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Abstract—In this letter, optimal deterministic encoding of the optimal encoding function is obtained to minimize the
a uniformly distributed scalar parameter is performed in the ECRB at the intended receiver, while keeping the MSE at the
presence of an eavesdropper. The objective is to maximize &h aayesdropper above a certain threshold. Instead of the ECRB

worst-case Fisher information of the parameter at the intenled - . -
receiver while keeping the mean-squared error (MSE) at the Metric employed in [16], this letter focuses on the worst-

eavesdropper above a certain level. The eavesdropper is meled case CRB (equivalently, the worst-case Fisher.information
to employ the linear minimum mean-squared error estimator in order to develop a robust parameter encoding approach

based on the encoded version of the parameter. First, the that guarantees a certain level of estimation accuracyeat th
optimal encoding function is derived when there exist no seéecy intended receiver. The proposed problem requires diferen

constraints. Next, to obtain the solution of the problem in he : g .
presence of the secrecy constraint, the form gf the encoding solution approaches than that in [16] due to the minimaxneatu

function that maximizes the MSE at the eavesdropper is exptitly ~ Of the worst-case optimization. o _
derived for any given level of worst-case Fisher informatio. In this letter, we investigate the transmission of a unifigrm

Then, based on this result, a low-complexity algorithm is povided  distributed scalar parameter to an intended receiver in the
to catlcqla;teF.the”opﬂmatll ?ncod|ng fgncltlon forlthe given se’fcé’ presence of an eavesdropper. To facilitate secret communi-
constraint. Finally, illustrative numerical examples are presented. . o ’ ; S
cations, we utilize an encoding function (which is one-teo
Index Terms—Fisher information, parameter estimation, and continuous except at a finite number of points) applied on
mean-squared error, secrecy, optimization. the original parameter. The objective is to minimize the max
| INTRODUCTION imum CRB (equivalently, to maximize the minimum Fisher
) ) ) information) at the intended receiver while ensuring aaiart
Physical layer secrecy has gained a renewed interest WiliSE target at the eavesdropper. The eavesdropper is modeled
the advances in wireless communication systems. The M@Nemploy the linear MMSE (LMMSE) estimator based on
objective of physical layer secrecy is to ensure secret COfie noisy observation of the encoded parameter withouggbein
munications between a transmitter and an intended rece@ivegware of encoding. An optimization problem is formulated
the presence of an eavesdropper by exploiting physical#anty obtain the optimal encoding function for a given target
characteristics. One common approach to quantify the amowfiSE level at the eavesdropper. First, the secrecy constrain
of achieved secrecy is to use information theoretic mestich  js omitted and the optimization problem is solved under no
as the mutual information and secrecy rate, which have begdhstraints, which yields a closed-form analytical solnti
Investlgated in a multitude of studies in the literature \ari- Then, to solve the opt|ma| encoding prob|em in the presehce o
ous channels (e.g., fading, Gaussian broadcast or inéeder the MSE constraint on the eavesdropper, the optimal engodin
wiretap, etc. [1]-[7]) and transmission scenarios (e.dth W function that maximizes the MSE at the eavesdropper is
user or jammer cooperation to facilitate security [8]-)10] derived analytically for any given level of minimum Fisher
Alternatively, quality-of-service (QoS) frameworks bdsen information at the intended receiver. Based on this arwti
signal-to-noise-ratio (SNR) [11]-[13] or estimation thetic resuylt, a low-complexity algorithm is proposed to obtaie th

tools such as mean-squared error (MSE) have recently begjution of the proposed problem. Finally, numerical exsp
used to measure the security performance of communicatigi: provided to illustrate the theoretical results.

