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Abstract—Optimal detection performance of centralized and This cost model can be used in sensor network applications in
decentralized detection systems is investigated in the pgence of which measurements are performed via various sensors. As an
cost constrained measurements. For the evaluation of deen  oyample, for fire detection in a forest, there can exist aefinit
performance, Bayesian, Neyman-Pearson and-divergence cri- b f f ina t ¢ ait
teria are considered. The main goal for the Bayesian criteon is num e_r O sensors periorming tempera urg measureme S, an
to minimize the probability of error (more generally, the Bayes accc_)rdu_’]g to these measurements, the deC|s_|o_n on the peesen
risk) under a constraint on the total cost of the measurement of fire is made. The accuracy of the decision depends on
devices. In the Neyman-Pearson framework, the probabilityof the quality of the measurements collected by the sensors.
detection is to be maximized under a given cost constraint. |t the cost allocated to a sensor is higher, the measurement
In the distance based criterion, the J-divergence between the b | . deled in 131, Simil licati
distributions of the decision statistics under different hypotheses ecomes e§S ”0'3)/ as_ modele "f].[ 1 '_m'ar applications
is maximized subject to a total cost constraint. The probabity —€an be considered in wireless cognitive radio, sonar anarrad
of error expressions are obtained for both centralized and systems.
decentralized detection systems, and the optimization ptdems Detection and estimation problems considering system re-
are proposed for the Bayesian criterion. The probability of g5 ,rce constraints have extensively been studied in the lit
detection and probability of false alarm expressions are ob ¢ 41-1221. In (4 t t minimizati .
tained for the Neyman-Pearson strategy and the optimizatio erature [4]-[22]. In [, 1, mea;ure_men cost minimization 1S
problems are presented. In addition, J-divergences for both perform_ed un(_jer_ various estimation accuracy constraints.
centralized and decentralized detection systems are caleted [5], optimal distributed detection strategies are studied
and the corresponding optimization problems are formulatel. wireless sensor networks by considering network resource
The solutions of these problems indicate how to allocate the o,ngiraints, where it is assumed that observations at the
cost budget among the measurement devices in order to achiev tiall dt v ind dent and id
the optimum performance. Numerical examples are presentetb S.ensors_ ar_e spa "".‘.y and temporally In eper! ent and 1den-
discuss the results. tically distributed (i.i.d.). Two types of constraints ataken
into consideration related to the transmission power amd th
communication channel. For the communication channelethe
exist two options, which are multiple access and parallel
access channels. It is shown that using a multiple access

|. INTRODUCTION channel with analog communication of local likelihood oati

In this manuscript, centralized and decentralized hypsishe (SOft decisions) is asymptotically optimal when each senso
testing (detection) problems are investigated in the mese COMMunicates with a constant power [S]. In [6], binary decen
of cost constrained measurements. In such systems, dexisfé@lized detection problem is investigated under the cairst
are performed based on measurements gathered by multRfigvireless channel capacity. It is proved that having a $et o
sensors, the qualities of which are determined according 'figntical sensor is asymptotically optimal when the observ
assigned cost values. The aim is to develop optimal cdi@ns conditioned on the hypothesis are i.i.d. and the nurobe
allocation strategies for the Bayesian, Neyman-Pearsoah, @PServations per sensor goes to infinity. In [7], a decengd|
J-divergence criteria under a total cost constraint. In thgec detection problem is studied, where the sensors have side
of centralized detection, a set of geographically sepdrat@formation that affects the statistics of their measureisie
sensors send all of their measurements to a fusion centbr, 81d the network has a cost constraint. The author examines
the fusion center decides on one of the hypotheses [1]. @ieless sensor networks with a cost constraint and a dgpaci
the other hand, in decentralized detection, sensors tiamsmconstraint separately. In both scenarios, the error exptase
summary of their measurements to the fusion center [2]. Fginimized under the specified constraints. The study in [7]
quantifying the costs of measurement devices (sensom), gyoduces a similar r_esult to tha_lt in [6] for the scenario with
model in [3] is employed in this study. According to [3], thdhe capacity constraint. In addition, [7] and [8] have thmea

cost of a measurement device is basically determined by fi§sults for scenario with the power constraint. It is obgdin -
number of amplitude levels that it can reliably distinguisfhat having identical sensors which use the same transmissi
scheme is asymptotically optimal when the observations are
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time. In [10], the aim is to minimize the probability of errorboth in the Bayesan and Neyman-Pearson sense.
under communication rate constraints, where the sensors ca

censor their observations. The optimum result is obtained b Baséd on the cost function proposed in [3] for obtain-
censoring uninformative observations and sending inftira N9 Measurements, various studies have been performed on

observations to the fusion center. In [11], the aim is to wbta€Stimation with cost constraints [4], [20]. In particulg]

a network configuration that satisfies the optimum detectiG@NSiders the costs of measurements and aims to minimize
performance under a given cost constraint. The cost constra€ total cost under various estimation accuracy constrain

depends on the number of sensors employed in the netwdfk [20], average Fisher information maximization is stutie
In [12], the optimal power allocation for distributed deten under cost constrained measurements. On the other hand, [23

is studied, where both individual and joint constraints ba t INvestigates the tradeoff between reducing the measurtemen
power that sensors use while transmitting their decisians oSt and keeping the estimation accuracy within acceptable

the fusion center are taken into consideration. The optiml§V€!S In continuous time linear filtering problems. In [24]
detection performance is obtained for the proposed povJQF _ch_annel swnchlng_problem is studied, where th_e aim is to
allocation scheme. In [13], a binary hypothesis testingfenm  Minimize the probability of error bet.ween a transmitter and

is investigated under communication constraints. Thegseg '€Ceiver that are connected via multiple channels and améy o
algorithm determines a data reduction rate for transngittirffh@nnelcan be used ata given time. In that study, a loganthm
a reduced version of data and finds the performance of ffst function similar to that in [3] is employed for specifgi
best test based on the reduced data. In [14], the decentl3f COSt Of using a certain channel.

ized detection problem is investigated under both power andAIthough costs of measurements have been considered in

bandwidth constraints. It is shown that combining many "nQfioys estimation and channel switching problems such as
so good’ local d_eqsmqs is better than combining a few VeRy], [20], [23], [24], there exist no studies in the literagithat
good local decisions in the case of large sensor systemgnsider the optimization of both centralized and decéine

