaiert
value, then the optimal channel switching strategy is toaise

o2A o2 A ) . X
kP P (24) single channel exclusively or to switch between two chasinel

min{ Py, B} >

2 2
91 TK that is, Strategy 3 is not optimal. In such a scenario, the
> b _ b optimal solution is either to transmit over a single channel
k2(eCKx +1)  K2(24b/o%) with cost A. if such a channel exists, or to switch between

for all k < i andl > j, where first inequality is obtained from channeli and channe} as specified in Proposition 4 if there

Proposition 3, the second one follows from the relatign< exists no chz?mnels with cost.. . .

02 < .- < 0%, the third one is imposed in order to guarantee Remark 3: Ba_sed on t_he results in Seqtlon 1 anq .Sec—

that the power levels satisfy the convexity condition in een toN IV, the following algorithm can be described for obtai

1, and the equality is obtained from (16). From (24), it id1e optimal channel switching solution: _

deduced that the conditian, > bo2 /(x2(202 +bo?/o%))  * If Ac = Ok, the optimal channel switching strategy is to

guarantees the strict convexity gf transmit over channek” exclusively with powetA,, (see
Similar arguments to those in (19)-(23) can be used to prove Remark 1¢i)). _ o _

that channel paitk, j) with k < i results in a larger average * If Ac > C1, the optimal channel switching strategy is to

probability of error than channel paii, j). Then, it can be transmit over channel exclusively with powerA,, (see

concluded that channel pajk, I) cannot be optimal i < i Remark 1ii)).

and/orl > j. Hence, the optimal channel pair for Strategy 2 is * If Cx < Ac < Cy,

shown to be the channel p&ir, j) as defined in the proposition — if the cost function is t4he logarithmic cost function

when the power limits are larger than the specified vallies. in (16), 4, > % and no peak power
Proposition 4 states that if the average and peak poweslimit constraints exist,

are larger than certain values, then the optimal solution fo
Strategy 2 is to switch between the two cha_nnels, one of which over that channel at the maximum power level
has the lowest cost among_the channels with costs higher than A, is the optimal strategy (see Proposition 5 and
A., and the other has the highest cost among the channels with Remark 2).
costs lower thamA.. In other words, among all the channel
pairs, where each pair has one channel with a cost higher than
A, and another channel with a cost lower th&n the one that
has theminimum cost differends selected in order to achieve
the minimum average probability of error, which is mainly
due to the convexity of the error probability, as specified in
Lemma 1. Thanks to Proposition 4, it is not necessary to kearc
over all feasible channel pairs to obtain the optimal sotuti V. NUMERICAL EXAMPLES
for Strategy 2 under the conditions in Proposition 4. :

Remark 2: Under the condition in Proposition 4, if there In this section, various numerical examples are presented
exists a channel with cost,, then it outperforms the channelin order to provide illustrations of the theoretical resudind
pair (i, j) specified in(17)and (18); that is, Strategy 1 outper- tO investigate performance gains that can be achieved via
forms Strategy 2 in that scenario. This is due to the striet-cochannel switching. The following strategies are compared i
vexity ofg, which results in\ g(P;, C;) + (1 — \) g(P;, C;) > the numerical examples: _ _
9(Ay, Ao). In other words, ifA, > nza;g(% - and P > O_pt|mal Single Channel: In this strategy, channel switch-

Y 9 o K207 (20% ) ing is not allowed, and only one channel is employed exclu-

Apoi /o, transmission over a single channel with colt  gjyely The optimal solution for this approach is obtainad b

4This result is obtained by combining the inequality in (14)wthe three using .Strategy lin Sectl_on .”I' . .
possible scenarios in Proposition 3. Note tRatax > Apo% /o7 guarantees th|_mal_ Channel Switching: !n this strategy, channel
that the assumption in Proposition 3 holds for all channéispa switching is allowed, and the optimal solution of the chdnne

x if there exists a channel with codt,, transmission

x otherwise, the optimal strategy is to perform time
sharing between channeand channej specified
in (17) and (18) (see Proposition 4), and the
optimal solution can be obtained based on (11).
— otherwise, the optimal channel switching strategy is
obtained based on the optimization problem in (15).
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Fig. 2. Average probability of error versus, for the optimal single channel Fig. 3. Average probability of error versus, for the optimal single channel

and optimal channel switching strategies, whife= 4, o = [0.4 0.6 0.8 1],

C=[7531],andA. = 2.