systems. The latter framework is of particular interestesign

low-complexity practical secure systems and has been adopt Il. PROBLEM FORMULATION

in various studies [14]-[18]. In [14], the secret commuti@m& A scalar parametet € A is to be transmitted to an intended
problem is investigated for Gaussian interference chanimel receiver over a noisy channel, where the channel noise is
the presence of eavesdroppers. The problem is formulatedresented byV, and the instantaneous fading coefficient
to minimize the total minimum mean-squared error (MMSEgf the channel is denoted by constdnt In addition, there

at the intended receivers while keeping the MMSE at the&ists an eavesdropper that tries to estimate the parameter
eavesdroppers above a certain level, where joint artifiwéde ¢ [16]. The objective is to perform accurate estimation of
and linear precoding schemes are used to satisfy the secngey parameter at the intended receiver while keeping the
constraints. The estimation theoretic secrecy is also @yepl estimation error at the eavesdropper above a certain level.
in distributed inference networks, where the informatiome Therefore, the parameter is encoded by a continuous (eatept
ing to a fusion center from various sensor nodes can also d€nite number of points), real valued, and one-to-one fonct

observed by eavesdroppers [15]. f: A —=T. Then, the received signal at the intended receiver
In estimation theoretic approaches, the Cramér-Rao oung expressed as
(CRBs) provide useful fundamental limits for assessing per Y = hof(8) + N, 1)

formance of estimators, hence they can be employed as a i ) )
performance metric for the intended receiver to optimiz,[1 Where N, is modeled as a zero-mean Gaussian random vari-
[19]. In this regard, the optimal parameter encoding foreec able with a variance of? and is independent @f. Also, it is
communication is investigated based on the expectation &tsumed that has uniform distribution oveA. On the other
conditional Cramér-Rao bound (ECRB) in [16]. In particulahand, the eavesdropper observes

. . o Z =hef(0) + N 2
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for the eavesdropper [2], [3]. The intended receiver tri@s thonotone over the interval between any two consecutive
estimate parametef by using observatiort” whereas the discontinuous points as it is one-to-one. Thus, for any one-
eavesdropper employs observatignfor estimatingd (see to-one functionf, there exists a monotone functigh, such
Fig. 1 in [16] for the system model). that T(f) = T(fm), which can be generated by adjusting
A robust approach is proposed in this letter for the optim#the signs of the derivatives without changing their absolut
parameter encoding design and the worst-case (maximwa)ues. Hence, it can be assumed without loss of generality
CRB is used for quantifying the estimation accuracy at thbat / is a monotone function. Furthermore, it is noted that
intended receiver. Namely, the aim is to minimize the masince f is not differentiable at discontinuous points &afi¢yf)
imum CRB over the parameter set via an encoding functias the pointwise minimum off’(6)2, the points at which
while keeping the MSE at the eavesdropper (which emplotfse jumps occur cannot be the optimal points. Therefore,
the LMMSE estimator) above a certain target value. Henoene can remove the jumps at the discontinuities to obtain a
the following problem formulation is proposed: continuous version, denoted hy. Thus, for any one-to-one
-1 5 2 function f, there exists a continuous functiofy such that
st. B(|6(2)~6") 20 3 T(f) = T(f.); hence, it can also be assumed tifais a

where3(Z) is the LMMSE estimator employed at the eavestontinuous function without any loss. First, consider thsec
dropper,y is the MSE target for the eavesdroppgf(d))~* ©of f'(6) > 0, V6 € [a,b]. Then, based on the properties of

represents the CRB, and#) denotes the Fisher information,the encoding functiorf, j; %d@ = f(b)— f(a) <b—a. Let

fopt = arg mjin max (1(9))

which is given by , g(0) be defined agi(9) = f'(#). Then, the problem in (7)
_ dlog pya(y) becomesnax, ming g(#)? subject tofbg(e)de <b-—a and
o) = / ( 00 Py1o(y)dy ) g(0) > 0. Consider the functiog* () = 1, V6 € [a, b], which

with py|o(y) representing the conditional probability densit?atisfie.s both Qf the constraints. Next, suppose that thestse
function (PDF) ofY” for a given value of) [19]. The problem a functionh with ming 2(6) > 1. Then, [ 'h(0)df > b — a,
in (3) can also be stated as leading to a violation of the constraint. Hence, for any give
B . 5 2 functiong, there is an upper bound specifiednaisy g(0) < 1.
Jopt = arg max mo}nf(e) st. B(|3(Z2)=0]") zn  (5) Since the constant function satisfies this upper bound titeés
which means that the aim is to maximize the minimurf!@ximizer over all possible functions. Singgf) = 1 for
(worst-case) Fisher information at the intended receiwas ¢ € [a,0], itis ot/)talned thatf () :AO IS an optimal solution.
noted that the distribution of does not affect the objective For the case of'(6) < 0, let g(f) = — f'(f). Then, based on
function in (5) since the worst-case parameter value is tRinilar argumentsg(6) = 1 can be obtained, resulting in an
main concern. optimal solution off () = a +b— 6." _ [ |
As motivated in [16], the parameter space and the intrinsic Proposition 1 reveals that if there exist no secrecy con-

constraints on the encoding functigrare specified as follows: Straints, parameter encoding does not provide any benefits i
« 0 A=lab] terms of the worst-case Fisher information &#) = 6 is an

o f(0) € [a,b]. optimal solution.