In [15]-{17], the decentralized detection problem is stadi jetection systems in the presence of cost constrained mea-
with fusion of Gaussian signals. It is stated that there is @yrements based on a specific cost function as in [3]. In this
optimal number of local sensors that achieves the highegligy we first consider the centralized detection probledh a
performance under a given global power constraint, and ifronose a general formulation for allocating the cost butige
creasing the number of sensors beyond the optimal numh&ta s rement devices in order to achieve the optimum perfor-
degrades the performance. In [18], the authors investigafince according to the Bayesian criterion. Also, a closed-
decentralized detection and fusion performance of a senggy, expression is obtained for binary hypothesis testing

network under a total power constraint. It is shown that@sin ity Gaussian observations and generic prior probalsilitie
non-orthogonal communication between local sensors amd dition, it is shown that the probability of error expressi

fusion center improves fusion performance monotonicaly. ¢, the Gaussian case is convex with respect to the total

[19], the optimization of detection performance of a sens@pgt constraint in the case of equally likely binary hypstee
network is studied under communication constraints, arsl 't(Lemma 1). Then, we investigate the decentralized detectio
found that the optimal fusion rule is similar to the majority ,ropjem in the Bayesian framework with some common fusion
voting rule for binary decentralized detection. In [21]ethje5 and present a generic formulation that aims to mizémi
sensor (or, sample) selection problem is studied for disted e prohability of error by optimally allocating the costdget
detection. The authors seek the best subset of data samplef,easurement devices. A numerical solution is proposed
that results in a desired detection probability. To this ,aing,, binary hypothesis testing with Gaussian observations.
the number of selected sensors that perform the sensing tﬂékconvexity is an important property for the optimization
is minimized under a given probability of error ConStrainﬁrobIems, the convexity property is explored for the case
for thg Bayesian crite_rion and under false-alarm and_mi_s&r two measurement devices (Lemma 2). Furthermore, the
detection rate constraints for the Neyman-Pearson @ieri \eyman-Pearson anétdivergence criteria are investigated for
In addition, a dual problem is also proposed such that the, cost allocation problem in order to achieve the optimum
probability of error is minimized for a constant number Ofigtaction performance. The general optimization problems
selected sensors in the Bayesian criterion. For the Neymaga hroposed for both criteria and the Gaussian scenario is
Pearson criterion, it is aimed to minimize the probabilify Oinvestigated as a special case. As for the Bayesian criterio

miss detection under a given false alarm constraint and € fiXg,:, centralized and decentralized detection systemsaken t
number of selected sensors. It is found that for conditignak .y <onsideration.

independent observations, the best sensors are the orfes wit

the largest local average log-likelihood ratio and the $msal  The remainder of the manuscript is organized as follows:
local average root-likelihood ratio in the Neyman-Pearaod In Section II, the optimal cost allocation among measurémen
Bayesian setting, respectively. As in [21], the sensorcsigle devices is studied for the Bayesian criterion. In Sectidrthie
problem is studied in [22], where the aim is to find a subset pfoblem is investigated in the Neyman-Pearson framewark. |
p out of n sensors that yield the best detection performancgection 1V, the optimization problems obtained according t
The authors show numerically the validity of the Chernofflan/-divergence are examined. In Section V, numerical exam-
Kullback-Leibler sensor selection criteria by illustragithat ples that illustrate the obtained results are presentexllizi
they lead to sensor selection strategies that are neatitpalpt conclusions are presented in Section VI.



wherer; is the prior probability of hypothesi#/;. For the
X1 > S1 Vi values of¢;;, uniform cost assignment (UCA) is commonly
\ employed, which is stated as [25]
X —> Sy Y2 Fusion 0. ifi=31
~ ) - j
\ Center _yy(y) Cij = {1 it i ¢] . (3)
. / For UCA, the Bayes rule, which minimizes the Bayes risk
Xk —  s¢ specified by (1) and (2), reduces to choosing the hypothesis

with the maximum a-posteriori probability (MAP), and the
corresponding Bayes risk can be stated, after some manipula
tion, as

r(Ep) =1 /R max  mpy)dy, (4

K 1={0,1,....M—1}

Figure 1. Centralized detection system model.

II. COSTALLOCATION FOR BAYESIAN CRITERION

. . : - . wheredp denotes the Bayes rule, apdy) is the probability
In this section, the cost allocation problem is investigdte distribution ofy under hypothesigl, [25].

hypothesis-testing problems based on the Bayesian oniteri In this section, the aim is to perform the optimal cost

When it is possible to assign costs to the decisions and Wha(ﬁpocation among the sensors in Fig. 1 in order to minimize th

the prior probabilities of the states of nature are knowe, tlé . T .
} . . . .Bayes risk expression in (4) under a total cost constraing T
Bayesian approach is a well-suited candidate for detection

criterion [25]. The aim in this section s to minimize the By cost of measuring théh component of the observation vector,

. . X . i, is given byC; = 0.5log, (1 + o2 /o2 ), wheres? is the
risk for both centralized and decentralized detectionesyst Tin 159 yCi 205_ 08s( +_%i/0mi) eoy,

. variance ofr; andg;,  is the variance of the noise introduced
under a total cost constraint on measurements. g

by theith sensor [3]. Then, the total cost is expressed as

K K
1
IlLA. Centralized Detection = Zl Ci = ) Z}log? (1 + ) : )

In centralized detection problems, all sensor nodes transmis mentioned in Section |, the number of amplitude levels tha
their observations to the fusion center, and the decisiondan be distinguished by the measurement device determines
performed in the fusion center based on the data from all the cost of the measurement. The dynamic range of the input
sensors. The system model for centralized detection is 8howy the measurement devices has no effect on the cost of the

