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Abstract—The optimal channel switching problem is studied
for average capacity maximization in the presence of additive
white Gaussian noise channels and channel switching delays.
First, an optimization problem is formulated for the maxi-
mization of the average channel capacity considering channel
switching delays and constraints on average and peak powers.
Then, an equivalent optimization problem is obtained to facilitate
theoretical investigations. The optimal strategy is derived and
the corresponding average capacity is specified when channel
switching is performed among a given number of channels. Based
on this result, it is shown that channel switching among morethan
two different channels is not optimal. In addition, the maximum
average capacity achieved by the optimal channel switching
strategy is formulated as a function of the channel switching
delay parameter and the average and peak power limits. Then,
scenarios under which the optimal strategy corresponds to the
exclusive use of a single channel or to channel switching between
two channels are described. Furthermore, sufficient conditions
are obtained to determine when the optimal single channel
strategy outperforms the optimal channel switching strategy.
Numerical results are presented to provide examples of the
theoretical results and to illustrate effects of channel switching
delays.

Index Terms—Channel switching, capacity, switching delay,
time sharing.

I. I NTRODUCTION

Optimal resource allocation is an important approach for
enhancing performance of communication systems. One com-
mon metric that is optimized in resource allocation problems is
the channel capacity [1]. In [2], the optimal dynamic resource
allocation in fading broadcast channels is investigated for code
division, time division, and frequency division in the presence
of perfect channel side information at the transmitter and
the receivers, and ergodic capacity regions are obtained. In
[3], an adaptive resource allocation technique is proposedfor
multiuser orthogonal frequency division multiplexing (OFDM)
systems in the presence of proportional fairness constraints
among users, and optimal and suboptimal algorithms are
designed for sum capacity maximization under constraints on
the minimum required data rate for each user. Optimal joint
power and channel allocation strategies are studied in [4]
for cognitive radio systems, and a near-optimal algorithm is
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proposed for the total sum capacity maximization of power-
limited secondary users in a centralized cognitive radio system.
In [5], capacity maximizing antenna selection is investigated
for a multiple-input multiple-output (MIMO) system and low-
complexity antenna subset selection algorithms are provided. It
is shown that near optimal capacity of a full-complexity system
can be achieved by selecting the number of antennas at the
receiver to be greater than or equal to the number of antennas
at the transmitter. In [6], the optimal antenna selection is
studied in correlated channels for both the transmitter and
receiver to reduce the number of radio frequency (RF) chains.
The proposed algorithm leads to a near-optimal capacity that
is achieved without antenna selection. In addition to the
capacity, other metrics such as probability of error, probability
of detection, and outage probability are considered in various
resource allocation problems; e.g., [7]–[15]. For example, in
the detector randomization problem, the aim is to minimize the
average probability of error of a communication system by op-
timizing time sharing factors and transmit power (signal) levels
corresponding to different detectors at the receiver [7]–[9].
Also, a jammer can maximize the average probability of error
or minimize the detection probability of a victim receiver by
performing optimal time sharing among multiple power levels
[12]–[14]. In [14], the optimal power allocation is performed
for an average power constrained jammer to minimize the
detection probability of an instantaneously and fully adaptive
receiver employing the Neyman-Pearson criterion, and it is
shown that the optimal jamming performance is achieved via
time sharing between at most two different power levels. In
[15], the optimal time sharing of power levels is implemented
for minimizing the outage probability in a flat block-fading
Gaussian channel under an average power constraint and in the
presence of channel distribution information at the transmitter.

In the presence of multiple channels between a transmitter
and a receiver, optimal time sharing and power allocation can
be implemented for performance improvement [12], [16]–[20].
In other words, channel switching, which involves the use of
each channel with a certain fraction of time and a certain
power level, can be optimized for enhancing performance of a
communication system. In [12], the channel switching problem
is studied for the optimal detection of binary antipodal signals
under an average power constraint, and it is shown that the
optimal strategy is either to communicate over one channel
exclusively, or to switch between two channels with a certain
time sharing factor. In [18], the channel switching problemis
analyzed for anM -ary communication system over an additive
noise channel in the presence of time sharing among multiple
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signal constellations over each channel. It is proved that the
optimal strategy that minimizes the average probability of
error under an average power constraint corresponds to one
of the following techniques: deterministic signaling (i.e., use
of one signal constellation) over a single channel; time sharing
between two different signal constellations over a single chan-
nel; or, switching (time sharing) between two channels with
deterministic signaling over each channel [18]. The study in
[19] investigates the optimal channel switching problem over
Gaussian channels in the presence of average power and cost
constraints. In particular, each channel is assigned a certain uti-
lization cost, and the average probability of error is minimized
in the presence of an average cost constraint. It is shown that
the optimal strategy involves the use of at most three different
channels [19]. In [20], the optimal channel switching strategy
is developed for the maximization of average capacity, and it
is stated that the optimal strategy can be realized by channel
switching between at most two different channels. Also, a low-
complexity optimization problem is presented to obtain the
optimal channel switching strategy.

In most of the previous studies on optimal channel switching
strategies, delays (costs) associated with the channel switching
operation are not considered [12], [16]–[20]. However, dueto
hardware limitations, the channel switching operation takes
a certain time in practice. In particular, when switching toa
new channel, the parameters at the transmitter and the receiver
are set according to the characteristics (i.e., frequency)of the
new channel, which induces a channel switching delay and
consequently reduces the available time for data transmission
[21], [22]. Most of the studies in the literature omit the channel
switching overhead (delay) by assuming that it is negligible
due to improved hardware technologies. However, the study
in [23] shows that the state-of-the-art algorithms relatedto
scheduling in wireless mesh networks experience performance
degradation in the presence of the channel switching latency.
Similarly, in [24], the channel switching cost is considered
in the design of the energy efficient centralized cognitive
radio networks, and an energy efficient heuristic scheduleris
proposed to allocate each idle frequency to the cognitive radio
with the highest energy efficiency at that frequency. In [25],
effects of channel switching time and energy on cooperative
sensing scheduling are analyzed for cognitive radio networks.
In [26], a spectrum aware routing algorithm for multi-hop
cognitive radio networks is proposed with the consideration
of the channel switching overhead.

Although the channel switching problem has been inves-
tigated from various perspectives, no studies in the litera-
ture have considered channel switching for average capacity
maximization in the presence of channel switching delays. In
this study, the optimal channel switching strategy is proposed
for average capacity maximization under power constraints
and considering a time delay for each channel switching
operation during which data communication cannot be per-
formed. After presenting an optimization theoretic formu-
lation of the proposed problem, an equivalent optimization
problem is obtained to facilitate theoretical investigations. It
is observed that consideration of channel switching delays
leads to significant differences in the formulation and analyses

Fig. 1. Block diagram of a communication system in which transmitter and
receiver can switch amongK channels.

compared to those obtained by omitting the effects of channel
switching delays [20]. First, the optimal strategy is obtained
and the corresponding average capacity is specified when
channel switching is performed among a given number of
channels. Based on this result, it is then shown that channel
switching among more than two different channels cannot
be optimal. Also, the maximum average capacity achieved
by the optimal channel switching strategy is formulated for
various values of the channel switching delay parameter and
the average and peak power limits. In addition, scenarios
under which the optimal strategy corresponds to the utilization
of a single channel or to channel switching between two
channels are described. Furthermore, sufficient conditions are
derived to determine when the optimal single channel strategy
outperforms the optimal channel switching strategy. Numerical
examples are presented for the theoretical results and effects
of channel switching delays are investigated.

The main contributions of this study can be summarized as
follows:

• The channel switching problem for average capacity
maximization in the presence of channel switching delays
is studied for the first time in the literature.

• An alternative optimization problem, which facilitates
theoretical investigations, is formulated in terms of the
number of channels employed in the channel switching
process (Proposition 1 and Proposition 2).

• When the channel switching is to be performed among
a certain number of channels, the optimal strategy and
the corresponding average capacity are derived (Proposi-
tion 3).

• It is shown that channel switching among more than two
different channels is not optimal, and an expression for
the maximum average capacity of the optimal channel
switching strategy is presented (Proposition 4).

• Conditions are specified for the cases in which the opti-
mal strategy corresponds to the exclusive use of a single
channel or to channel switching between two channels
(Proposition 5 and Remark 4).

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a communication system in whichK different
channels are available in the communication link between
a transmitter and a receiver. The channels are assumed to
introduce independent additive Gaussian noise with constant
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spectral density levels over the channel bandwidths.1 It is
assumed that the spectral density levels and the bandwidths
of the channels can be different in general. The transmitter
and the receiver can switch among theseK channels in order
to enhance the capacity of the communication system. At
any given time, only one channel can be utilized for the
transmission and the transmitter informs the receiver about
which channel is occupied for the given time so that the
transmitter and the receiver are synchronized [12], [20]. Fig. 1
illustrates the system withK different channels with possibly
various bandwidths and noise levels. In practice, the trans-
mitter can perform communication over one channel for a
certain fraction of time; then, it switches to another channel
and continues communication for another fraction of time, and
so on. This scenario is applicable for cognitive radio systems
in which a secondary user utilizes multiple available frequency
bands that are not in use by primary users [30], [31]. Hence,
secondary users can improve their average channel capacity
by employing the channel switching strategy proposed in this
study.

The main motivation behind the use of a single channel
at a time is to realize a system with low cost/complexity.
Since the channels considered in the system model in Fig. 1
have different center frequencies which can be dispersed over
a wide range of frequencies in general (e.g., in cognitive
radio systems [30], [31]), simultaneous utilization of multiple
channels requires either multiple RF units (one for each
channel) at the transmitter and the receiver, or single RF
units that operate over the whole possible range of frequencies
(i.e., over a very wide bandwidth)2. Therefore, simultaneous
utilization of multiple channels leads to high complexity/cost
compared to the use of one channel at a time. In the latter case,
the single RF units at the transmitter and the receiver can be
designed for a relatively narrowband scenario, and only one
channel is used at a time by tuning the filters and amplifiers in
the RF units and adjusting the upconversion/downconversion
frequency according to the employed channel [32], [33].