o f is a continuous (except at a finite number of point . : .
and one-to-one function. Sé Optimization with Secrecy Constraint
To obtain the optimal encoding function in the presence of
1. OPTIMAL ENCODING FUNCTION the secrecy constraint, the problem in (5) can be rewritten,
In this section, the solution of the proposed problem in (5ased on (6), as
(equivalently, in (3)) is investigated in the absence anthin _ el 0)2 3 L
presence of the secrecy constraint. To that end, the Fishéfpt(e) o argmfaxmelnf (0)7 s E(’B(Z) 9’ ) =n (9)

information for parametef can be obtained from (1) and (4)where the additional constraints on the parameter domain an

as follows [16]: o g o the encoding function are as stated at the end of Section IlI.
1(0) = hy f'(6) /oy, (6) Since the eavesdropper employs the LMMSE estimator, the
where f'(6) denotes the derivative of(6). MSE at the eavesdropper can be expressed as [16]
. h2V(V —2C
A. Optimization without Secrecy Constraint E(|f(2)-6|") = hg(vi_’_l) + (B(X) — E(9))? + Var(0)
Consider the optimization problem in (5) without the se- (10)

crecy constraint; i.e., in the absence of the eavesdropp®n \yhere x — £(0), V. = Var(X), C = Cov(X,0), and
(6), the problem in (5) can be expressed by removing the_ ; /5.2 From (9), it is noted that the optimal encoding

constant terms as function should satisfy the MMSE constraint by making the
fopt(6) = arg rn?x mein f(0)2. (7) smallest slope ifa,b] as large as possible. It is known that

The following proposition is presented related to the Sohe  17he solution set for (7) also contains the set of all onerte-functions on
of (7). [a,b] with £(6) € [a,b] and with finitely many discontinuous points, where

Proposition 1: The optimal continuous encoding functions between any two consecutive discontinuitief,(6)| = 1. Hence, there exist
in the absence of an eaveSdrOpper are infinitely many encoding functlons _that solve (7). The enngdunctions in

(8) correspond to the optimal continuous solutions.
f(e) =a+b—-0 and f(e) =0. (8) 2|t is noted from (9) and (10) that the transmitter requires khowledge

Proof: Let T denote an operator 000(9) such that of the channel quality parameter for the eavesdropperwhich can be

- . 2 . . . challenging to obtain accurately. Based on imperfect kadgg ofk, the
T(f) = miny f (9) - It is given that f is one-to-one but parameter encoding design can be performed, for exampleobgidering

not necessarily a monotone function overd] due to the the minimum possible value of the MSE at the eavesdropperding to the
possibility of discontinuous points. Howevef, has to be uncertainty in the parameter (Remark 3 in [16]).



when the secrecy constraint is not effective (or, removid), 0|%) can be maximized, which would yield an upper bound
linear encoding function is optimal according to Propositl, on the objective function. It can be found by inspection that

and |f/ .(0)] = 1. Therefore, for a given target leve] when the slope constraint is taken into accoun,X — 6/°)
in (9), one strategy to find the optimal encoding functiois maximized for

is to search among eligible encoding functions that satisfy 5o y—0k, if0<6<a

minge(qp |f/(6)] = k and to check if any of them satisfies X = {Wk Ok ifa<0<n (16)