2
O.:Ei
2
o'mi

in Fig. 1. measurements provided that the number of resolvable levels
As illustrated in Fig. 11,22, ..., xx represent the scalarstays the same. The cost function in (5) uses the variances
observations, and, s, ...,sx denote the sensors by whichof the observation and the measurement noise to describe the

the measurements are taken. The measurement at sensaumber of distinguishable amplitude levels [3]. This is the
is represented ag; = z; + m,;, wherem; is the mea- same motivation as that used by Hartley [26]. Moreover, the
surement noise. The measuremgnte RX is processed cost function has the same form as Shannon’s capacity farmul
by the fusion center to produce the final decisigfy), for the Gaussian noise channel [27], whereis transmitted
wherey = [y1,v2,...,yx]T and y(y) takes values from across a communication channel that adds a noise term
{0,1,..., M — 1} for M-ary hypothesis testing. to it. Apart from these, the cost function for each sensor
In the Bayesian hypothesis-testing framework, the optimuisi monotonically decreasing, nonnegative, and convex with
decision rule is the one that minimizes the Bayes risk, whi¢espect too?,  for Vo2, > 0 andVo? > 0. (The convexity
is defined as the average of the conditional risks [25]. Theoperty of the cost function can easily be shown by exarginin
conditional risk for a decision rul-) when the state of natureits Hessian matrix [28].) In addition, when the measurement

is H; is given by noise variance is low, the cost is high since the number of
amplitude levels that the device can distinguish gets hajh [
M-1 When crfm goes to infinity, the cost converges to zero and
R;(0) =Y &;P;(Iy), (1) wheno?, goes to zero, the cost approaches infinity.
i=0 Based on (4) and (5), the following optimization problem

. . is proposed for centralized detection problems:
whereg¢;; is the cost of choosing hypothedis when the state prop P

of nature isH;, and P;(T';) is the probability of deciding max / max d
hypothesisH; when H; is correct, withI'; denoting the {02, 1, RK l:{O,l.,....,I\lfl}Wlpl(y) 4
decision region for hypothesid;. Then, the Bayes risk can K 5 (6)
be expressed as biectto ~ S 1 14 %) < o
subjec 0520& +072m <Cr,
M—-1 . ' . .
r(8) = Z 7 R; (5) @2 whereCrr is the (total) cost constraint. Hence, the optimal allo-

cation of the measurement noise varianegs,, (equivalently,



the costs(;) is to be performed under the total cost constrainas follows:

It is also noted that the maximization of the objective fimct K )

in (6) corresponds to the minimization of the Bayes risk ij (4 max Z M

which represents the probability of error for the Bayes .rule {2, HS i—1 0%, + O,

When the optimization problem proposed in (6) is solved, the 1 o2 (11)
optimum cost values for the measurement devices (sensers) a subject to 3 ZlogQ ( 02“ ) <Cr.

obtained and these values achieve the optimum performance

for centralized detection. The objective function in (11) is convex with respectatfgi

In prz:tjctlcaldsystem?, trt;e Observations= [x1, ..., 2x]", o Vo2, >0 andVo2 > 0 since the Hessian matrix of the
are in epenT ent o the me;s_urerlnentbn;)_:ea,d = object|ve functlonH _dlag{2u1/(cr + o2 ), 203 /(02 +
[m1,...,mg|". Hence, the conditional probability density - P 2u% (02, + 02, )P}, is posmve ‘definite. Since a

function (PDF) of the measurement vector when hypothe%
H, is true can be obtained as the convolution of the PDFs
m andx as follows:

nvex objectlve functlon is maximized over a convex set,
e solution lies at the boundary [20], [29]. Therefore, the
constraint function becomes an equality constraint and the
optimization problem can be solved by using the Lagrange
n(y) = /KpM(m)px(y—mle)dm. (7)  multipliers method [28], [29]. Based on this approach, the
® optimal cost allocation algorithm is obtained as follows:

In addition, if the sensors have independent ngiggm) can 4
= ——iif 02 < pla
be expressed asy (M) = pas, (m1) -+ - parg (Mic). 2 _ ) wa—oz > z, < Hi (12)
As a special case, a centralized binary hypothesis-testing 0, if 2 > 2o
problem is investigated in the presence of Gaussian observa '
tions and measurement noise, which is a common scenagh

in practice. In this case, the distribution of observation ( 2 )1/|SK
o = y

under hypothesidi, is Gaussian with mean vectqry and 92CT H %211
covariance matrixx, which is denoted byV (po,X). Simi- Hi
larly, x is distributed asV'(u1,3) under hypothesig?;. In

i i — . 42
addition, the measurement noise vector, is distributed as Where setSy is given by Sy = {i € {1.2,... K} : 0y, #
N(0,%,,), whereX,, = diag{o?, , o2 _}; that is, oo}, and|Sk| represents the number of elements in theSset

the measurement noise is |nde|t;ne1r;denr?t’ter.d|ﬁerent sef@ors T The algorithm in (12) implies that if the observation vadan
is greater tharu?a, the variance of the measurement

Considering thak andm are independent, the distribution ofgz

the measuremeny, = x + m, is denoted by\ (1o, & + Sy, device (sensor) is set to infinity; that is, the observatign i
under hypothesisﬁo and by'/\/'(m D SH) untjerHl not measured at all, and the cost of the measurement device is

For the hypothesis-testing problem specified in the previo ero. If the observation variance is smaller than the spgeCifi

paragraph, the Bayes risk corresponding to the Bayes rnleé reshold, the variance of the measurement noise is cécula
be obtained as follows in the case of UCA [25, Chapter 3]: .according to the expression in (12), which states that if the
‘observation variance is low, the variance of the measuremen

(13)

1€ESK

In(mo/m)  d d lIn(mo/m) device is assigned to be low. In other words, if the obseowati
7(6p) —W0Q<T+§> +7 Q(§ - T) variance is low, a device with a high cost is considered
(8) to take measurements. Moreover, if the difference between
where the means of the observations for the two hypotheges,
is high ando? < pfo is satisfied, a low measurement
d2 \/(lh — 10)T(Z + Zm) 1 — po) 9) noise variance is assigned to the measurement device. If

w; is close to zero such tha:t2 > p?a, a measurement
device with zero cost is con5|dered Apart from this, if the
observations are i.i.d. given the hypothesis, the variqufe
the measurement devices are chosen as equal, meanind that al
the devices are required to have equal costs in order towachie
oo ! A the optimum performance. The variances of the measurement
imization of r(dp) can be achieved by maximizing. If }/ICGS become?2, = o2/(22Cr/K _1) for i.i.d. observations.
the observatlons are assumed to be independent; that is, In the followmg lemma, the probability of error correspend