TABLE |

PARAMETERS OF THE OPTIMAL CHANNEL SWITCHING STRATEGY IN

and optimal channel switch
C=[7531],andA. = 5.

10°

ing strategies, whafe= 4, o = [0.4 0.6 0.8 1],

T
Optimal Channel Switching
— — — Optimal Single Channel

FiG. 2.

Ap kl )\j P] P2 P3 P4 g
0.1 | 0.1667 0.8333| 0.1821 - - 0.0836 u
0.2 | 0.1667  0.8333| 0.2663 - - 0.1867 2
2 0.25 0.75 - 1.3461 - 2.2180 %
4 0.5 0.5 - - 3.4117 4.5883 g
6 0.5 0.5 - - 4.9898  7.0102 &
8 0.5 0.5 - - 6.5601  9.4399 [}
10 0.5 0.5 - - 8.1270 11.873 g
<

switching problem in (2) is obtained based on Strategy 3

(Since Strategy 3 covers Strategy 2 as a special case,ftrate

2 is not considered separately.) 107, ” ” o o5 |
A scenario with K Gaussian channels is considered, anc ' Average Power Limit (4) '

the standard deviations and the costs of the channels are )

represented, for notational simplicity, in the vector fogm ~'9-4- A closer look at Fig. 3 for,, € [0, 1].

o =|[o1---0k]andC = [C; - - - Ck], respectively. For all the

examples, the peak power limit in (2) is setf..x = 104, ) .

where A, is the average power limit. In addition, binaryfactors are shown in the table, and the remaining one can

antipodal signaling is considered, which corresponds to 4f calculated as, = 1 —A; — ;. It should be noted that

error probability expression as in (12) with= = 1. First, Aiy Aj, and Ay corresponc_i to the channe_l switching factors

a four-channel system is studied, where= [0.4 0.6 0.8 1], of the em_ployed channelm_th the smaII(_ast index, the §econd

C = [7 5 3 1], and the average cost limit is equal 2o that smallest index, and the third smallest index, respectivédy

is, A. = 2. In Fig. 2, the average probabilities of error ar&*@mple, for4, = 0.1, channell is employed with channel

plotted versus the average power limit, for the optimal switching fa<_:t0r0.1667 and _povyer0.1821 and channell is

single channel and optimal channel switching approach&§'Ployed with channel switching factor8333 and power

It is observed that the optimal channel switching stratedy?330- (In this case); = 0, meaning that only two channels

outperforms the optimal single channel strategydbrvalues a'€ €mployed in the optimal solution). It is observed from

of A,. This is an expected result since the optimal singlE2Ple | that the optimal channel switching strategy perform

channel approach cannot be the optimal solution of the alanfl@nnel switching between two channels, which in compganc

switching problem in this scenario as there exists no cHani@th Proposition 2. In addition, the calculations show that

with a cost of A. and A. < C; (Corollary 1). In order to

provide further investigations of the results in Fig. 2, the

parameters of the optimal

TABLE Il

channel switching strategy areparameTers oF THE OPTIMAL CHANNEL SWITCHING STRATEGY IN

presented in Table | for some values 4f. In the table, the FlG. 3.
optimal channel switching solution is represented by ckann
switching factors(\;, A;, A\x) and power leveld P;, P;, Py), Ap Ai Aj Py P, Ps Py
wherei < j < k. The channels that are not employed in the 07 | ooeey oaws| 02504 - —  ota
optimal solution are marked with “~" in the table. Since at 1 | 06667 0.3333] 0.6894 - -  1.6212
most three channels can be utilized in the optimal solution z : - - A
according to Proposition 2, only two of the channel switchin 4 1 - - 4 - -