In fact, if the frequency bands of two channels are adjacent
to each other, they can be treated as a single channel with a
larger bandwidth if the total bandwidth is within the operating
range of the RF components. Hence, the theoretical analysisin
the manuscript is also valid for scenarios in which two (multi-
ple) such frequency bands (channels) are used simultaneously.
In that case, all the theoretical results would hold by updating
the definitions of the channels.

In the considered system model, before data communication
commences, the transmitter determines a channel switching
strategy that will be employed during a time duration ofTd
seconds and informs the receiver about the channels to be
utilized and the respective utilization times according tothat
strategy. It is assumed that the channel characteristics donot
change duringTd seconds. To start data communication, the

1The additive Gaussian channel is an accurate model in the presence
of thermal noise. In addition, it can also be employed in the presence
of interference and jamming if they can be approximated by a Gaussian
distribution; e.g., multiuser interference due to a large number of users with
similar power levels and Gaussian jamming [27]-[29].

2In this case, very high rates would be required for analog-to-digital
converters, which would lead to increased cost and high power consumption.

transmitter and the receiver set their parameters for the first
channel to be utilized (i.e., they switch to the same channel),
and this process is assumed to take a time durationTcs
seconds, which is called thechannel switching delay (cost).
During Tcs seconds, there is no data communication and
consequently no power is transmitted. Then, data transmission
starts and lasts for a certain time duration based on the
employed strategy. Next, the transmitter and the receiver
switch to the second channel to be utilized, which again takes
Tcs seconds, and then data communication occurs over that
channel for a specified time. The process continues in this
manner according to the employed channel switching strategy,
which may utilize a subset of all channels in general. For
the next period ofTd seconds, the optimal channel switching
strategy is calculated again according to the new channel
characteristics, and communication continues in the same
fashion as described above.

In Fig. 2, a sample time frame structure is presented for
channel switching over4 channels. In this case, the transmitter
and the receiver communicate during3Td seconds. In first
Td seconds, the channel switching strategy is to communicate
over channel1 and channel3 for T 1

1 andT 1
3 seconds, respec-

tively, whereT 1
1 + T 1

3 = Td. Before the data transmission
over each channel, there exists a channel switching time
(cost) of Tcs seconds, which is required for the transmitter
and the receiver to set their parameters for communication
over the desired channel. During the secondTd seconds, the
communication is performed over only channel2 for a time
duration of T 2

2 seconds, whereT 2
2 = Td, and there is no

channel switching to another channel in this case. Finally,
channels1, 2 and3 are utilized for the communication in the
lastTd seconds. It is important to note that it is not necessary
to utilize all the channels in a given channel switching strategy.
For example, channel4 is not utilized in any of the channel
switching strategies in Fig. 2.

LetBi andNi/2 denote, respectively, the bandwidth and the
constant power spectral density level of the additive Gaussian
noise for channeli, wherei ∈ {1, . . . ,K}. Then, the capacity
of channeli is expressed as

Ci(P ) = Bi log2

(

1 +
P

NiBi

)

bits/sec (1)

whereP represents the average transmit power [34].

The main aim of this study is to characterize the optimal
channel switching strategy that maximizes the average ca-
pacity of the communication system in Fig. 1 under average
and peak power constraints and in the presence of channel
switching delays. To that aim, channel time-sharing (channel
switching) factors are expressed asλ1 , T1

Td
, . . . , λK , TK

Td
,

whereTi denotes the amount of time allocated for channel
i and Td is the duration over which the channel switching
strategy is employed. In addition,ε , Tcs

Td

is defined as the
channel switching delay factor, and(λi−ε)I{λi>0} represents
the fraction of time when channeli is used for communica-
tion, whereI{λi>0} denotes the indicator function, which is
equal to1 if λi > 0 and 0 otherwise. Then, the following
optimal channel switching problem is proposed for capacity
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Fig. 2. A sample time frame structure of a communication system in which transmitter and receiver can switch among4 channels.

TABLE I
SYMBOLS AND THEIR DEFINITIONS

Symbol Definition
K Number of channels in the system
Bi Bandwidth of channeli
Ni Noise power spectral density level for channeli
ε Channel switching delay factor
Ppk Peak power limit
Pav Average power limit
Pi Average transmit power allocated to channeli

Ci(P ) Capacity of channeli for average powerP

maximization in the presence of channel switching delays:

max
{λi,Pi}K

i=1

K
∑

i=1

I{λi>0} (λi − ε)Ci(Pi)

subject to
K
∑

i=1

I{λi>0} (λi − ε)Pi ≤ Pav ,

Pi ∈ [0, Ppk] , ∀i ∈ {1, . . . ,K} ,
K
∑

i=1

λi = 1 , λi ∈ {0} ∪ [ε, 1] , ∀i ∈ {1, . . . ,K}

(2)

whereCi(Pi) is as in (1),Pi is the average transmit power
allocated to channeli, Ppk denotes the peak power limit, and
Pav represents the average power limit for the transmitter. It
is assumed thatPav < Ppk and 0 < ε < 1. From (2), it
is noted that due to the channel switching delay, a channel
can be utilized only if its time-sharing factor is larger than or
equal to the channel switching delay factor,ε. In addition,ε
fractions are subtracted from both the average capacity andthe
average power terms since no data transmission occurs during
channel switching. It should be emphasized that the objective
function in (2) is referred to as the “average” capacity due
to the averaging operation over time, considering the use of
different channels and the channel switching delays.

For convenience, the symbols that are frequently used
throughout the manuscript are summarized in Table I.

III. O PTIMAL CHANNEL SWITCHING WITH SWITCHING

DELAYS

In its current form, the optimization problem in (2) is
difficult to solve in general since it is not a convex optimization
problem and requires a search over a2K dimensional space.
Therefore, our aim is to derive an equivalent formulation of
the problem in (2), which leads to a low-complexity solution

for the optimal channel switching strategy. To achieve sucha
formulation, the optimization problem in (2) is first converted
into another problem, the solution of which achieves the
same maximum average capacity as (2) does. In the following
proposition, this alternative optimization problem is presented.

Proposition 1: Define setA as A = {1, . . . ,K} and let
P (A) denote the power set of setA. Then, the solution of the
following optimization problem results in the same maximum
value that is achieved by the problem in(2):

max
K̃∈A

max
S∈BK̃

max
{νsi ,Psi

}K̃

i=1

K̃
∑

i=1

(νsi − ε)Csi(Psi )

subject to
K̃
∑

i=1

(νsi − ε)Psi ≤ Pav

Psi ∈ [0, Ppk] , ∀i ∈ {1, . . . , K̃}

K̃
∑

i=1

νsi = 1 , νsi ≥ ε , ∀i ∈ {1, . . . , K̃} (3)

wheresi represents theith element of setS, andBK̃ is defined
as

BK̃ , {χ ∈ P (A) | |χ| = K̃} (4)

for K̃ ∈ {1, . . . ,K}, with |χ| denoting the cardinality of set
χ.

Proof: Please see Appendix A.

In the optimization problem in (3), parameter̃K indicates
the number of employed channels in a channel switching
strategy; that is, the optimization is performed for all possible
numbers of employed channels explicitly. In this way, the
indicator functions in (2) are removed. Since there existK
available channels in the system, the optimization problemin
(3) requires a search over all possible values ofK̃ ∈ A, where
A = {1, . . . ,K}. For eachK̃, setBK̃ in (4) consists of the
sets that are subsets of setA with K̃ elements; that is,BK̃

corresponds to all possiblẽK combinations ofK different
channels. Hence,BK̃ consists of

(

K
K̃

)

sets. For example, if
K = 3 and K̃ = 2, then BK̃ = {{1, 2}, {1, 3}, {2, 3}}.
For each element ofBK̃ , which is denoted byS in (3), the
optimization is performed over{νsi , Psi}

K̃
i=1, wheresi selects

the ith channel inS andνsi andPsi denote, respectively, the
time-sharing factor and the average transmit power allocated
to channelsi; i.e., theith employed (selected) channel.

The optimization problem in (3) is not only more convenient
than the one in (2), which involves indicator functions, butalso
leads to simpler formulations of the optimal channel switching
problem. To that end, the following proposition provides a
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scaled and more compact version of the optimization problem
in (3), the solution of which achieves the same maximum
average capacity as (2) and (3) do.

Proposition 2: The optimization problem in(3) can be
expressed in the form of the following optimization problem:

max
K̃∈A

max
S∈BK̃

max
{µsi

,Psi
}K̃

i=1

(

1− K̃ε
)

K̃
∑

i=1

µsi Csi(Psi)

subject to
K̃
∑

i=1

µsiPsi ≤
Pav

(

1− K̃ε
)

Psi ∈ [0, Ppk] , ∀i ∈ {1, . . . , K̃}

K̃
∑

i=1

µsi = 1 , µsi ≥ 0 , ∀i ∈ {1, . . . , K̃}

K̃ <
1

ε
(5)

whereA, BK̃ , and si are as defined in Proposition 1.
Proof: Please see Appendix B.

The optimization problem in (5) can be separated into two
optimization problems based on the value ofK̃ as follows:

• Case-1 (Single Channel):For the case in which a single
channel is employed for communication, that is,K̃ = 1,
the optimization problem in (5) can be stated as follows:

max
S∈B1

max
µs1

,Ps1

(1− ε)µs1 Cs1(Ps1)

subject toµs1Ps1 ≤
Pav

(1− ε)

Ps1 ∈ [0, Ppk]

µs1 = 1 , µs1 ≥ 0

ε < 1 (6)

whereB1 = {{1}, {2}, . . . , {K}} and s1 denotes the
(first) element ofS. The optimization problem in (6)
achieves the maximum average capacity that can be
obtained by employing a single channel during data
communication. This approach corresponds to the case
of no channel switching and is easily solvable by using
simple algebra. LetCscs denote the solution of (6). Then,
the achieved maximum capacity via the optimalsingle
channel strategycan be expressed as

Cscs = max
l∈{1,...,K}

(1− ε)Cl

(

min

{

Pav

(1− ε)
, Ppk

})

(7)

and the channel indexm employed in this strategy can
be obtained as

m = arg max
l∈{1,...,K}

Cl

(

min

{

Pav

(1− ε)
, Ppk

})

. (8)

In the optimal single channel strategy, it is optimal to use
all the available and attainable power,min

{

Pav

(1−ε) , Ppk

}

over a single channel sinceCi(P ) in (1) is a monotone
increasing and continuous function.