= diag{o; oz}, thend can be expressed as ing to the optimal cost allocation in (12) is shown to be conve
with respective to the total cost constrainty, for the case
of equal priors.

and Q(z) = (1/v2r) [ e 5" dt denotes they-function.
It can be shown that the derivative ofdp) in (8) with
respect tod is negative for all values ofl; hence,r(dp) is
a monotone decreasing function df Therefore, the min-

19 12""’

, (10)

Lemma 1. Consider a binary hypothesis-testing problem in
the presence of independent Gaussian observations and mea-
wherey,; represents thé&h component of the vectqe; — . Surement noise. Then, for the optimal cost allocation sggt
Hence, the optimization problem in (6) for this case is statén (12), the probability of error in(8) is a convex monotone
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decreasing function of the total cost constraint in the case

of equal priors; i.e.,mg = 71 = 0.5. X, —— s, u

Proof. In the case of equal priors, the probability of error \

in (8) reduces toQ(d/2). Assume, without loss of general-  y, — u\‘ Fusion

ity, that the first N of K sensors have finite measurement Center ——T(w)
noise variances; that isy2, < oo for i € {1,...,N}. :

Then, from (10), the probability of error can be written as /

Po=Q(L/2N, % . When the optimab?, values — *¢ SK

obtained from (12) and (13) are inserted into the probabilit _ _
of error expression, the optimal probability of error isteth T'9ure 2 Decentralized detection system model.

as under the required detection performance. The optimimatio
) 1 N 2 s problem for the case in Lemma 1 can be written as follows:
Pi=Q |5 (;0;)—72 T (14) | | x 2
a2 \1/N 17)
wherer = N(% . The first order derivative of* _
with respect to the total costr is obtained as subjectto @ < Pec,
or; (In2)72-267/N exp ( —(B— 7-272CT/N)/8) where P,,. repr(_esgnts the probgbility of.error constraint. The
aCT == 2\/%N\/m ) Lagrange multipliers method is used in order to solve the

problem in (17) as in the solution of the problem in (11). Then
the optimal cost allocation strategy achieving the minimum
total measurement cost under the given probability of error

2 2 . . . .
where £ £L ...+ £ Then, the second order derivativecOnstraint is obtained as follows:

(15)

of P* with rezsfpect to the total co€tr is calculated, after some o e 9 9
€ . 2 ———, if o < /LE
manipulation, as follows: O, = 4§ MO i ‘e (18)
00, if 032” > p2é
* 2
Pr_ r (I2\7 o with
BC% Vor \ N
207 /Ny—1/2 (8 — r27207/N) &= 2 i ’ (19)
X (B — 7272CT/NY=1/2 oxpy <— f) (ZieSK ;‘7) —4(Q~1(P..))?
% (Z 4+ 92CT/N 1(5 _ 7220T/N)1) ) (16) where@~1(-) represents the inverse of tidggfunction.
8 2

As the arithmetic mean is larger than or equal to the geomet:B- Decentralized Detection
mean, 3 > 7 is obtained. Then3 > 7272¢7/N gince In contrast to centralized detection, local sensors send a
272C1/N < 1, Therefore, it is observed from (15) and (16) thasummary of their observations to the fusion center in decen-
the first and the second order derivatives¢f with respect tralized detection. For binary hypothesis-testing, la=isors
to Cr are negative and positive, respectively. HenB¢,is can send their binary decisions about the true hypothesis (0
a convex and monotone decreasing function of the total cdstto the fusion center. The fusion center collects the lyinar
constraintCr for all Cp > 0. O decisions of the sensors and decides on the hypothesis. The
fusion center can employ, e.g., OR, AND, or majority rules
[30], as discussed in the following. The system model in this
Lemma 1 states the convexity property of the probability @fcenario is presented in Fig. 2. As in centralized detegtion
error corresponding to the optimal cost allocation stratieg sensori, s;, measures the observation as = z; + m;.
(12) for equally likely binary hypotheses and in the presenqhen, the sensors make local decisions about one of the
of independent Gaussian observations and measuremeet n@igo hypotheses as;(y;) = u;, wherew; is equal to0 for
It should be noted that the convexity property in Lemma 1 igypothesisH, and 1 for hypothesisH;. The outputs of the
specific for the case of equal priors and non-convex behav'ggnsorsl“’u?, ...,uk, are provided as inputs to the fusion
can be observed for somér for hypotheses with unequalcenter, which makes the final decision denotedfy). The
priors. fusion rule that is employed in this section is the majoritier
At this step, it is important to express the dual of the prolj30]. The majority rule is optimal when the noise components
lem, which aims to find the minimum total measurement cosf the sensors are i.i.d., the hypotheses are equally Jikelg
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the observations are i.i.d. and independent of the noiseeof t In the decentralized detection framework, the aim is to
sensors [31]. The expression for the majority rule is givgn bminimize the probability of error in (21) under the total tos
constraint; that is,

1, it 2K >t
F(ul,ug, - ,’U,K) = {O if %}(1 UZ <t (20) K (I:) ) t—1 (I:) K .
L min mo> > JIvi jo+md > TIri .
tom, Yisa 2=t c=1i=1 2=0 c=1i=1

with ¢ = | K/2| + 1, where|-| represents the floor operator LK )
that maps a real number to the largest integer lower than o, .. Oz,
equal to itself. Although the majority rule is considered in EUbJeCt to§ ZlogQ (1 + cr;) < Cr.
the following analysis, the results can easily be extended f (23)
generic integer values df in (20). (Fort = 1 andt = K, In order to solve this optimization problem, the conditibna
the rule in (20) reduces to the OR fusion rule and the ANProbability densities are obtained and inserted in theativje
fusion rule, respectively.) function. Then, an exhaustive search is applied to find the

Considering independent but not necessarily identicalfigeasurement noise variances. In order to reduce the com-
distributed measurementg;6), the probability of error (i.e., putation time, parallel computing can be used. The solution
the Bayes risk for UCA) for the fusion rule in (20) can bef (23) provides the optimum cost allocation strategy fa th
calculated as considered decentralized detection system.

x As a special case, the Gaussian scenario is investigated.