5 1 - - 5 - -
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Fig. 5. Average probability of error versus: for the optimal single channel Fig. 6.  Average probability of error versud, for the optimal single
and optimal channel switching strategies, wh&fe= 4, o = [0.4 0.6 0.8 1], channel and optimal channel switching strategies, wh§re= 5, o =

andC =[7531]. [0.60.70.80.9 1], C = [1.329 1.112 0.941 0.804 0.6931], and A = 0.9.
) o i o . TABLE Ill

the Optlmal Channel SWItChlng SOlUtlon Utlllzes the ma),q"nu . PARAMETERS OF THE OPTIMAL CHANNEL SWITCHING STRATEGY IN

average power and maximum average cost as claimed in Fle. 6

Proposition 1. In addition, the statements in Propositicare3 o

verified, which can be exemplified as follows: Parametgr A, i by P, P, Py P, P,

in Proposition 3 can be calculated for chanBeind channel | 0.05| 03028 0.0347) 0.0811 ~ 0.0652 - - 0.0352

0.2 | 0.3254 0.6746| 0.2652 = N - 0.1685
0.7007  0.2993 - - 0.9881  1.0278 -

0.7007  0.2993 19310 2.1617
0.7007  0.2993 2.8648  3.3164
0.7007  0.2993 3.7955  4.4788
0.7007  0.2993 4.7247  5.6447

4 as A3y = 0.7934. As observed from Table |, when channel
3 and channell are employedA,, > As4 is satisfied and the
conditions in Part(ii) of Proposition 3 hold; that isP, >
A, > P; > Asy. In addition, the ratio of the optimal power
levels is always smaller than the ratio of the noise variance
1/(0.8)* = 1.5625, as stated in (14) in Proposition 3. (Note In order to investigate the effects of the average cost limit
that Puax = 104, > Ay03 /05 = 1.5625A,, is also satisfied.) in more detalil, the average probabilities of error are phbtt
Compared to the optimal channel switching strategy, whiglersusA. in Fig. 5 for various values afi,, based on the same
performs channel switching between channel 4 and anoth@annel configuration as in the previous scenario. As eggect
channel, the optimal single channel solution always @iz the average probability of error is a non-increasing funcof
channel at the maximum power limitd,, since it is the only the average cost limitl.. Also, in accordance with Pafii)
channel with a cost that is lower than the average cost lingt Remark 1, the average probability of error converges ¢o th
A.. However, as observed from Fig. 2 and Table |, performingror probability of the best channel (chanmght the average
time sharing between channeland a channel with a higherpower limit A, when A.. is larger than or equal to the cost of
cost (lower error probability) reduces the average prdlbi the best channel; i.e., whet, > 7. In addition, it is observed
of error in this scenario. that the optimal single channel strategy results in piesewi
Next, the same channel configuration is considered withcanstant average probabilities of error, which is due to the
different average cost limit, which is given by, = 5, and the fact that the optimal single channel solution correspohes t
average probability of error curves are presented in Fidn 3. use of the best channel that has a cost lower than or equal to
this case, since there is a channel with a cost that is equal4a Specifically, the optimal single channel strategy actgeve
A., Corollary 1 does not apply; i.e., channel switching is ndhe error probabilities of4(Ap), g3(Ap), g2(Ap), andgi (A4p)
necessarily optimal. As observed from the figure, for smdlir A. € [1,3), A. € [3,5), Ac € [5,7), and A, > 7,
values of the average power limit,, the optimal channel respectively, wherg;(A,) = Q(\/A,/0;) denotes the error
switching strategy outperforms the optimal single channptobability of channel at power leveld,,. Furthermore, Fig. 5
strategy (please see Fig. 4 for a zoomed-in version of Fig.v8rifies the argument in Corollary 1 that, fofx < A. < C1,
for A, € [0,1]), whereas both strategies achieve the sansbannel switching is guaranteed to outperform the optimal
performance asl,, increases. Table Il presents the parametesgigle channel strategy ifl. is not equal to the cost of one
of the optimal channel switching solution, which indicatieat of the channels.
employing channel 2 exclusively at the power limit (which is As another scenario, a five-channel system is considered,
the optimal single channel solution) becomes optimal whemd the cost values are calculated based on the logarithmic
A, is larger than a certain value whereas switching betweeast function in (16) withb = 1. The standard deviations
channell and channell is optimal for small values of4,. of the channels are set ® = [0.6 0.7 0.8 0.9 1], and the
Hence, it is concluded that when there exists a channel wittagerage cost limit is given byl. = 0.9. In Fig. 6, the average
cost equal tad., employing a single channel exclusively mayrobability of error is plotted versug,, for the optimal single
or may not be the optimal solution depending on the systezhannel and optimal channel switching strategies. Sintdar
parameters. the scenario in Fig. 2, it is observed that channel switching