• Case-2 (Channel Switching):Consider the optimization
problem in (5) in the presence of channel switching; that

is, K̃ ≥ 2. Then, the following optimization problem is
obtained:

Ccss = max
K̃∈A\{1}

max
S∈BK̃

max
{µsi

,Psi
}K̃

i=1

(

1− K̃ε
)

K̃
∑

i=1

µsi Csi(Psi)

subject to
K̃
∑

i=1

µsiPsi ≤
Pav

(

1− K̃ε
)

Psi ∈ [0, Ppk] , ∀i ∈ {1, . . . , K̃}

K̃
∑

i=1

µsi = 1 , µsi ≥ 0 , ∀i ∈ {1, . . . , K̃}

K̃ <
1

ε
(9)

The solution of the optimization problem in (9) results in
the maximum average capacity that can be achieved by
employing at least two different channels. In general, it is
difficult to obtain the solution of (9). Therefore, further
analysis is performed in the remainder of this study to
obtain the optimal solution of (9) with low computational
complexity.

Based on Case-1 and Case-2, the solution of (5) corresponds
to either the single channel strategy or the channel switch-
ing strategy. LetCscs and Ccss denote the solutions of the
optimization problems in (7) and (9), respectively. Then, the
solution of (5) can be calculated as

max {Cscs, Ccss} . (10)

As discussed in Case-1, the optimal single channel strategy
has a simple closed-form solution. However, it is difficult
to solve the channel switching problem in the form of (9).
Therefore, the following proposition is presented to simplify
the optimization problem in (9).

Proposition 3: Assume that̄K ≥ 2 channels are employed
in the channel switching strategy andε < 1/K̄ holds.
Then, the maximum average capacity achieved via the optimal
channel switching strategy over̄K channels can be expressed
as

ψ(K̄) =







































max
P̃1∈[ Pav

1−K̄ε
, Ppk]

P̃2∈[0, Pav
1−K̄ε

)

(

1− K̄ε
)

(

Pav
1−K̄ε

−P̃2

P̃1−P̃2
Cmax(P̃1)

+
P̃1−

Pav
1−K̄ε

P̃1−P̃2
Cmax(P̃2)

)

, if Pav

1−K̄ε
< Ppk

(

1− K̄ε
)

Cmax(Ppk), otherwise
(11)

whereCmax(P ) is defined as

Cmax(P ) , max{C1(P ), . . . , CK(P )} . (12)

Proof: Please see Appendix C.

Remark 1: For the case ofPav/(1 − K̄ε) ≥ Ppk in (11),
the average capacity of

(

1− K̄ε
)

Cmax(Ppk) can be achieved
by the following approach: First, switching to the best channel
that achieves the maximum capacity for power levelPpk and
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transmitting at power levelPpk over that channel3 for a time
fraction of

(

1− K̄ε
)

; then, switching among any(K̄ − 1)
channels, except for the best channel, without transmitting any
power (i.e., by only consuming a time fraction ofε for each
channel). As will be proved towards the end of this section,
it is always better to employ a single channel and not to
perform channel switching in the case ofPav/(1−K̄ε) ≥ Ppk.
Hence, the solution of the optimal channel switching problem
in (5) does not correspond to

(

1− K̄ε
)

Cmax(Ppk) for K̄ ≥ 2.
Therefore, the approach in this remark is optimal only under
the condition thatK̄ ≥ 2 channels are employed, but not
optimal for the overall problem in(5).

Proposition 3 provides a significant simplification for the
solution of the optimization problem in (9) and leads to
the following formulation for the optimal channel switching
strategy (Case-2):

max
K̃∈A\{1}

ψ(K̃)

subject toK̃ <
1

ε
(13)

whereψ(K̃) is as in (11). Compared to (9), the problem in
(13) has significantly lower computational complexity since
its search space is only two-dimensional for each feasibleK̃
(see (11)) whereas a search over a2K̃ dimensional space is
required in (9) for each(K̃, S) pair.

Towards the aim of specifying the solution of (13), the
following lemma is presented first, which states a useful
inequality forCmax(·) in (12).

Lemma 1: Let Cmax(P/α) and Cmax(P/β) denote the
capacities of the best channels for power levelsP/α and
P/β, respectively, whereCmax is as in (12), α, β ∈ (0, 1)
andP > 0. Then, the following inequality holds forα > β :

αCmax

(

P

α

)

> β Cmax

(

P

β

)

(14)

Proof: Please see Appendix D.

It is noted that althoughCmax in (12) is not a concave
function in general (cf. Fig. 3), the inequality in (14) always
holds due to the fact that the capacity curve for each channelis
nonnegative, concave, monotone increasing, and continuous.

In the following proposition, a general solution for (13) is
provided, and it is shown that the optimal channel switching
strategy (Case-2) corresponds to switching between two of the
channels.

Proposition 4: The optimal channel switching strategy
(Case-2) is to switch between two channels; that is, switching
among more than two channels is not optimal. In addition,
the maximum average capacityCcss achieved by the optimal
channel switching strategy, which is obtained as the solution

3In the case of multiple channels that achieve the maximum capacity for
power levelPpk, any of them can be chosen as the best channel.

of (13), can be expressed as follows:

Ccss =



















































0, if ε ≥ 1
2

(1− 2ε)Cmax(Ppk), if ε < 1
2 and Pav

1−2ε ≥ Ppk

max
P̃1∈[ Pav

1−2ε
,Ppk]

P̃2∈[0, Pav
1−2ε )

(1− 2ε)

(

Pav
1−2ε

−P̃2

P̃1−P̃2
Cmax(P̃1)

+
P̃1−

Pav
1−2ε

P̃1−P̃2
Cmax(P̃2)

)

, otherwise

(15)

Proof: Please see Appendix E.
Based on Proposition 4, the optimal channel switching

strategy can be specified in various scenarios. For the first
scenario in (15), i.e., forε ≥ 1/2, Ccss = 0 since channel
switching is not feasible, as noted from the constraint in (13).
For ε < 1/2 and Pav/(1 − 2ε) ≥ Ppk, the solution of the
optimal channel switching problem is to transmit at power
level Ppk over the best channel (that achieves the maximum
capacity for power levelPpk) for a time fraction of(1− 2ε),
then switching to another channel and not transmitting any
power (i.e., by consuming a time fraction ofε), which results
in Ccss = (1 − 2ε)Cmax(Ppk) (see Remark 1). Finally, for
ε < 1/2 andPav/(1− 2ε) < Ppk, the achieved maximum av-
erage capacity can be calculated based on (65) in Appendix C
asCcss = (1−2ε)(µ∗Cmax(P̃

∗
1 )+(1−µ∗)Cmax(P̃

∗
2 )), where

P̃ ∗
1 and P̃ ∗

2 are the optimizers of the maximization problem
in (15),

µ∗ =

(

Pav

1− 2ε
− P̃ ∗

2

)

/(

P̃ ∗
1 − P̃ ∗

2

)

, (16)

and the optimal channel switching strategy is to switch be-
tween channeli and channelj with power levelsP̃ ∗

1 andP̃ ∗
2 ,

respectively, wherei andj are given by4

i = arg max
l∈{1,...,K}

Cl(P̃
∗
1 ) (17)

j = arg max
l∈{1,...,K}

Cl(P̃
∗
2 ) . (18)

Remark 2: It is important to note thatµ∗ in (16) and
1− µ∗ do not directly correspond to the time-sharing factors
defined in the optimization problem in(2). In terms of the
notation of the optimization problem in(2), the optimal time-
sharing factors, denoted byλ∗i andλ∗j , for the optimal channel
switching strategy between channeli and channelj can be
obtained based on the transformations in Proposition 1 and
Proposition 2 as

λ∗i = (1− 2ε)µ∗ + ε (19)

λ∗j = (1− 2ε)(1− µ∗) + ε (20)

where µ∗ is as defined in(16). Since the optimal channel
switching strategy is to switch between two channels as stated
in Proposition 4,λ∗k = 0 for k ∈ {1, . . . ,K} \ {i, j}.

Next the solutions of the optimal single channel strategy
in (7) and the optimal channel switching strategy in (15) are

4In the case of multiple maximizers in (17) or (18), any of themcan be
chosen for the optimal strategy.
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considered together. Overall, the optimal strategy corresponds
to one of them, which achieves the higher average capacity,
as expressed in (10).

• If ε ≥ 1/2, then the optimal single channel strategy
outperforms the optimal channel switching strategy since
Cscs in (7) always satisfiesCscs > 0 whereasCcss = 0
in this case.

• If ε < 1/2 andPav/(1 − 2ε) ≥ Ppk, then the following
expressions can be obtained forCscs:

Cscs = (1− ε)

(

Cmax

(

Pav

1− ε

)

I{ Pav
1−ε

<Ppk}

+ Cmax(Ppk)I{ Pav
1−ε

≥Ppk}

)

(21)

> (1− 2ε)

(

Cmax

(

Pav

1− 2ε

)

I{ Pav
1−ε

<Ppk}

+ Cmax(Ppk)I{ Pav
1−ε

≥Ppk}

)

(22)

≥ (1− 2ε)
(

Cmax(Ppk)I{ Pav
1−ε

<Ppk}

+ Cmax(Ppk)I{ Pav
1−ε

≥Ppk}

)

(23)

= (1− 2ε)Cmax(Ppk) (24)

where the equality in (21) is obtained from (7), the
inequality in (22) follows from (14) in Lemma 1, the
relation in (23) is due to the conditionPav/(1−2ε) ≥ Ppk

and the monotone increasing property ofCmax in (12),
and the final expression in (24) follows from the defini-
tion of the indicator function. From (21)-(24), is obtained
that Cscs > (1 − 2ε)Cmax(Ppk) = Ccss; that is, the
optimal single channel strategy achieves a higher average
capacity than the optimal channel switching strategy for
ε < 1/2 andPav/(1− 2ε) ≥ Ppk.