K 1 (E) Suppose that the probability distributions of the obseovet
leiz,c,wo +m ZZHM(Z,C,UM are independent when the hypothesis is given, and the dis-
z=t e=114=1 z=0c=1i=1 ( tribution of the ith observation is denoted by (uio,02,)

, 2 i i
wherep/  denotes, for theth sensor, the probability of and N (pir,07;,) under hypothesist, and hypothesisi,

choosing hypothesi/; when hypothesigi, is true, and respectively. In addition, the distribution of thith measure-

l(z,c,iy corresponds to(ztﬁg element at ttié rovjv and theith Ment noise is given bW/(0, o, ), and.the observations are

cé’l(;j;nn of matrixL(=), which has a dimension cf) x K independent of the measurement noise. For the sensors, the
! z

and is formed as follows: The numbers of 1's and 0’'s in gayes rule is employed assuming UCA and equally likely

row arez and K — z, respectively, and the rows of the matrixp.riors [25]. 'T‘ _this settfn g, the prob_ability distributiasf v
contain all possible combinations efl’s and K — z 0's. For (i.e., the decision of théth sensor) given the hypotheses can

example, matrix (z) for K = 5 andz = 3 can be given as be specified as follows:

follows: (1 o) | i e —
11100 NS, ) Tu=0
pju;) = , (24)
1100 1 1) (i — i _
Q (=1)? (pir —pio) if =1
01 1 1 0 2\/02,+02,, ’ v
2 8 i é i for j € {0,1}, wherep;(u;) represents the probability af;
L(z) = 11010 , under hypotheseH ;. Hence, the optimization problem can be
010 1 1 expressed for the Gaussian case as follows:
01 10 1 LK )
1 01 10 - ) M)
100 11 - 2 ;c—ng@(Z’c’l)? o2, + o2,
o2 K X
Where, e.g.l(g_’lyg) = 1, 1(3_’472) = O, andl(g_’gyg) = 1. A|th0ugh { 72”7 =t 1 =1 (Z) a Hi1 — M40
matrix L (z) is not unique (e.g., the orders of the rows can be + 2 H Q| = Bz 2. /02 + o2
changed), all thé. (z) matrices result in the same probability B =0e=li=l , s
of error in (21). . 1 oz
. . . subjectto — 1 1 L)< 25
For the case of i.i.d. measurementg’'q) and identical ) 2 ; 082 \ 1+ o2. )~ B (25)

decision rules at the sensors, the probability of error fiar t

fusion rule in (20) can be expressed, as a special case of (J{)€reAez . = 2 : !
problem leads to the optimal performance for the considered

z.c,i) — 1. The solution of this optimization

as follows: ) ; . .
decentralized detection system by optimally allocatireydbst
K X
K B values to the measurement devices (sensors).
r(l) = Woz ( )(Plo)z(poo)K - .
=\ % Remark 1. The decisions at the local sensors are made
e according to the Bayesian criterion and the optimization is
+m ) ( )(pll)z(pOI)K_z : (22) performed for the given fusion rule, which is the majoritieru
z
z=0

In the following lemma, the convexity of the optimization
where p;; represents, for each sensor, the probability @roblem in (25) is investigated for the special case of two
deciding for hypothesig/; when hypothesid?; is true. Sensors.
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Lemma 2. Consider the Gaussian scenario that leads to thiél.A. Centralized Detection

optimization problem ir25). In addition, suppose that’ = 2, As described in Section II-A, the sensors in a centralized
pio =0, and iy = p > 0 for i = 1,2. Then, the problem in getection system transmit all of their observations to the
(25)_'5 a convex optimization problgem if}, + o7, < 1?/12  fysion center and the fusion center decides on the hypethesi
for i = 1,2 and for all values ofo;, under the total cost Therefore, it suffices to apply the Neyman-Pearson critetio

constraint. the fusion center only. In this context, the aim is to maxieniz
Proof. Under the assumptions specified in the lemma, tfig€ Probability of detection subject to the constraints be t
objective function in (25) can be expressed as probability of false alarm and the total cost, which is date
by the following optimization problem:
1 % %
T(F)Z—Q( )Q( ) max / d
2 02 +02, 2\/02, + 02, L. p1(y)dy
1 Iz Iz
3 <1 B Q( B m)Q( B ﬁ)) suiect o [ puly)ay <o (28)
1 mi T2 ma2
(26) T ,
. : . ) 1 2
The Hessian matrixH of r(I') is stated as follows: L Zlogg 1+ Iz, <Crp.
T2 52 T2 42 2 0'7271.
H = m12%m mi%mz | wherer,: .o represents =1 !
752 agnl T2 42 mg T mg

ma ) mo1Tmy wherel'; is the decision region for hypothesHs, p;(y) is the
second-order derivative of ') with respect tar;, andoy, . It probability distribution of the observation undds, wherei e
can be shown that,2 > andrs: > arezero.Hence,the (o 1} anday. is the false alarm constraint. The solution of
diagonal terms must be positive for the convexity-0f) with  (28) yields the maximum value of the probability of detentio

2 2 H H . . .
respect tos;,, ando;, . After some manIpUIatlomafni,afni via optimal cost assignments for the local sensors under the

can be expressed fore {1,2} as false alarm and total cost constraints.
) Next, the Gaussian scenario is investigated as a specil cas
T < - H > based on the same distributions and assumptions employed in
T Tm. 2 2 . . .
T 821 8(oz, +o7.) @7) Section 1I-A. Due to the presence of separate constraints in

1 u? 3 (28), the optimal NP decision rule can be obtained first, Wwhic
. (02 + 02, )5/2 (8(03 +02,) §>' leads to a likelihood ratio test with the probability of fals

' ' ' ' alarm set toa. [25]. For the considered Gaussian scenario,
Frorg (27), the convexity condition fo(I") can be obtained as the corresponding probability of detection can be obtained
ﬁ > 12fori = 1,2. Thatis, if this condition is satisfied as Pp = Q(Q~*(ay.) — d), whered is given by (9) [25].
for all values of 02 under the total cost constraint, thel Nerefore, the optimization problem in (28) can be exprésse
optimization problem becomes a convex optimization pnoble@S follows:
as the constraint is already convex as discussed previously max Q(Qfl(afc) — d)

{U?ni}f(:l

Lemma 2 presents conditions under which the optimal cost _ 1 E o2 (29)

allocation problem in (25) becomes a convex optimization subject to 5210& (1 + 02%) <Cr.

problem. In that case, the problem can be solved based i=1 e

on convex optimization algorithms such as the interiompoiln order to maximize the objective function, the term inside

algorithm [28]. @ function should be minimized which can be achieved by
increasingd in (9). This results in the same optimization
problem proposed in Section Il-A; hence, the cost values of

I1l. COSTALLOCATION FOR NEYMAN-PEARSON the sensors are determined according to the algorithm given
CRITERION in (12).