GabhwNF-
| I
| I
| I
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107 J ‘ 1 ‘ » ‘ ‘ J the first case, the transmitter has the same average power
: : ‘ ' constraint as in the single RF chain scenario, and multiple
RF chains share the power at each time. In that case, it can
be shown that only one of the RF chains should be used with
all the available power for minimizing the average prohiapil

of error. Therefore, this case reduces to the case withesingl
RF chains investigated in the previous sections. For exampl

._.
o\
b
T

!
&
T

Average Probability of Error
=
o

A =3 (Single Channel) consider two RF chains at the transmitter and the receiver,
__ _AZ:4 (Single Channel) and assume that poweé? is allocated for transmission over
1ol - — ~ 7,5 (single Channe) two channels simultaneously, which are denoted as channel
A,=3 (Channel Switching)| - : and channelj with average noise powers of? and o7,
——— A4 (Channel Switching) respectively. If powerP; is allocated for the RF chain that
|l A7 (Channel Switching) . ‘ ‘ ‘ operates over channe| and power(P — P;) for the RF
Yo7 o8 08 1 11 12 13 14 15 chain over channej, then the SNR at the receiver becomes

Average Cost Limit (AC)

P;/o} + (P — P;)/o; via optimal processing [28], which
Fig. 7. Average probability of error versus. for the optimal single IS Maximized by setting” = P if 0, < o; and P, = 0
channel and optimal channel switching strategies, whisre= 5, o = otherwise; that is, all the power is used for the RF chain
(0.6 0.7 0.8 0.9 1], andC = [1.329 1.112 0.941 0.804 0.6931]. corresponding to the best channel. In the second case, it is
considered that the same power level can be used for all the RF
outperforms the single channel approach for all value$,pds  chains, which corresponds to an increased total power due to
a consequence of Corollary 1 as there exists no channel witig use of multiple RF chains. In that case, an equivalenemnod
a cost equal tod.. The parameters of the optimal channetan be developed and the proposed model in Section Il cén stil
switching strategy in Fig. 6 are presented in Table Il fope employed as follows: Suppose that there eRifF chains
some values ofA,. It is noted that the optimal solutionat the transmitter and the receiver. Then, alcombinations
performs channel switching among at most three channelsgh i channels can be considered as rawnbined channels

compliance with Proposition 2. Also, numerical calculago (K : . . .
show that the results in Proposition 1 and Proposition tﬁat S\ R combined channels exist. For tii combined

are satisfied. In addition, as stated in Proposition 4, whehannel, let the average noise powers and the costs of the
A, > bot/(03(202 + b)) = 0.926,° the optimal channel correspondingk channels be denoted by?,,..., o7, and
switching between two channels is performed between chanfig 1, .. ., C; r, respectively. Then, this combined channel can
3 and channelt, which is in accordance with (17) and (18)be considered as a single channel as in Fig.1 1 with an
Fur_thermore, channel switching among three channels is '&Q/Erage noise power af? — 0_—12 +o gt Ufé) and a
optimal for A, > 2bo2 /(03 (202 + b)) = 1.852. - ! > R

Finally, the average probabilities of error are plottedsusr €OSt 0f s = Ciy + -~ + Ci p. Hence, the same problem
A, in Fig. 7 for various values ofi, based on the scenarioformulation as in Section Il is obtained, and all the results

in Fig. 6. Similar observations to those related to Fig. & the previous sections apply. It should be emphasized that

can be made. Namely, ifl. is smaller than the cost of thet€ expression fos7 is obtained by considering the SNR at
best channel, which is equal th329, the optimal channel the~gece|ver2after optimal 2processmg, which is expressed a
switching strategy outperforms the single channel one whén?%: = Ploj,+---+ Plo; g [28].