• Finally, for the case ofε < 1/2 andPav/(1−2ε) < Ppk,
the optimal strategy is either the single channel strategy
or the channel switching strategy, and the achieved max-
imum average capacity is expressed as

Cmax
av = max {Cscs, Ccss} (25)

whereCscs is as in (7) andCcss can be calculated as
specified in (15), namely,

max
P̃1∈[ Pav

1−2ε
,Ppk]

P̃2∈[0, Pav
1−2ε )

(1− 2ε)

(

Pav

1−2ε − P̃2

P̃1 − P̃2

Cmax(P̃1)

+
P̃1 −

Pav

1−2ε

P̃1 − P̃2

Cmax(P̃2)

)

. (26)

Remark 3: The fact that the optimal single channel strat-
egy outperforms the optimal channel switching strategy for
ε ≥ 1/2 is valid not only for the capacity metric in(1)
but also for any performance metric that is a nonnegative
function of the average transmit power. Similarly, the result in
Proposition 3 can be extended for any performance metric
that is a continuous and bounded function of the transmit
power P for P ∈ [0, Ppk]. On the other hand, in the
proof of Proposition 4, additional properties of nonnegativity,

monotonicity, and concavity are also employed since Lemma 1
is utilized (see Appendix D and Appendix E). For example, the
capacity of a discrete memoryless channel (not necessarily
Gaussian) with average transmit power constraintP is a
nondecreasing, concave, and continuous function ofP [35].

For the case ofε < 1/2 and Pav/(1 − 2ε) < Ppk,
the following result can be obtained in a similar fashion to
Proposition 2 of [20], which presents a sufficient condition
for the optimal single channel strategy to achieve a higher
average capacity than the optimal channel switching strategy.

Proposition 5: Suppose thatε < 1/2 andPav/(1− 2ε) <
Ppk hold, andCmax(P ) in (12) is first-order continuously
differentiable in an interval aroundPav/(1 − 2ε). Then,
the optimal single channel strategy outperforms the optimal
channel switching strategy in terms of the maximum average
capacity if

(P − Pav)
Bi∗ log2 e

(1− 2ε)Ni∗Bi∗ + Pav

≥ Cmax

(

P

1− 2ε

)

− Cmax

(

Pav

1− 2ε

)

(27)

for all P ∈ [0, (1 − 2ε)Ppk], where i∗ =
arg maxi∈{1,...,K}Ci

(

Pav

1−2ε

)

.
Proof: Please see Appendix F.

Based on Proposition 5, if the condition in (27) is satisfied
for the case ofε < 1/2 and Pav/(1 − 2ε) < Ppk, and
Cmax(P ) in (12) is first-order continuously differentiable in
an interval aroundPav

1−2ε , then the optimal strategy corresponds
to the optimal single channel strategy and there is no need
for channel switching. Otherwise, the optimal strategy cannot
be directly determined and it requires the comparison of the
average capacities obtained by the optimal single channel and
the optimal channel switching strategies.

Remark 4: Overall, the solution of the optimal channel
switching problem in the presence of switching delays can be
specified as follows:

• If ε ≥ 1/2 or if ε < 1/2 and Pav/(1 − 2ε) ≥ Ppk,
then the optimal strategy is to transmit over a single
channel, which has the maximum capacity for power level
min

{

Pav

(1−ε) , Ppk

}

(see(7) and (8)).
• If ε < 1/2 andPav/(1− 2ε) < Ppk,

– if Cmax(P ) in (12) is first-order continuously dif-
ferentiable in an interval aroundPav/(1 − 2ε) and
the condition in(27) holds, then the optimal strategy
is to transmit over a single channel, which has the
maximum capacity for power levelPav/(1− ε).

– otherwise, depending on which one achieves a higher
average capacity, the optimal solution is either trans-
mission over a single channel that has the max-
imum capacity for power levelmin

{

Pav

(1−ε) , Ppk

}

or channel switching between channeli and chan-
nel j with time-sharing factorsλ∗i = (1 −

2ε)
(

Pav

1−2ε − P̃ ∗
2

)

/(P̃ ∗
1 − P̃ ∗

2 ) + ε and λ∗j = 1 −

λ∗i = (1 − 2ε)
(

P̃ ∗
1 − Pav

1−2ε

)

/(P̃ ∗
1 − P̃ ∗

2 ) + ε (see

Remark 2) and power levelsP ∗
i = P̃ ∗

1 andP ∗
j = P̃ ∗

2 ,
respectively, wherei and j are given by(17) and
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Fig. 3. Capacity of each channel versus power, whereB1 = 1MHz, B2 =
5MHz, B3 = 10MHz, N1 = 10−12 W/Hz,N2 = 10−11 W/Hz, andN3 =
10−11 W/Hz.

(18), and P̃ ∗
1 and P̃ ∗

2 are the optimizers of(26).

IV. N UMERICAL RESULTS

In this section, numerical examples are presented to in-
vestigate the effects of the channel switching delay on the
proposed optimal channel switching strategy, and to compare
performance of the optimal channel switching and optimal
single channel strategies in terms of average capacity maxi-
mization. Consider a scenario withK = 3 channels where the
bandwidths and the noise levels (cf. (1)) are given byB1 =
1MHz, B2 = 5MHz, B3 = 10MHz, N1 = 10−12 W/Hz,
N2 = 10−11 W/Hz, andN3 = 10−11 W/Hz. Suppose that the
peak power constraint and the channel switching delay factor
in (2) are set toPpk = 0.1mW andε = 0.1, respectively. In
Fig. 3, the capacity of each channel is plotted versus power
based on the capacity formula in (1). For the scenario in Fig.3,
the proposed optimal channel switching strategies and the
optimal single channel strategy are calculated for variousav-
erage power limits (Pav), and the achieved maximum average
capacities are plotted versusPav in Fig. 4. As discussed in the
previous section, the optimal single channel strategy achieves
a capacity of(1− ε)Cmax (φ), whereφ , min

{

Pav

(1−ε) , Ppk

}

andCmax(φ) = max{C1(φ), C2(φ), C3(φ)} in the considered
scenario. It is observed from Fig. 3 and Fig. 4 thatCmax(φ) =
C1(φ) for Pav ∈ (0, 0.0426)mW andCmax(φ) = C3(φ) for
Pav ∈ [0.0426, 0.1]mW; that is, channel 1 is the best channel
up to Pav = 0.0426mW, and channel 3 is the best after that
power level. Among the optimal channel switching strategies
discussed in the previous section, it can be observed from
Fig. 4 that the optimal channel switching strategy with two
channels outperforms the optimal channel switching strategy
with three channels for allPav ∈ [0, 0.1]mW in accordance
with Proposition 4. Overall, the optimal strategy is to employ
the optimal channel switching strategy with two channels for
Pav ∈ (0.0332, 0.0582)mW and the optimal single channel
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Fig. 4. Average capacity versus average power limit for the optimal channel
switching and the optimal single channel strategies for thescenario in Fig. 3,
wherePpk = 0.1mW.

strategy forPav ∈ [0, 0.0332]∪[0.0582, 0.1]mW. From (15) in
Proposition 4, the behaviour of the optimal channel switching
strategy with two channels in Fig. 4 can be explained as
follows: ForPav/(1− 2ε) ≥ Ppk; that is, forPav ≥ 0.08mW,
Ccss in (15) is given by(1− 2ε)Cmax(Ppk) = 0.8Cmax(0.1).
On the other hand, forPav < 0.08mW, Ccss is calculated
from the third expression in (15). In a similar fashion, based
on (11) in Proposition 3, the optimal channel switching
strategy with three channels achieves an average capacity of
(1 − 3ε)Cmax(Ppk) = 0.7Cmax(0.1) for Pav ≥ 0.07mW and
yields the average capacity obtained from the first expression
in (11) for Pav < 0.07mW. In addition, in accordance
with Proposition 5, the optimal strategy is the optimal single
channel strategy forPav ∈ [0, 0.0176]mW since the condition
in (27) holds forPav ∈ [0, 0.0176]mW.

In order to investigate the optimal strategy in Fig. 4 in more
detail, Table II presents the solutions of the optimal strategy
for various values of the average power limit,Pav. In the
table, the optimal solution is represented by parametersλ∗,
P ∗
1 , P ∗

2 , i, and j, meaning that channeli is used with time-
sharing factorλ∗ and powerP ∗

1 , and channelj is employed
with time-sharing factor1−λ∗ and powerP ∗

2 . From Table II,
it is observed that the optimal channel switching strategy with
two channels is the optimal strategy forPav = 0.04mW and
Pav = 0.05mW, where switching between channel1 and
channel3 is performed. For the otherPav values in Table II, it
is optimal to employ the optimal single channel strategy which
achieves higher average capacities than the optimal channel
switching strategy.

To provide benchmarks on the performance of the pro-
posed optimal channel switching strategy, two scenarios are
considered: In the first one, the optimal channel switching
strategy is performed in the absence of channel switching
delays (i.e.,ε = 0), which leads to an upper performance limit.
In the second one, a lower performance limit is obtained by
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TABLE II
OPTIMAL STRATEGY FOR THE SCENARIO INFIG. 3, WHICH EMPLOYS
CHANNEL i AND CHANNEL j WITH TIME -SHARING FACTORSλ∗ AND

(1 − λ∗) AND POWER LEVELSP ∗

1 AND P ∗

2 , RESPECTIVELY.