The Bayesian criterion considered in the previous section ) _
is well-suited in the presence of prior probabilities of thd!-B. Decentralized Detection
hypotheses and cost assignments for possible decisioas (sdn decentralized detection, all local sensors make their ow
(1)—(3)). However, in some cases, the information about tkecisions, which are processed in the fusion center to decid
prior probabilities of the hypotheses may not be availalsle on the hypothesis. In Section II-B, local sensors make a
assigning costs to possible decisions may not be suitable.decision according to the Bayes rule and the majority fusion
such scenarios, the Neyman-Pearson approach can be adoptieds employed at the fusion center. In this part, decsiare
for binary hypothesis-testing problems, where the aim is tnade according to the Neyman-Pearson criterion in the local
maximize the probability of detection while satisfying aneo sensors and the fusion center uses a counting rule [32]. The
straint on the probability of false alarm [25]. In this sectithe counting rule is specified in such a way that the probability
Neyman-Pearson approach is employed for designing optimef false alarm is lower than a specified threshold. As an
centralized and decentralized detection systems in tteepoe  example, the probability of false alarm in the fusion center
of a cost constraint on measurement devices. versus the value oiV (for the N out of K rule) is illustrated
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of false alarm toa;. Then, the probability of detection is

%7 £ determined for the obtained detection threshold. In palgic
sl the probability of detection for théth sensor is calculated as
follows:
-101 1 i1 — Lo
i Pp, —Q<Q1 a; —7> 32
-15r V= 1210 1 ( Z) \ Ugi + 0',27” ( )
&f 20 From (32), the optimization problem in (31) can be specified
g ° as follows:
[ K () x
- SO e -
ma>I§ z=N c=1i=1
35 : 4 {oh, tiza =
it — i1 Hi0
+ (2ze) — 1)Q<Q Hai) - 7>
i i i i i " 2 2
% 2 4 6 8 10 12 V Oz + O,
N 1 K o2
subject to 3 ZlogQ ( 5 ) <Cr, (33)
Figure 3. Probability of false alarm versié for the N out K fusion rule. i=1 Im;

where N is chosen as stated above. Exhaustive search with
parallel computing is used to solve the optimization proble

as in (23). The solution of (33) results in the maximum

f'gﬂge’ the probability of false alarm for the local SENsa's brobability of detection for the given cost and false alarm
107" and the measurements of the sensors are independgnf.i aints

For such a system to achieve an overall probability of false
alarm lower thanl0~'2, the best fusion rule becomésout Remark 2. Neyman-Pearson hypothesis testing is employed at
of 12. Moreover, it is observed that the probability of fals¢he local sensors and the optimization problem is formualate
alarm is a decreasing function &f similar to the probability for the given fusion rule, which is the counting rule. As
of detection. In order to achieve the maximum probability ginother approach, the optimization problem can be fornedat
detection,N is chosen to be the minimum of possible valu@ver the fusion rule, local thresholds and measurementenois
that satisfies constraint on the probability of false alasm,. variances. Although the latter optimization problem caade
The same assumptions and the probability distributiof@ improved performance, its computational complexity is
used in Section 1I-B are employed in this section. Then, ttggnificantly higher than that of the former one.
probability of false alarmPr4,, at the fusion center for the
N out of K strategy is calculated as follows: IV. COSTALLOCATION FOR J-DIVERGENCE CRITERION
As alternatives to the Bayesian and NP criteria, distance
related bounds can be used for quantifying detection perfor
Prag. = Y Jlcen =1+ @leein —Dais (30) mance. The distance related bounds provide upper and lower
Z=Ne=li=1 bounds on the probabilities of detection and false alarm (or
where «; is the probability of false alarm at thih sensor, the probability of error). Some examples of these bounds are
andl . ; corresponds to the element at ttth row and the the Bhattacharrya bound]-divergence and Chernoff bound
ith column of matrixL (z), as defined in Section II-B. [25]. These bounds belong to the Ali-Silvey class of distanc
The proposed optimization problem aims to maximize th@easures [33]. In this section, we emplddivergence, firstly
probability of detection while keeping the total cost of #en- introduced by Jeffreys [34], for the cost allocation proble
sors under a certain limit and guaranteeing that the prdiyabi The J-divergence is a commonly used metric for detection
of false alarm is below the specified false alarm constraimterformance [35]-[38]. It introduces a lower bound on the

in Fig. 3 for a sensor network with2 local sensors. In the

Based on (30), the optimization problem is stated as probability of errorP, [37] as follows:
P. > mome ?/? , (34)
{Ugnv?),l(gl SO T ey = 1+ Qlzey — 1) P, where 7, and 7; are the prior probabilities of hypothesis
T z=Ne=li=1 H, and hypothesis,, respectively, and/ denotes the/J-
. 1 & o2 divergence, which is the symmetric version of the Kullback-
subject to 2 log, 3 <Cr, (31) Leibler (KL) distance [39]. TheJ-divergence is defined be-

tween two probability densitieg, andgq, as follows:

where Pp, is the probability of detection of thé&h sensor,

and the value ofV is equal to the minimum integer number J(p,q) = D(plla) + Dlalip), (35)

that satisfiesPra,, < ay. for the NV out of K decision rule. where D(p||¢) is the KL distance betweep and ¢, which is
As a special case, the Gaussian scenario in Section Il-Bciglculated as

investigated. In this case, the detection threshold isutatied p(x)

based on the givem; value by equating the probability D(pllq) :/p(“?) m@d”f- (36)
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According to the formula in (36), thé-divergence is obtained In order to solve this problem, the conditional density func

as follows: tions of the local decisions should be determined. These
p() densities are given as follows:
I00) = [0 -a@)n e @) ;
: . : o : =Py —pPp)— 42
In this section, the cost allocation problem is investidate pi(Y) }:[1 it D:) ’ (42)
based on the/-divergence criterion for both centralized and ;(
decentralized detection systems. po(u) = HP;?L;O — Ppa, ) (43)
=1
IV.A. Centralized Detection where Pr 4, and Pp, represent the probability of false alarm