A. is not equal to the cost of a channel. On the other hand, for
A. > 1.329, both strategies achieve an average probability of
error that is equal to the error probability of the best clednn
at the power limit.

VII. CONCLUDING REMARKS

In this study, optimal channel switching has been investi-
gated for Gaussian channels in the presence of average power

VI. EXTENSIONS and average cost constraints. For generic cost functians, i
has been shown that the optimal channel switching strategy

is a single RF chain at the transmitter and the receiver;elrleneerformS time sharing among at most three qhgnnels and
only one channel is employed at any time during chann@perates at the average power and average cost limits.falso,

switching. Also, the transmitter has an average power co 1annel sw!tching betwgen two channels, !t has been proved
straint denoted byl,,, which can, for example, be determine hat the ratio of the optimal power _Ievels is upper bounded
according to the hardware constraints and/or the battésy | y the rat|0_0f the I_arger noise variance to the _sma_ller one
of the communication system. This power constraint specifi nder certain conditions. In addition, for logarithmic tos

a restriction on the transmit powers that can be used oyHPctions, the convexity properties of the error probaptiiave
different channels. An important extension is the sceniario P€€N characterized as a function of power and cost, and the

which there exist multiple RF chains at the transmitter doed toptimal channel switching strategy has been sh_own to employ
receiver, and multiple channels can be used simultaneoudy MoSt two channels, which can be determined based on

For that scenario. two different cases can be considered SRecific formulas, in certain scenarios. Numerical exasple
’ have provided illustrations of the theoretical resultstulel

SPmax > Apo2 /o] = 2.7784,, is always satisfied in this scenario sincewor!( inVOIVeS_ the incorporatioln Of switching_costs [20] fret
Prax = 10Ap. design of optimal channel switching strategies.

The problem formulation in Section Il assumes that the
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APPENDIX If it is assumed thatv > f, then (28) implies thatfi%} >
2
A. Proof of Proposition 3 % However, sincer? < 032- (as C; > CY), this inequality

First, consider the problem in (11) without the peak powééads to a contradictio_n._T_herefore,cannot be larger than
constraints. Then, it can be solved based on (13). The fir§t- On the other hand, if it is assumed that< 3, then (28)

[oa

order derivative of the objective function in (13) with resp becomesg‘%} > —, which is not a contradiction. Therefore,

to P; is expressed as it is obtained thaty < 3, that is, P < Pr, whenA, > A;;.

. 2P, . - _«2ap-a*py  Furthermore, due to the average power constraihf; +
_ AR o, AWLENRN TSASEE (1 MPF = A,, it s concluded that?r > A, > Pr.
2V2m o/ B 2V2m o /Ay — AP Combining this result with the first result in this paragraph

(25) it is obtained that whem, > A;;, the optimal signal values

It is observed that the first-order derivative in (25) is &atisfy P/ > A, > P > A;;. Hence, the second part of
monotone increasing function of; for P, € (0’ Ap//\*), Proposmon 3is _prpved. The third part of the proposition ca
which starts from—oo at P; = 0 and increases monotonicallybe p_roved in a similar manner to the proof of the second part,
towards infinity asP; goes toA,/\*. Therefore, there is a @nd it can be shown that;; > P7 > A, > P; based on (25)
unique minimizerP;* for the optimization problem in (13), and (27).

which corresponds to the point at which the first-order @eriv. The final statement in the proposition can be proved as
tive is zero. Equating the first-order derivative in (25) tv@ follows: For A, > A,;, it is obtained in the previous paragraph

yields the following necessary and sufficient conditiontfte  h4t g_:} > Z_j where 8 > a > 1 with P} = aA,; and

optimal solution of (13): Py = BA;;. The inequality can be manipulated as follows:
k2P, w2(Ap—A*P;) . * D. .
o ann _GVATNR g o7 _B-1_8_F
N AT a1 a @9)