Pav (mW) λ∗ P ∗
1 i (1− λ∗) P ∗

2 j
0.01 − − − 1 0.0111 1
0.02 − − − 1 0.0222 1
0.03 − − − 1 0.0333 1
0.04 0.4026 0.1 3 0.5974 0.0196 1
0.05 0.527 0.1 3 0.473 0.0196 1
0.06 − − − 1 0.0667 3
0.07 − − − 1 0.0778 3
0.08 − − − 1 0.0889 3
0.09 − − − 1 0.1 3
0.099 − − − 1 0.1 3

designing the “optimal” channel switching strategy without the
consideration of channel switching delays (i.e., assumingthat
ε is zero even though it is not). This scenario corresponds to
the use of the approach in [20] (which is optimal forε = 0) in
the presence of channel switching delays. Fig. 5 presents the
average capacities achieved in these two scenarios, together
with that achieved by the proposed optimal strategy obtained
from (2) for the system in Fig. 3, wherePpk = 0.1mW
and ε = 0.1. For the calculation of the average capacities
achieved by the “optimal” strategy without the consideration
of channel switching delays, the problem in [20] is solved
first, and then the obtained solution is substituted into the
objective function in (2). Namely, ifλ∗, P ∗

1 , andP ∗
2 denote

the solution of [20], the maximum average capacity obtained
via the strategy in which the delays are neglected is given by
max{λ∗ − ε, 0}Cmax(P

∗
1 ) + max{1 − λ∗ − ε, 0}Cmax(P

∗
2 ).

On the other hand, the maximum average capacity achieved
by the optimal channel switching strategy in the absence of
channel switching delays (i.e., forε = 0) can be expressed as
λ∗Cmax(P

∗
1 )+(1−λ∗)Cmax(P

∗
2 ). Based on these strategies, it

is observed from Fig. 5 that the optimal strategy in the absence
of channel switching delays outperforms the other strategies;
hence, presents an upper limit, as expected. In addition,
the delay-ignorant strategy (i.e., assuming no delays) cannot
achieve a higher average capacity than that achieved by (2)
(i.e., the proposed approach) due to the inefficient use of the
average power and the optimization of the channel switching
factors and power levels based on an unrealistic setting. On
the other hand, the proposed optimal strategy obtained from
(2) takes into account the fact that no data transmission
occurs during channel switching and consequently no power
is transmitted. Therefore, it optimizes the channel switching
factors and power levels by using the average power efficiently.
It is also noted that the abrupt behavioral changes in the
average capacity curve of the delay-ignorant strategy occurs
due to the change in the number of channels employed in the
strategy and the decrease in the efficiency of average power
usage.

Based on the scenario in Fig. 3, the maximum average
capacities for the strategies specified in Fig. 4 are plotted
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Fig. 5. Average capacity versus average power limit for the optimal strategy
in the absence of channel switching delays (ε = 0) and the optimal strategy
without considering channel switching delays (ε = 0.1), together with the
proposed optimal strategy for the scenario in Fig. 3, wherePpk = 0.1mW
andε = 0.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

ε

A
ve

ra
ge

 C
ap

ac
ity

 (
M

bp
s)

 

 
Optimal Single Channel
Optimal Channel Switching with 2 Channels
Optimal Channel Switching with 3 Channels
Optimal Strategy
Optimal Strategy (Assuming No Delay)

Fig. 6. Average capacity versus channel switching delay factor for various
optimal strategies for the scenario in Fig. 3, wherePav = 0.05mW and
Ppk = 0.1mW.

versus the channel switching delay factor (ε) in Fig. 6 to
investigate the effects of the channel switching delay factor
on the average capacity. The average power limit and the
peak power constraint in (2) are set toPav = 0.05mW
and Ppk = 0.1mW, respectively. From Fig. 6, it is noted
that, in accordance with Proposition 4, the optimal channel
switching strategy with two channels achieves a higher average
capacity than the optimal channel switching strategy with
three channels whenever channel switching is feasible; i.e.,
ε < 0.5. Forε ∈ (0, 0.134), the optimal strategy is the optimal
channel switching strategy between two channels, whereas
the optimal single channel strategy is the overall optimal for
ε ∈ [0.134, 1). It is important to note that the behavioral
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TABLE III
OPTIMAL STRATEGY FOR THE SCENARIO INFIG. 3, WHICH EMPLOYS
CHANNEL i AND CHANNEL j WITH TIME -SHARING FACTORSλ∗ AND

(1 − λ∗) AND POWER LEVELSP ∗

1 AND P ∗

2 , RESPECTIVELY.

ε λ∗ P ∗
1 i (1− λ∗) P ∗

2 j
0.05 0.4526 0.1 3 0.5474 0.0196 1
0.1 0.527 0.1 3 0.473 0.0196 1
0.2 − − − 1 0.0625 3
0.3 − − − 1 0.0714 3
0.4 − − − 1 0.0833 3
0.5 − − − 1 0.1 3
0.6 − − − 1 0.1 3
0.7 − − − 1 0.1 3
0.8 − − − 1 0.1 3
0.9 − − − 1 0.1 3

change in the average capacity curve of the optimal strategy
at ε = 0.5 is observed due to the peak power constraint
in (2). SincePav/(1 − ε) ≥ Ppk for ε ≥ 0.5, the optimal
strategy achieves an average capacity of(1 − ε)Cmax(Ppk)
by allocating all the available and attainable power to a
single channel and transmitting over this single channel.
For comparison purposes, Fig. 6 also presents the average
capacity achieved by the “optimal” strategy which assumes
no channel switching delays and optimizes the parameters
accordingly [20]. It is noted that this strategy is outperformed
by the proposed optimal strategy, which takes into account
the channel switching delays. Fig. 6 clearly points out that
the consideration of channel switching delays in the strategy
design becomes more crucial for improved average capacity
as the channel switching delay factor increases.

Similar to Table II, Table III presents the solutions cor-
responding to the optimal strategy for various values of the
channel switching delay factor. Forε = 0.05 and ε = 0.1,
it is observed that the optimal strategy is to switch between
channel1 and channel3. For the otherε values satisfying
ε ≥ 0.134 in Table III, the optimal strategy is to transmit over
channel3 exclusively with power levelP ∗

2 = Pav/(1− ε) for
ε < 0.5 andP ∗

2 = Ppk otherwise.

In order to investigate whether channel switching can pro-
vide any benefits for practical modulation schemes, consider
the achievable capacity of the discrete-input continuous-output
memoryless channel (DCMC) with64-QAM signaling in the
presence of additive white Gaussian noise [36, eqn. (23.23)]
for the scenario in Fig. 3. As an example, forPav = 0.04mW
and ε = 0.1, the calculations show that when the optimal
strategy forPav = 0.04mW in Table II (that is,λ∗ = 0.4026,
P ∗
1 = 0.1mW, P ∗

2 = 0.0196mW, i = 3, and j = 1) is
employed for the achievable capacity of64-QAM [36], an
average achievable capacity of5.033Mbps is obtained whereas
the optimal single channel approach yields an achievable
capacity of 4.5819Mbps. Hence, it is observed that it is
possible to achieve performance improvements via channel

switching also for practical modulation schemes.5

V. EXTENSIONS

In this study, the optimal channel switching problem is
investigated for a single user. In the presence of multiple users,
the results in this study can be extended in various directions.
First, if orthogonal resource allocation is employed such that
each user utilizes a different channel at a given time, then the
results in this manuscript would still hold. In such a scenario,
a central unit can provide coordination by informing each user
about the available channels for that user in each time frame.
Secondly, if users are allowed to employ the same channels
and possible interference to a user is modeled by a Gaussian
noise process, then the channel switching problem in (2) can
be extended for nonorthogonal resource allocation, as well. In
this case, when a user wishes to commence communications
over the available channels, it first performs spectrum sensing
and determines the interference level in each channel. Then,
the capacity of each channel is given by

Ci(P ) = Bi log2

(

1 +
P

2Bi(Ni/2 + Ii)

)

bits/sec (28)

whereIi is the spectral density level of the interference (due
to the other users) in channeli and the other parameters
are as defined for (2). When the channel switching problem
in (2) is solved based on the capacity expression in (28),
the solution corresponds to the optimal channel switching
strategy in the presence of multiuser interference. Since the
structure of this new problem is the same as that of the
original problem (cf. (1)), all the theoretical results apply to
this scenario, as well. An example application for this scenario
is a cognitive radio system with the underlay approach, where
a secondary user utilizes the channels of primary users as
long as it does not cause significant performance degradation
for primary users [37, Ch. 2]. In that case, the secondary
user performs channel (spectrum) sensing and determines the
presence of primary users and the corresponding interference
levels. Then, the proposed optimal channel switching strategy
can be obtained as described above.

In case of non-orthogonal multiple access, fairness should
be considered to satisfy certain average capacity requirements
for all users. One way of achieving fairness is related to
the limitation of power levels over different channels so that
interference to users is limited; hence, no significant capacity
degradations are observed. In other words, for each user, the
maximum amount of power that can be transmitted over each
channel can be determined according to a fairness criterion,
which is set by a central unit. To provide a generic analysis
that covers various fairness strategies, letP̂i represent the
maximum power that can be transmitted over channeli.
When a user wants to start communications over the available

5It is noted that this performance improvement is achieved without perform-
ing specific optimization for the achievable capacity function corresponding
to a practical modulation scheme, which can be implemented to obtain further
improvements.
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channels, it designs the optimal channel switching strategy as
follows (cf. (2)):

max
{λi,Pi}K

i=1

K
∑

i=1

I{λi>0} (λi − ε)Ci(Pi)

subject to
K
∑

i=1

I{λi>0} (λi − ε)Pi ≤ Pav ,

Pi ∈ [0,min{P̂i, Ppk}] , ∀i ∈ {1, . . . ,K} ,
K
∑

i=1

λi = 1 , λi ∈ {0} ∪ [ε, 1] , ∀i ∈ {1, . . . ,K}

(29)

whereCi(Pi) is as in (28),P̂i is the power limit for channel
i, and the other parameters are as in (2). In this way, fairness
among various users can be achieved by adjusting the power
limits of each user over different channels.