The aim is to maximize the detection performance at trand t_he probf_;\bility of detection at thith sensor, resp_ectively.
fusion center under a total cost constraint. To this aim,the 1€ information aboutPr,, and Pp, can be obtained by
divergence between (y) andpo(y) is to be maximized. The usmg_the. Neyman-Pearson rule. The objective function én th
optimization problem for centralized detection can be terit OPtimization problem can be expressed as follows:

as follows: 11 1
max  J(pi(y). poly) Tor(whm(e) =3 > >,
{Ugni}f(zl w1 =0 us=0 ur=0
K 2 (38) K » . K 5 Y
subject to lzmgQ <1+ U;“) < COp. (HPDZ(l—PDi)l ' _HPF;xi(l_PFAi)l )
2 p O i=1 i=1
Although the J-divergence is useful especially in cases |, iz Ppi(1 — Pp.) )
where the error probabilities cannot easily be evaluated, i HiKzl Ppy, (1= Ppa,)t—w
is a metric that can be employed in any scenario. Since the (44)

Gaussian distribution is commonly encountered in practicé order to examine the Gaussian scenafp, is determined
(38) is investigated for the Gaussian scenario in detail Hsterms of the specified probability of false alarm as in (32)
in the previous section. (Thé-divergence for two GaussianThen, the givenPr,, and the calculated®p, values can
distributions is considered for detection performancénoiga- e inserted into (44) in order to determine tiiedivergence
tion problems in the literature; e.g., [35].) Thedivergence betweenp;(u) and po(u). At this point, the obtained/-
between densities and ¢ with distributionsA (120, Xo) and divergence betweep, (u) andpo(u) is inserted into (41) and

N(u1,X1), respectively, is given as follows [40]: the optimization problem is solved numerically in order to
1 obtain the optimum detection performance in the sensé-of
J(p,q) =§(H1 —10) T (B0t + 217 (1 — o) divergence. As the numerical solution approach in the next

1 (39) section, exhaustive search is employed.
+ ot {Z0 'S + 2 S0 - 21,
2
: . . . . . V. NUMERICAL RESULTS
where | is the identity matrix with the same size as the

covariance matrices. For the Gaussian scenario described iln this section, the performance of the proposed optimal
Section II-A, theJ-divergence is calculated as cost allocation strategies is evaluated via numerical gtesn

Firstly, the results for centralized detection in the Bages
J(p1(y), po(y)) = (1 — po) "7 (1 — o), (40) framework are presented. The distribution of the obsevuati

N - L x under hypothesisi, is given by A/(0,X), where0 =
which is the same as the objective function in (11). Themfor07 0,0]7. Similarly, the distribution ofx under hypothesis
the same optimization problem as in Section II-A and IlI-A i is modeled as\'(1,), where1 = [1,1,1]7. In these

obtained. As a result, the cost allocation strategy is d&te&d jiqyinytions, S represents the covariance matrix, which is

according to the algorithm in (12). expressed as didg?, , 02,02, }. The values of the variances
o7, 02, andoZ are set to0.2, 0.7, and 1.2, respectively.

x1! T2
IV.B. Decentralized Detection Measurement noism also has Gaussian distribution denoted
— di 2 2 2
In this part, a decentralized detection system is examin{%& N(0, 3y ), where 3y, _.d'ag_{(."ml’amwams}' Lastly,
. S 7 . the hypotheses are equally likely; i.eg = 7, = 0.5.
based on the/-divergence criterion. The aim is to maximize The strateaies that are compared with the proposed optimal
the J-divergence betweep,; (u) andpy(u) under a total cost 9 P prop P

constraint. The mathematical description of the problem fost allocation strategy are

given by  assignment of equal measurement variances to the mea-
surement devices (sensors), and
. gna}vlg J(p1(u), po(u)) . assignment of all the cost to the sensor with the best
Tm; Fi=1 observation.
1 & o2 (41) When the measurement devices have equal measurement noise
subject to = ZlogQ 1+ —5+) <Cr. - S 2 2 2 q ; 2
2 2. variances; i.e.g;, = oy, = o,,, = 0,,., the variancer;, can

i=1
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Figure 4. Probability of error vs. total cost constraint Bayesian centralized Figure 5. Probability of error vs. total cost constraint Bayesian decentral-
detection. ized detection.