Since\*P; + (1 — \*)P; = Ay, the condition in (26) can also

where the second inequality is obtained from the relation
be expressed as d y af

a > 1. For A, < A;;, the second part of the proposition states

K2<%7%> o2 P, that P > P;. Sinceo? < ch2» by definition (asC; > Cj), it
e \7 7/ = UJQP_ : (27) is obtained thatP; /o7 > P;/o7. Therefore, the relation in
it (27) yields
If A, = Aj;, it can be shown, by using the definition.4f; in . pr P
the proposition, thal’; = P; = A;; satisfies the condition in a5 b _ ea% - J]z -1 (30)
(27). Since the solution of (27) is unique, the optimal solut o2 P; ’

of (13) is obtained a®;" = P} = A;;. In addition, asPax > . . .
O o L e s which results inPf /P < o?/0?. Finally, for 4, = A;j,
Ap = Ay, the optimal solution of the problem in (11) ISP?*/P;‘ — 1 as stated in the first part of the proposition.

the same as that of (13) in this case; hence, the first part&f/era", the ratio between the optimal power levels is upper

Proposition 3 is obtained. 27 9 .
In order to prove the second part of the proposition, it ig ﬁrgounded byoy /o7 for any value of 4,, as stated in the

observed that the first-order derivative in (25) is a monetoff °POSION. N _ N
decreasing function afi,, and a monotone increasing function Based on the three conditions in the proposition and the
of P;. Therefore, the value of; at which the first-order inequality in (14), it can be shown that the optimal power
derivative becomes zero gets larger 4s increases. Since levelsP;” andP; are always smaller thaR.x Since Prax >

the first-order derivative becomes zero Bt = A;; when Ayo?/o7. Hence, the properties of the solution of (11) ob-
A, = A;; (as proved in the first part), the first-order derivativéained without the peak power constraints (via the solutibn
becomes zero at a value larger thdp;, when A, > A;;. (13)) also hold for the solution of the problem in (11) in the
Hence, the optimal solution of (13) satisfiéy > A;; for presence of peak power constraints. L

A, > A;;. In addition, it is concluded from (27) that as

P increases, the optimal value @f; should also increase

in order for the optimality condition in (27) to be satisfied.

In other words,P; > A;; also impliesP; > A;; based on

the relation in (27). Next, the ordering betweé}i and P;  B. Proof of Lemma 1

should be determined. To that aim, the optimal signal values

are expressed aB = aA;; and P; = [$A;;, wherea and  The error probability for a transmission power &f is
(£ are some positive numbers that are larger than one. Th@ﬁpressed a8Q(r v/ P/o) as in (12), where is the standard

the optimality condition in .(2.7_) becomesz““j(0‘/“1‘2’[3/"]2‘_).2 deviation of the channel noise. Based on the cost function in
Bo?/(ac?). From the definition of4;; in the proposition, (16), o is expressed as = /b/(eC — 1), which leads to the
072/03 can be expressed ag/(,—i? — or A (1/of—1/0F) Then, following expression for the error probability:
the optimality condition is stated as
pHmaly condition ! 9(P,C) =nQ(h(P)f(C)) , (31)
2. Bzl _a—1
a_ S A”( E I ) . (28) Whereh(P) £ /P and f(C) £ /(e —1)/b. In order to
B investigate the convexity of (31), the derivatives/ofand f
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are calculated first, which are expressed as of b/(k%(e“ +1)). ThereforeS. is a convex set, ang(P, C)

o 2 o bf2 41 is a strictly convex function over s&i.. |
- 2h o 2bf N
o e , (2= +1) - C. Proof of Proposition 5
T AR3 fr= 4p2f3 (32) The statement in the proposition can be proved via contra-

diction. Suppose that the optimal solution is to switch agion
three different channels, and let the channel indices, reélan
switching factors, and power levels for that optimal saotbe
dg(P,C) denoted by(i, j, k), (A, Aj, A\x) and(P;, P;, Py ), respectively,
o0 =nhf Q(hf), where C; > C; > () without loss of generality. Since
(33) the optimal solution must utilize the maximum average cost