The results in the manuscript can be extended for the
problem in (29) as follows: Similar to Proposition 1, an
alternative optimization problem to (29) can be obtained as
in (3) by updating the definition ofCsi(·) and replacing
the peak power constraints withPsi ∈ [0,min{P̂si , Ppk}],
∀i ∈ {1, . . . , K̃}. It can be shown based on similar arguments
to those in the proof of Proposition 1 that the alternative
problem achieves the same maximum average capacity as (29).
Next, define the following function:

Ĉi(P ) ,

{

Ci(P ), if P ≤ min{P̂i, Ppk}

0, otherwise
(30)

for i ∈ {1, . . . ,K}, whereCi(P ) is as in (28). Based on
a similar approach to that in Proposition 2, the alternative
optimization problem can be expressed as in (5) by replacing
Csi(Psi ) and Psi ∈ [0, Ppk] in (5) with Ĉsi(Psi) in (30)
andPsi ∈ [0,min{P̂si , Ppk}], respectively. Then, the resulting
optimization problem can be separated into two optimization
problems in a similar fashion:

Case-1 (Single Channel):In this case, the following opti-
mization problem can be obtained:

max
S∈B1

max
µs1

,Ps1

(1− ε)µs1 Ĉs1(Ps1)

subject toµs1Ps1 ≤
Pav

(1− ε)

Ps1 ∈ [0,min{P̂s1 , Ppk}]

µs1 = 1 , µs1 ≥ 0

ε < 1 (31)

where the parameters are as defined in (6). LetĈscs denote
the solution of (31). Then,̂Cscs can be expressed as

Ĉscs = max
l∈{1,...,K}

(1− ε)Cl

(

min

{

Pav

(1− ε)
,min{P̂l, Ppk}

})

(32)

and the channel indexm employed in this strategy can be

obtained as

m̂ = arg max
l∈{1,...,K}

Cl

(

min

{

Pav

(1− ε)
,min{P̂l, Ppk}

})

. (33)

Case-2 (Channel Switching):In this case, the following
optimization problem can be obtained:

Ĉcss = max
K̃∈A\{1}

max
S∈BK̃

max
{µsi

,Psi
}K̃

i=1

(

1− K̃ε
)

K̃
∑

i=1

µsi Ĉsi(Psi )

subject to
K̃
∑

i=1

µsiPsi ≤
Pav

(

1− K̃ε
)

Psi ∈ [0,min{P̂si , Ppk}] , ∀i ∈ {1, . . . , K̃}

K̃
∑

i=1

µsi = 1 , µsi ≥ 0 , ∀i ∈ {1, . . . , K̃}

K̃ <
1

ε
(34)

where the parameters are as in (9). Based on Case-1 and Case-
2, the solution can be calculated asmax

{

Ĉscs, Ĉcss

}

.

For the optimization problem in (34), the statement in
Proposition 3 can be extended as follows: Assume that
K̄ ≥ 2 channels are employed in the channel switching
strategy andε < 1/K̄ holds. Also, Pmax is defined as
Pmax = maxi∈{1,...,K} min{P̂i, Ppk}. Then, the maximum
average capacity achieved via the optimal channel switching
strategy overK̄ channels can be expressed as

ψ(K̄) =







































max
P̃1∈[ Pav

1−K̄ε
, Pmax]

P̃2∈[0, Pav
1−K̄ε

)

(

1− K̄ε
)

(

Pav
1−K̄ε

−P̃2

P̃1−P̃2
Ĉmax(P̃1)

+
P̃1−

Pav
1−K̄ε

P̃1−P̃2
Ĉmax(P̃2)

)

, if Pav

1−K̄ε
< P̂

(

1− K̄ε
)

Ĉmax(P̂ ), otherwise
(35)

whereĈmax(P ) is defined as

Ĉmax(P ) , max{Ĉ1(P ), . . . , ĈK(P )} (36)

and P̂ is given by

P̂ , arg max
P∈[0,Pmax]

Ĉmax(P ) . (37)

The solution of the optimization problem in (34) can be
obtained from (13) whereψ(K̃) is as in (35). In addition,
the statement in Lemma 1 also holds for positiveĈmax(·);
i.e., it holds if P/α andP/β satisfyP/α, P/β ∈ [0, Pmax].
Then, the optimal channel switching strategy is to switch
between two channels and the maximum average capacityĈcss

achieved by the optimal channel switching strategy can be
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expressed, similar to Proposition 4, as follows:

Ĉcss =



















































0, if ε ≥ 1
2

(1− 2ε)Cmax(P̂ ), if ε < 1
2 and Pav

1−2ε ≥ P̂

max
P̃1∈[ Pav

1−2ε
,Pmax]

P̃2∈[0, Pav
1−2ε )

(1− 2ε)

(

Pav
1−2ε

−P̃2

P̃1−P̃2
Cmax(P̃1)

+
P̃1−

Pav
1−2ε

P̃1−P̃2
Cmax(P̃2)

)

, otherwise

(38)

Based on (32) and (38), it can be obtained that the optimal
strategy corresponds to the optimal single channel strategy if
ε ≥ 1/2 or if ε < 1/2 and Pav/(1 − 2ε) ≥ P̂ . Otherwise,
the optimal strategy is either the single channel strategy or
the channel switching strategy based on the comparison of
the average capacities obtained from (32) and (38). Overall, it
is concluded that in the presence of generic power limits for
different channels for each user (due to a fairness criterion),
the results in this manuscript are still valid with slight mod-
ifications in the optimization problems and the statements in
the propositions.

Another way of providing fairness can be realized via the
joint optimization of the multiuser system. In that case, the
aim is to maximize the sum of the average capacities of the
users under constraints on the average capacity of each user(to
guarantee a certain average capacity for all users), the average
power, and the peak powers. In general, it is quite difficult
to obtain the solution of this joint optimization problem.
Theoretical and numerical investigations of this problem are
considered as an important direction for future work.

VI. CONCLUDING REMARKS

In this study, the optimal channel switching problem has
been investigated for average capacity maximization in the
presence of channel switching delays. First, an equivalent
formulation of the optimal channel switching problem has
been obtained to facilitate theoretical investigations. Then,
the optimal strategy has been obtained and the corresponding
average capacity has been specified when channel switching
is performed among a given number of channels. Based on
this result (and Lemma 1), it has been shown that optimal
channel switching does not involve more than two different
channels, and the resulting maximum average capacity has
been formulated for various values of the channel switching
delay parameter and the average and peak power limits. Then,
the scenarios under which the optimal strategy correspondsto
the exclusive use of a single channel or to channel switching
between two channels have been specified. Furthermore, suf-
ficient conditions have been obtained to determine when the
optimal single channel strategy outperforms optimal channel
switching. Via numerical examples, the theoretical results and
the effects of channel switching delays have been illustrated.

The capacity metric in (1) specifies the maximum data rates,
which can be achieved in practice via turbo coding or low
density parity check codes [38]. The results in this study can
also be extended for any other performance metric that is

a nonnegative, concave, monotone increasing, bounded, and
continuous function of the transmit power. For example, con-
sidering a certain modulation/demodulation scheme, the aver-
age number of correctly received symbols can be defined as an
alternative performance metric. Since, in Gaussian channels,
the probability of correct decision is a concave function ofthe
transmit power for many modulation types (for all modulation
types at high signal-to-noise ratios) [39], it can be shown that
the average number of correctly received symbols becomes
a nonnegative, concave, monotone increasing, bounded, and
continuous function of the transmit power. Therefore, it can
be shown that the results in Propositions 1–4 and Lemma 1
hold for such a scenario, as well, and Proposition 5 can also
be extended.

APPENDIX

A. Proof of Proposition 1

Let {λ∗i , P
∗
i }

K
i=1 represent the solution of (2) and defineC∗

as the maximum average capacity achieved by the optimization
problem in (2); that is,

C∗ =

K
∑

i=1

I{λ∗

i
>0} (λ

∗
i − ε)Ci(P

∗
i ) . (39)

Also, define a set as

M , {l ∈ {1, . . . ,K} | λ∗l > 0} (40)

which consists of the channel indices with nonzero (positive)
time-sharing factors. Next, consider the following transforma-
tion:

ν∗mi
= λ∗mi

, P̄ ∗
mi

= P ∗
mi
, ∀i ∈ {1, . . . , |M |} (41)

wheremi represents theith element ofM , and |M | is the
cardinality of setM . Then, the following relations can be
obtained forC∗:

C∗ =

K
∑

i=1

I{λ∗

i
>0} (λ

∗
i − ε)Ci(P

∗
i )

=
∑

m∈M

(λ∗m − ε)Cm(P ∗
m) (42)

=

|M|
∑

i=1

(ν∗mi
− ε)Cmi

(P̄ ∗
mi

) (43)

where the equalities in (42) and (43) are obtained from the
definitions in (40) and (41), respectively. Next, defineK̃∗ as
K̃∗ , |M | and S∗ as S∗ , M . Then, the relation in (43)
implies that the optimization problem in (3) achievesC∗ for
K̃∗, S∗, and{ν∗s∗

i

, P̄ ∗
s∗
i

}K̃
∗

i=1 (see (41)), wheres∗i denotes theith
element ofS∗.6 Hence, (3) is guaranteed to yield the maximum
average capacity achieved by the optimization problem in (2),
that is,C∗ ≤ C⋄, whereC⋄ represents the maximum average
capacity achieved by (3).