be calculated by using the formdg_, (1+02,/0?,) = QQCT*, ~ case since all the sensors make their own decisions. When zer
where the varlancgfn corresponds to the smallest positivg; js assigned to a sensor, the measurement noise variance
root of this equation. After finding:7, the probability of pocomes infinity and the probability of error for that mea-
error is calculated as(ég) = Q(O.5\/Zf’:1 1/(0% +0Z)). surement device becomé@ss. Then, the probability of error
In the second strategy, all the available cost is assignéieto converges ta(I') = 0.75Q(0.5/1/02 )+0.5Q(—0.5/,/02))
measurement device having the observation with the smallés high cost constraints. Fczfi1 = 0.2, the probability of
variance. In this example;? has the smallest variance; hencegrror converges t0.3159. When the cost constraint is high,
all the cost is assigned to sendoando?, = o2, (22¢T —1). the equal measurement variances strategy converges to the
The other variances?, ando?,, are set to infinity, and no optimal strategy. For high cost constraints, the probgbdf
measurements are taken from the corresponding measureneerdr for the equal measurement variances strategy coeserg
devices. The probability of error is obtained for this case @ 7(I') = ab + ac + bc — 2abc Wherea = Q(0.5/,/02)),
r(0p) = Q(0.5v/22CT —1/,/22C102 ). The results obtained b = Q(0.5/,/02,), andec = Q(0.5/,/07,). For the values
for the centralized detection in the Bayesian framework af®ecified above;(I') converges t®.1446. Overall, the optimal
presented in Fig. 4, which illustrates the probability ofoer €OSt allocation strategy yields the lowest probabilitiégwor
versus the total cost constrainfyr, for the optimal cost for decentralized detection, as well.
allocation strategy and the two strategies described atfmre  In the Neyman-Pearson framework, the probability of de-
small values o7, assigning all the cost to the sensor with thEection achieved by the proposed algorithm is compared with
best observation converges the optimal solution sincenwhi@€ two strategies explained above (that is, assignment of
Cy is small, the optimal strategy allocates the total cost é tigqual measurement variances to the measurement devices and
sensors with the best observations. Moreover, the prdbabipssignment of all the cost to the sensor with the best observa
of error for assigning all the cost to the sensor with the beié@n)- In centralized detection, the distribution of ohation
observation converges tQ(0.5/,/a2,), which is equal to X iS specified by'(0,3) and N(2, %) for hypothesesH,
Q(0.5/1/02) = 0.1318 since 0%, goes to zero a€’r in- gnd Hy, res:pectlvely. T.he covariance matrix is the same as
creases. For high total cost constraints, the equal maasate N the previous scenario; i.e% = diag{0.2,0.7,1.2}. The
variances strategy converges to the optimal strategy.l@imipmbab'“ty of false alarm at the fusion center is required
to the strategy that assigns all the cost to the sensor with #§ be less than or equal tay. = 107° The results
best observation, whefi is high, the measurement noiséPbtained for centralized d.etec'qon in t.he. Neyman-Pearson
variances become low and the probability of error convergfi@mework are presented in Fig. 6. Similar to the results
to r(6p) = Q(0.5,/1/02, + 1/02, +1/02.) which is equal for the Bayes_|an criterion, assigning all the cost to thet bes
t0 0.0889 for the values specified above. Overall, the propos&pservation yields similar performance to the optimal algo
optimal cost allocation strategy yields the lowest protitdzs rithm for low cost values. When the cost budget increases,
of error. In other words, the optimum performance accordirfgp  Converges toQ(Q(ay.) — Ml_/ffml); hencg, for the
to the Bayesian criterion is attained with the optimal co&Pnsidered parameters, the probability of detection cges
allocation strategy. to Q(Q1(107%) — 2/1/0.2) = 0.3892. On the other hand,

For the same setting as in Fig. 4, the results for decenachlizN® equal measurement variances strategy converges to the
detection in the Bayesian framework are presented in Fig. ®me value of)(Q ' (ay.) — \//ﬁ/ail +p3/o2, + p3/02,)
As observed from Fig. 5, assigning all the cost to the sensas the optimal algorithm for high cost values. In partic-
with the best observation yields the worst performanceis thular, the optimal algorithm converges ©Q(Q*(107°) —
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detection.

noise powers and the probability of detection for these@®sns

is 1074, When the total cost constraint is high, the equal
measurement variances strategy and the proposed algorithm
converge to the same probability of detection, specified by
Pp = Py, Py, + Py Py, + Py, Pi, — 2Py, Py, Py,, Where

Py, = Q(Q 1) = p1/04,), Pay = Q(Q™ (a2) — pia/04,)
andP,;, = Q(Q ' (a3)—pus/o.,). For the values given above,

Pp converges to 0.9240. Overall, the optimal cost allocation
algorithm yields the highest probabilities of detectiontfiis
scenario.

Next, the .J-divergence criterion is considered and the
proposed algorithm is compared with the other two stragegie
In centralized detection, the distribution of observat@actor
x is represented by (0, X) and A/ (2, X) for hypothesedd,
and H1, respectively, where the covariance matrix is given by
3 = diag{0.2,0.7,1.2}. The results for this case are shown
in Fig. 8. It is observed that assigning all the cost to the bes
observation and the proposed optimal strategy achievdagsimi
performance for low cost values. When the total cost in@gas

V/4/0.24+4/0.7+4/1.2) = 0.7377 as the total cost con- the J-divergence converges to7 /o2 = 20 for the strategy
straint increases. As a result, the optimal cost allocatitinat assigns all the cost to the best observation, which is
strategy produces the maximum probability of detectionllin aignificantly lower than that achieved by the optimal sggte
cases and outperforms the other approaches.
In the next example, the optimality of the proposed algaariances strategy converges to that of the optimal alyorit

rithm is illustrated for decentralized detection in the N&n-

On the other hand, the performance of the equal measurement

for high cost values; in particular, th&-divergence converges

Pearson framework. The distribution of observatiois de- t0 3);_, pi /o, = 29.0476. Overall, the proposed algorithm

noted asV (0, X) and N(4, X) for hypothesesH, and Hj,

yields the maximuny-divergence for all cost values resulting

respectively, where: is the same as that in the centralizeéh the optimum performance.

detection case. All the local sensors have the same prdpabil In the final example, a decentralized detection problem is
of false alarm given byy; = s = a3 = 1074, It is required considered according to thedivergence criterion. The distri-

to achieve a false alarm probability not exceeding” at the bution of observationx is denoted byV (0, X) and N (4, X)
fusion center. In order to satisfy this false alarm proligbil for hypothesedi, and H;, respectively, wher& is the same

at the fusion center, the out 3 fusion rule must be used.as in the centralized detection case. The probability cfefal
This fusion rule produces a false alarm probabilitylof 7->, alarm for the local sensors is given by = as = a3 = 10~%.
which satisfies the requirement. The results related to tfike results related to this scenario are presented in Filj. 9.
scenario are shown in Fig. 7. It is observed that assigniiggnoted that assigning all the cost to the best observation
all the cost to the best observation has detection probabilachieves improved performance in this case compared to the
close to zero since the sensors having zero cost have infiderentralized detection examples in the Bayesian and Neyma
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maximize the probability of detection (under a constraint
on the probability of false alarm) for the Neyman-Pearson
criterion, and maximize the/-divergence for the distance
based criterion under given cost constraints, and theyeaehi
the optimum performance.
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