) . . A. (see Proposition 1), eithef; > A. > C; > Cj or
where Q’(x) denotes the first derivative of th@-function. J
(From (33), it is observed that the error probability is é’(: gﬂ' >Tﬁc - C’F fmusrt ho'?" Assume that; E Acb>. q
monotone decreasing function of power and cost as expec x- (The proof for the other scenario can be obtaine

since Q-function is monotone decreasing.) Next, the seconti! & similar manner.) As stated in Proposition 1, the optimal
order partial derivatives are calculated as solution operates at the maximum average power and cost,

which leads to the following equality:
9%g(P,C)

Then, the first-order partial derivatives @fP, C') with respect
to P andC are given by
99(P,C)

S5 = nh'f Q(hf) and

opr— = (W Q"(hf) +nh"fQ(hf) Nzi+ Nz +(1—XN—\)zw=a, (39)
=n (0" = f°r(n')?) Q'(hf) (34) wherez;, = (P;,C;) anda = (4,, A.), as in the proof of
Proposition 4. Consider an alternative solution that dvac
9?g(P,0) 5 between two channels, chanrieind channej, with channel
202 n(hf)°Q"(hf) +nhf"Q (hf) switching factorsy and (1 — v) and powersP; and P;,
= (hf" = K2 F(f)?) Q'(hf) (35) respectively, and utilizes the maximum average power and
92g(P,C) cost; that is,
9 _ ! el NI yaYl
W—Uhhfo(hf)‘H?th(hf) vzi+(1—7)z;=a . (40)
— 2 r2
=7 (1 —hf )h/f/Q/(hf) (36) Based on (39) and (40) and A, can be obtained from the

where the relatioQ” (x) = —x Q'(z) is employed to obtain average cost constraint as = (A — C;)/(C; — Cj) and
the final expressions. From (34)-(36), the 2 Hessian matrix Ai = (Ac — Ck — A;(Cj — C))/(Ci — Ck) First, it is shown
can be formed forg(P,C), and the convexity ofy(P,C) thatA; >~. To that aim, the following inequality is obtained
can be investigated based on the positive definiteness of ff@m the condition\; > ~ based on the definition of; and
Hessian matrix, which requires the leading principal ménor : (Ac — Cx — Aj(Cs — Cx))(Ci — Cj) > (Ac — Cj)(Ci —
to be positive [30]. It noted from (34) that the second-ordérx), which reduces, after some manipulation \toC; + (1 —
derivative with respect td is always positive. Therefore, the\;) Ci > Ac. Since(l Aj) = Ai+ Ak, C; > Ck, and\; C; +
only condition for positive definiteness becomes the determ\; Cj + Ax Cr = A, the inequality/\ Ci+(1=X)Ci > Ac
nant of the Hessian matrix to be positive, which leads, aftéllwayS holds, which verifies thag > ~. Then from (39) and
some manipulation, to the following inequality: (40), z; can be expressed as
b b Ai — L=Xi—Aj
P>52(bf2+2)_n2(e0+1)’ (37) TN T T N

where the final expression is obtained based on the definitibhe remaining part of the proof depends on the values of

(41)

of f;i.e., f(C) = /(e —1)/b. Therefore, the convexity powersF;, P;, and P.
of ¢(P, O) requwes that powerP should be larger than Case 1 If all the power levels satisfy the convexity con-
b/(k%(e€ + 1)) as stated in the lemma. dition in Lemma 1, then the following inequality can be

Finally, it is shown thatS,, as defined in the lemma, is aobtained:
convex set. LetP;, C;) and(Pj, Cj) denote any two elements vg(zi) + (1 =) g(z;)
from set S.. Then, their convex combination is given by
(AP + (1 =X\)P;j,A\C; + (1 —\)Cj), where) € [0,1]. Since =79(2:) + A 9(zj) + (1 =7 = Aj) g(z;) (42)
bothC; andC; are in(Cmm,Cmdx) their convex combination Ai —
resides in the same interval as well. In addition, the convex< 79(2:) +Aj 9(z;) + (1 =7 = 4)) 17—\ 9(=:)
combination of the powers satisfies the condition for Set !
due to the following inequalities: =X =2

P g(Zk)) (43)
b/k? TN
eCi +1 = Xi 9(zi) + Aj 9(z5) + (1 = Xi — Nj) g(zx) (44)