Next, suppose that̃K⋄, S⋄, and {ν⋄s⋄
i

, P̄ ⋄
s⋄
i

}K̃
⋄

i=1 denote the
solution of the optimization problem in (3), wheres⋄i denotes

6Note that the constraints in (3) are satisfied for̃K∗, S∗, and
{ν∗

s∗
i

, P̄ ∗

s∗
i

}K̃
∗

i=1.
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the ith element ofS⋄. Consider the following functions that
map the solution set of the problem in (3) to the possible
solution set of the problem in (2):

λ⋄i =

{

ν⋄i , if i ∈ S⋄

0, otherwise
, ∀i ∈ {1, . . . ,K} (44)

P ⋄
i =

{

P̄ ⋄
i , if i ∈ S⋄

0, otherwise
, ∀i ∈ {1, . . . ,K} (45)

Then, the following relations can be written forC⋄:

C⋄ =
K̃⋄

∑

i=1

(ν⋄s⋄
i

− ε)Cs⋄
i
(P̄ ⋄

s⋄
i

)

=
∑

m∈S⋄

(ν⋄m − ε)Cm(P̄ ⋄
m) (46)

=
∑

m∈S⋄

(λ⋄m − ε)Cm(P ⋄
m) (47)

=
K
∑

i=1

I{i∈S⋄} (λ
⋄
i − ε)Ci(P

⋄
i ) (48)

=

K
∑

i=1

I{λ⋄

i
>0} (λ

⋄
i − ε)Ci(P

⋄
i ) (49)

where the equality in (46) is due to the definition of setS∗ (see
(3)), the equalities in (47) and (48) follow from the mapping
functions in (44) and (45), and (49) is obtained from the fact
that λ⋄i > 0 only for i ∈ S⋄. Based on the transformations
defined in (44) and (45),{λ⋄i , P

⋄
i }

K
i=1 satisfies the constraints

in (2) and the relation in (46)-(49) implies that (2) yields the
average capacity ofC⋄ for {λ⋄i , P

⋄
i }

K
i=1; hence, it is concluded

that C⋄ ≤ C∗. Overall, it is concluded thatC⋄ = C∗ must
hold in order to satisfy bothC∗ ≤ C⋄ andC⋄ ≤ C∗. �

B. Proof of Proposition 2

Consider the optimization problem in (3) and define new
variablesγsi as γsi , νsi − ε , ∀i ∈ {1, . . . , K̃}. Then, the
problem in (3) can be written as follows:

max
K̃∈A

max
S∈BK̃

max
{γsi

,Psi
}K̃

i=1

K̃
∑

i=1

γsi Csi(Psi) (50)

subject to
K̃
∑

i=1

γsiPsi ≤ Pav (51)

Psi ∈ [0, Ppk] , ∀i ∈ {1, . . . , K̃} (52)

K̃
∑

i=1

γsi = 1− K̃ε , γsi ≥ 0 , ∀i ∈ {1, . . . , K̃}

(53)

It is noted from (53) that1−K̃ε ≥ 0 should be satisfied since
∑K̃

i=1 γsi = 1− K̃ε andγsi ≥ 0 , ∀i ∈ {1, . . . , K̃}. Suppose
that K̃⋄, S⋄, and {γ⋄s⋄

i

, P ⋄
s⋄
i

}K̃
⋄

i=1 denote the solution of (50)-

(53) such that1 − K̃⋄ε = 0. Then, based on the constraint
in (53), γ⋄s⋄

i

= 0 , ∀i ∈ {1, . . . , K̃}, and consequently
∑K̃⋄

i=1 γ
⋄
si
Csi(P

⋄
si
) = 0. Also, K̃⋄ satisfiesK̃⋄ > 1 since

K⋄ = 1/ε and 0 < ε < 1 by assumption. Hence, more

than one channel is available for channel switching. Now,
consider an alternative solution, denoted bỹK∗, S∗, and
{γ∗s∗

i

, P ∗
s∗
i

}K̃
∗

i=1, where K̃∗ = 1, S∗ = {1}, γ∗s1 = 1 − ε,

and P ∗
s1

= min
{

Pav

(1−ε) , Ppk

}

. Then, the alternative solution

achieves an average capacity of
∑K̃∗

i=1 γ
∗
si
Csi(P

∗
si
) = (1 −

ε)C1

(

min
{

Pav

(1−ε) , Ppk

})

, which is positive; hence, larger

than the one achieved bỹK⋄, S⋄, and{γ⋄s⋄
i

, P ⋄
s⋄
i

}K̃
⋄

i=1. There-

fore, K̃⋄, S⋄, and{γ⋄s⋄
i

, P ⋄
s⋄
i

}K̃
⋄

i=1 with 1− K̃⋄ε = 0 cannot be
optimal, which contradicts with the initial assumption. Hence,
the solution of (50) must satisfy1 − K̃ε > 0. Based on this
inequality,µsi is defined as follows:

µsi , γsi/(1− K̃ε) (54)

for i ∈ {1, . . . , K̃}. Thus, the optimization problem in (5) can
be obtained by substituting the new variables defined in (54)
into the optimization problem in (50)-(53). �

C. Proof of Proposition 3

Under the assumption in the proposition, the optimization
problem in (9) can be expressed forK̄ channels as follows:

max
S∈BK̄

max
{µsi

,Psi
}K̄

i=1

(

1− K̄ε
)

K̄
∑

i=1

µsi Csi(Psi)

subject to
K̄
∑

i=1

µsiPsi ≤
Pav

(

1− K̄ε
)

Psi ∈ [0, Ppk] , ∀i ∈ {1, . . . , K̄}

K̄
∑

i=1

µsi = 1 , µsi ≥ 0 , ∀i ∈ {1, . . . , K̄} (55)

Then, based on a similar approach to that in Proposition 1 of
[20], the problem in (55) can be stated as

max
S∈BK̄

max
{µsi

,Psi
}K̄

i=1

(

1− K̄ε
)

K̄
∑

i=1

µsi C
S
max(Psi)

subject to
K̄
∑

i=1

µsiPsi ≤
Pav

(

1− K̄ε
)

Psi ∈ [0, Ppk] , ∀i ∈ {1, . . . , K̄}

K̄
∑

i=1

µsi = 1 , µsi ≥ 0 , ∀i ∈ {1, . . . , K̄}

(56)

whereCS
max(P ) is defined as

CS
max(P ) , max

m∈S
Cm(P ) . (57)

That is, since the optimal solution involves the use of the best
channel (among the given set of channels) for each power level
(cf. (57)), the problem in (55) can be solved based on (56).

It is noted from (56) that, for eachS, the aim is to find the
optimal{µsi , Psi}

K̄
i=1 for maximizing the convex combination

of the CS
max(Psi) terms subject to the constraints on the

average and peak powers. This formulation for eachS has
the same form as the problem formulation in eqn. (3) of [20];
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hence, similar to Proposition 4 in [20], it can be shown that
the optimal{µsi , Psi}

K̄
i=1 has at most two nonzeroµsi for

eachS (i.e., channel switching between at most two different
channels is optimal for eachS). Therefore, the problem in
(56) can be expressed as follows:

max
S∈BK̄

max
µ,P̃1,P̃2

(1 − K̄ε)
(

µCS
max(P̃1) + (1− µ)CS

max(P̃2)
)

(58)

subject toµ P̃1 + (1− µ)P̃2 ≤
Pav

1− K̄ε
(59)

P̃1 ∈ [0, Ppk], P̃2 ∈ [0, Ppk] (60)

µ ∈ [0, 1] (61)

where P̃1 and P̃2 denote the average transmit powers al-
located to channeli and channelj, respectively, withi =
arg maxl∈S Cl(P̃1) andj = arg maxl∈S Cl(P̃2).

It is noted thatCS
max in (58) is maximized with respect to

setS, andS does not depend on the other parameters,µ, P̃1,
andP̃2. Therefore, the maximization with respect toS can be
considered first for simplifying the problem in (58)-(61). For
that purpose, the following expressions are obtained forCS

max:

max
S∈BK̄

CS
max(P ) = max

S∈BK̄

max
m∈S

Cm(P ) (62)

= max
l∈{1,...,K}

Cl(P ) (63)

= Cmax(P ) (64)

where (62) follows from the definition ofCS
max in (57), (63) is

obtained based on the definition ofBK̄ in (4), and finally (64)
is due to (12). Based on (62)-(64), the problem in (58)-(61)
can be stated as follows:

max
µ,P̃1,P̃2

(1− K̄ε)
(

µCmax(P̃1) + (1− µ)Cmax(P̃2)
)

(65)

subject toµ P̃1 + (1− µ)P̃2 ≤
Pav

1− K̄ε
(66)

P̃1 ∈ [0, Ppk], P̃2 ∈ [0, Ppk] (67)

µ ∈ [0, 1] (68)

where P̃1 and P̃2 denote the average transmit
powers allocated to channel i and channel j,
respectively, with i = arg maxl∈{1,...,K}Cl(P̃1) and
j = arg maxl∈{1,...,K}Cl(P̃2).

Next, consider the optimization problem in (65)-(68) for
Pav

(1−K̄ε)
< Ppk. Similarly to Lemma 1 in [20], it is obtained

that the optimalµ, P̃1, andP̃2 satisfy the average power con-
straint with equality; that is,µ P̃1+(1−µ)P̃2 = Pav

1−K̄ε
. Then,

by considering (66) as an equality constraint and substituting
the constraints in (66)-(68) into the objective function and
specifying the search space, it is obtained that the achieved
capacity for Pav

1−K̄ε
< Ppk can be calculated by solving the

optimization problem in (11). Otherwise, i.e., ifPav

1−K̄ε
≥ Ppk,

then the solution of the optimization problem in (65)-(68) can
easily be obtained as

(

1− K̄ε
)

Cmax(Ppk). �

D. Proof of Lemma 1

Let channel i and channel j denote the channels
corresponding to the maximum capacities for
power levels P/α and P/β, respectively; that is,
Cmax(P/α) = Ci(P/α) and Cmax(P/β) = Cj(P/β)
where i = arg maxl∈{1,...,K} Cl(P/α) and
j = arg maxl∈{1,...,K} Cl(P/β).

First, consider the case ofi = j. Then,Cmax(P/α) =
Ci(P/α) and Cmax(P/β) = Ci(P/β). Since the capacity
curves are strictly concave andCi(P ) = 0 for P = 0,
∀i ∈ {1, . . . ,K} (cf. (1)), the following relation can be
obtained based on the definition of concavity:

β

α
Ci

(

P

β

)

+

(

1−
β

α

)

Ci (0) < Ci

(

P

α

)

(69)

whereβ/α < 1 as the statement in the lemma is forα > β
and α, β ∈ (0, 1). Thus, it is obtained from (69) that
β Cmax (P/β) < αCmax (P/α) as claimed in the lemma.

Next, consider the case ofi 6= j. SinceCmax(P/α) =
Ci(P/α), Cmax(P/β) = Cj(P/β), and Ci and Cj are
monotone increasing and continuous functions, then there
exists a single pointP/γ ∈ (P/α, P/β) for β < γ < α
at which the capacity curves of channeli and channelj
intersect; that is,Ci(P/γ) = Cj(P/γ). Now considering
the capacity of channelj for power levelsP/γ and P/β,
it can be shown thatβ Cj (P/β) < γ Cj (P/γ) based on
a similar approach to that in (69). Similarly, for channeli,
the following relation is obtained:γ Ci (P/γ) < αCi (P/α).
Since Ci(P/γ) = Cj(P/γ), these two inequalities im-
ply that β Cj (P/β) < αCi (P/α), which is equivalent to
β Cmax (P/β) < αCmax (P/α) as claimed in the lemma.�

E. Proof of Proposition 4

The aim is to prove that the statement in the proposition
holds for all the cases specified in (15). Firstly, forε ≥ 1

2 ,
the constraint in (13) cannot be satisfied for anyK̃, and
consequently, channel switching is not feasible in this case.
Therefore, if ε ≥ 1

2 , the maximum average capacity via
channel switching can be specified asCcss = 0.7 Secondly,
if ε < 1

2 and Pav/(1 − 2ε) ≥ Ppk, then the maximum
average capacity achieved by performing optimal channel
switching between two channels is obtained based on (11)
asψ(2) = (1−2ε)Cmax(Ppk). On the other hand, for optimal
channel switching amongM > 2 channels, the following
arguments can be provided. SincePav/(1− 2ε) ≥ Ppk in this
case, it is obtained thatPav/(1 − Mε) > Ppk for M > 2
and M < 1/ε, which is the constraint in (13). Then, it
follows from (11) thatψ(M) = (1 − Mε)Cmax(Ppk) for
M > 2. Sinceψ(2) > ψ(M) for M > 2, it is concluded
for ε < 1

2 andPav/(1 − 2ε) ≥ Ppk that the optimal channel
switching strategy with two channels achieves a higher average
capacity than the optimal channel switching strategies with
more than two channels, and that the maximum average
capacity achieved by the optimal channel switching strategy
with two channels is equal toCcss = (1 − 2ε)Cmax(Ppk), as

7In this case, the solution of the optimization problem in (5)corresponds
to the optimal single channel strategy (Case-1).
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specified in (15). Finally, ifε < 1
2 andPav/(1−2ε) < Ppk, the

maximum average capacity for the channel switching strategy
with K̄ channels can be obtained based on (11) as follows:8

ψ(K̄) = max
P̃1∈[ Pav

1−K̄ε
,Ppk]

P̃2∈[0, Pav
1−K̄ε

)

(

1− K̄ε
)

(

Pav

1−K̄ε
− P̃2

P̃1 − P̃2

Cmax(P̃1)

+
P̃1 −

Pav

1−K̄ε

P̃1 − P̃2

Cmax(P̃2)

)

(70)

Define P̄1 and P̄2 as P̄1 ,
(

1− K̄ε
)

P̃1 and P̄2 ,
(

1− K̄ε
)

P̃2. Then,ψ(K̄) in (70) can be expressed as follows:

ψ(K̄) = max
P̄1∈[Pav,(1−K̄ε)Ppk]

P̄2∈[0,Pav)

(

1− K̄ε
)

(

Pav − P̄2

P̄1 − P̄2

× Cmax

(

P̄1

1− K̄ε

)

+
P̄1 − Pav

P̄1 − P̄2
Cmax

(

P̄2

1− K̄ε

)

)

. (71)

For the optimal channel switching strategy with two channels,
the maximum average capacity is given by

ψ(2) = max
P̄1∈[Pav,(1−2ε)Ppk]

P̄2∈[0,Pav)

(1− 2ε)

(

Pav − P̄2

P̄1 − P̄2
Cmax

(

P̄1

1− 2ε

)

+
P̄1 − Pav

P̄1 − P̄2
Cmax

(

P̄2

1− 2ε

)

)

. (72)

The aim is to prove thatψ(2) > ψ(M) for M > 2, where
ψ(M) denotes the maximum average capacity achieved by
optimal channel switching amongM > 2 channels. To that
aim, define a new optimization problem identical to (72)
except that the search space forP̄1 is [Pav, (1 − Mε)Ppk]
instead of[Pav, (1−2ε)Ppk]. Let ξ denote the solution of this
problem, which can be stated as follows:

ξ = max
P̄1∈[Pav,(1−Mε)Ppk]

P̄2∈[0,Pav)

(1− 2ε)

(

Pav − P̄2

P̄1 − P̄2
Cmax

(

P̄1

1− 2ε

)

+
P̄1 − Pav

P̄1 − P̄2
Cmax

(

P̄2

1− 2ε

)

)

. (73)

The optimization problem in (73) is the same as the problem
in (72) except that the search space forP̄1 in (73) is a subset
of that in (72). Therefore, it is obtained thatψ(2) ≥ ξ. Also,
the following relations can be derived forM > 2 based on

8The equation in (70) is valid ifPav/(1 − K̄ε) < Ppk. Otherwise, it
is easy to prove thatψ(2) > ψ(M) for M > 2 based on Lemma 1 since
ψ(2) ≥ (1−2ε)Cmax(Pav/(1−2ε)) > (1−Mε)Cmax(Pav/(1−Mε)) ≥
(1−Mε)Cmax(Ppk) = ψ(M).

(14) in Lemma 1:

(1− 2ε) Cmax

(

P̄1

1− 2ε

)

> (1−Mε) Cmax

(

P̄1

1−Mε

)

,

∀P̄1 ∈ [Pav, (1−Mε)Ppk] (74)

(1− 2ε) Cmax

(

P̄2

1− 2ε

)

≥ (1−Mε) Cmax

(

P̄2

1−Mε

)

,

∀P̄2 ∈ [0, Pav) (75)

where the equality sign in (75) is included to cover the case
of P̄2 = 0. Based on (74), (75), and the fact that the search
spaces of the optimization problems in (71) and (73) are the
same forK̄ = M , it is obtained thatξ > ψ(M) for M > 2.
(Note that (Pav−P̄2)

(P̄1−P̄2)
> 0 and (P̄1−Pav)

(P̄1−P̄2)
≥ 0.) Therefore, it is

concluded thatψ(2) > ψ(M) for M > 2 sinceψ(2) ≥ ξ as
shown previously. Hence, in accordance with (15), it is shown
thatCcss = ψ(2) for ε < 1

2 andPav/(1 − 2ε) < Ppk, where
ψ(·) is as defined in (11) (cf. (72)). To sum up, the optimal
channel switching strategy is to switch between two channels
and the achieved maximum average capacity can be obtained
as in (15). �

F. Proof of Proposition 5

For ε < 1/2 andPav/(1 − 2ε) < Ppk, the optimal single
channel strategy achieves an average capacity ofCscs = (1−
ε)Cmax

(

Pav

1−ε

)

, which is obtained from (7) sincePav

1−ε
< Pav

1−2ε

and Pav

1−2ε < Ppk. Also, the maximum average capacityCcss

obtained by the optimal channel switching strategy can be
calculated from (26) in this case. The aim is to prove that
under the assumptions in the proposition, if the condition in
(27) holds, then the optimal single channel strategy achieves
a higher average capacity than the optimal channel switching
strategy; that is,Cscs > Ccss. The assumption in the propo-
sition states that the first-order derivative ofCmax(P ) in (12)
exists in an interval aroundPav

1−2ε . Then its derivative atPav

1−2ε
can be obtained from (1) as follows:

C
′

max

(

Pav

1− 2ε

)

=
(1− 2ε)Bi∗ log2 e

(1− 2ε)Ni∗Bi∗ + Pav
(76)

where i∗ = arg maxi∈{1,...,K} Ci(
Pav

1−2ε ). From (76) and the
definition of P̄ , P

1−2ε , the condition in (27) can be expressed
in the following form:

Cmax(P̄ ) ≤ Cmax

(

Pav

1− 2ε

)

+

(

P̄ −
Pav

1− 2ε

)

C
′

max

(

Pav

1− 2ε

)

, ∀P̄ ∈ [0, Ppk].

(77)

It is noted that the problem forCcss in (26) can be expressed
similarly to (65)-(68) as follows:

max
µ,P̃1,P̃2

(1− 2ε)(µCmax(P̃1) + (1 − µ)Cmax(P̃2)) (78)

subject toµ P̃1 + (1− µ)P̃2 =
Pav

1− 2ε
(79)

P̃1 ∈ [0, Ppk], P̃2 ∈ [0, Ppk] (80)

µ ∈ [0, 1] (81)
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Then, for the solution of the channel switching strategy in (78)-
(81) denoted asµ∗, P̃ ∗

1 , andP̃ ∗
2 , the following expressions can

be obtained:

Ccss = (1− 2ε)(µ∗ Cmax(P̃
∗
1 ) + (1− µ∗)Cmax(P̃

∗
2 )) (82)

≤ (1− 2ε)

((

µ∗ P̃ ∗
1 + (1− µ∗) P̃ ∗

2 −
Pav

1− 2ε

)

× C
′

max

(

Pav

1− 2ε

)

+ Cmax

(

Pav

1− 2ε

))

(83)

= (1− 2ε)Cmax

(

Pav

1− 2ε

)

(84)

< (1− ε)Cmax

(

Pav

1− ε

)

(85)

= Cscs (86)

where P̃ ∗
1 , P̃

∗
2 ∈ [0, Ppk] and µ∗ ≥ 0. The equality in

(82) follows from (78)-(81), and the inequality in (83) is
obtained based on (77). The equality in (84) holds sinceµ∗,
P̃ ∗
1 , andP̃ ∗

2 satisfy the average power constraint in (79); that
is, µ∗ P̃ ∗

1 + (1 − µ∗)P̃ ∗
2 = Pav

1−2ε , and sinceC
′

max(
Pav

1−2ε ) is
finite. Finally, (85) is obtained due to (14) in Lemma 1, which
results in the maximum average capacity achieved via the
optimal single channel strategy as noted in (86). From (82)-
(86), it is concluded that the optimal single channel strategy
outperforms the optimal channel switching strategy in terms
of the maximum average capacity if the assumptions and the
condition in the proposition hold. �
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