(38) Wwhereg(z;) = g(P;,C;) denotes the average probability of
error as a function of power and cost, as defined in (31). In
where the second inequality follows from the strict contiexi obtaining the inequality in (43), the definition af in (41)

2
AP+ (1= MNP > A /+1+(1—)\)

b/K?
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and the strict convexity of; are employed. Note thaj is the corresponding optimal channel switching factors winen t
strictly convex when the power levels satisfy the condition channel switching is performed between chariregid channel
Lemma 1, which is the assumption in Case 1. In additiosi,only under the average cost limit* = \: C; + A7 Cj and
it is noted that the(l — v — A;) term in (42) is never the average power limitd’ £ \fP; + \:P; > 0.5A4,.7
negative sincey < A; as proved in the previous paragraph angrom Proposition 3min{P;, P/} > UZZA;/UJZ_ Then, sim-
Ai < 1= A; by definition. The inequality in (42)-(44) impliesilar to (24), it can be shown that the convexity condition
that the channel switching between channaind channel in Lemma 1 is satisfied for power levelg* and Py if
with channel switching factors and (1 — v), respectively, g+ < bod /(k2(20202% + bo?)), which is true due fo the
achieves a lower average probability of error than the agitimassumption in the proposition and the fact thielt > 0.5A,,.
solution, which switches among channeélsj, and k with  From (45)-(50), it is concluded that when the assumption in
channel switching factors;, A;, and Ay, respectively. Hence, the proposition holds, for any strategy that performs clefnn
a contradiction arises. Therefore, the strategy that &e#c switching among three different channels, there existshamo
among three channels cannot be optimal. In other words, fgrategy that switches among the same channels with power
any strategy that switches among three channels, thereaexigyels that satisfy the convexity condition in Lemma 1, and
strategy_that performs channel switching .petween two oBlanngchieves a smaller average probability of error. Therefiwe
and achieves a smaller average probability of error. arguments in the previous part of the proof (Case 1) can
Case 2:Suppose that some of the power levels do not satisfa employed to show that there exists a strategy that per-
the convexity condition in Lemma 1. Since the average powgjrms channel switching between two channels and achieves
should be equal tel;, due to Proposition 1, at least one poweg smaller average probability of error than the lower bound
level should be belowA,,. Assume without loss of generalityin (50). Therefore, channel switching among three channels
that P; < A;,. Then, the average probability of error for the;annot be optimal under the condition in the propositidll.
optimal solution that switches among three different cled®in  Acknowledgments: The authors would like to thank Musa
can be bounded from below as follows: Furkan Keskin from Bilkent University for his insightfulre

Xi9(zi) + X g(z) + M 9(zk) ments.

= Aig(zi) + (A + Ae) ()\j 9(2;) + Ak Q(Zk)) (45) RERERENCES

> Nig(zi) + (N + M) (v 9(25) + v g(21)) (46) [1] M. Azizoglu, “Convexity properties in binary detectigroblems,’|EEE
= Nig(zi) + 75 9(2;) + vk 9(21) 47 Trans. Inform. Theoryvol. 42, no. 4, pp. 1316-1321, July 1996.

(2]
with /~\j £ /\j/(/\j-f—/\]g), ;\kNé )\k/()\j-i-)\k), U ~é ()\j—l—)\k)uj,
IZ]C £ ()\j:f— Ak )V, Z;j e (PﬁCj), andzy e (P, Ck), where
P; and P, are the optimal power levels ang and v, are
the corresponding optimal channel switching factors whnen t
channel switching is performed between chanrahd channel
k only under the average cost limit, £ A Cj+ A, C and
the average power limitl, £ X\; P; + A, P, > A,.° Since
(Pj, Py) and(v;,v,) are the solution of the optimal channel
switching problem in the presence of changiednd channel
k only under the average power limi, and the average
cost limit A., the average probability of error is bounded
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i 9(zi) + 05 9(25) + on g(21)

(3]

(4

(5]

(8]

[10]

=N +75) (A 9(zi) + X 9(25)) + 7n 9(2) (48)
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[12]
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