the target secrecy level, whekeis set tol initially. If there
exist no solutions for a givert, then k is decreased andWhere(l —k)a = u —ky/2 andky/2 < p < v —ky/2.
the procedure is repeated, until a feasible function satigf Hence, the following the relationship is obtained:
the secrecy constraint is found. L&t* denote the family E(]B(Z) _9’2) <AXV)Bi(a, k) 4+ (1 = AX(V))B2(a, k)
of one-to-one and continuous (except at a finite number of AV (Br(a, k) — Ba(a k) + Bal, k)
points) functions with the domain and codomain being given - 1 2\ 2\
by [a,b], andming | f'(8)] = k. Then, a sufficient condition |, . a2 2 _ 2 _ 2
for optimality of f € F* is that it should satisfy the secrecyWIth ﬁl(aé’k) = (& 2 é)(a 1) +2(k kit 1)77/3 2and
traint and th hould b | 1R that safi Ba(a k) = (k — 1)*(a” — ya) + (3k*/4 — 3k/2 + 1)7*/3.
constraint and there should beé no elemen that satisfy Now, notice that for a fixed:, the following equality holds:
the secrecy constraint fom > k. To determine whether ' ' 2k 5
the secrecy constraint can be satisfied for a giventhe L) — E) = (o2 — 2% — 9 LA AR
highest MMSE at the eavesdropper has to be calculated fg}(a’ ) = Balask) = (a7 = ya)( )+ 4 + 2) 3
that specific value ofk. Hence, the solution of the following sjnce 3, (a, k) is a concave function of and By («, k) is a
optimization problem should be performed in the first step:convex function ofa for 0 < k < 1, (v, k) — fa(a, k) is a
fopt = arg max E(\B(Z) _ 9’2) st k< ‘f’(@) , V6 € [a,b] coOncave function of; hence, it attains its minimum at = 0 .
f and o = 7. Therefore, the following inequality is obtained:
_ _ (11) Bi(a, k) — Ba(a, k) > (k?/4 + k/2)v*/3 > 0, which implies
where0 < k < 1 is a given parameter. that for a given value of, the right-hand-side of (17) is an
Remark 1: The domain of the parameter is taken to/be=  iycreasing function of\(V). Hence, a further upper bound
_[a, b] in the general case. However, due to Proposition 2 in [ an be obtained for (17) by using the saii& defined above
it can be assumed that = [0,] and f(6) : [0,7] = [0,7], gjnce it maximizes the variance under the slope constiant.
wherey = b—a, without loss of generality. Hence, in the resfyis function, the variance is given By(a, k) = (k—1)(a? —
of the manuscriptd is assumed to be distributed uniformly Noy) + k242 /12. It is noted that\(V (a, k)) and the resulting

[0, 7). . . _ upper bound are functions ef for fixed £ andh. Hence, the
The following result characterizes the solution of (11). upper bound can be maximized overas follows:
Proposition 2: For a given k, the form of the solution of

(11) is given by E(‘B(Z)_e‘g)

Fon(8) = {'y -0k, if0<0<a . (12) < AV(a, k))Bi(ay k) + (1 = MV (v, k))) B2 (v, k)
’ vk =0k, if a <0<y = AV (ev, k) (Bu (0, k) — Ba(ev, k) + Bal k)
Furthermore, if 2 g(o, k) < rn[%x]g(a, k) (18)
h2~2 a€c|0,y R
2- 1; 2k —k*) = (k+ 1)(B*Vinin + 1)(h*Vinaz +1)  If & = argmax,e 0. 9(a, k), then E(|3(Z) — 6|*) achieves
. . (13) this upper bound by employing at the encoding function.
where £ is the channel quality for the eavesdropper, Therefore, the optimal encoding function 6%, wherea =
k2~2 k242 (1 —k)y? arg maxaefo,4] 9(, k).
Vinin = 12 and Viyaw = 12 + 4 ;o (14 To conclude the proofy should be characterized for given
then, both o = 0 and o = ~ are optimal « values. Otherwise, & andh. Overall, the optimization problem can be written as
o =/2 is optimal. h2V (a, k)

Proof: The first step in the proof is to specify the 3%, hQV(a,k)+1_(ﬂl(a’k)_ﬂQ(a’k))+52(o"k) (19)
characteristics of the encoding function that maximizes tr\}vhere L > 0 andk e [0,1]. Instead of optimizin
LMMSE. Note thatf(f) = X results in a random variable " ) antd L p 9
with V = Var(X), C = Cov(X,6) and u = E(X), and over o, the optimization can be performed ovér based

the value of E(|3(Z) — 0]?) depends on these values. Henc on @ change_ of variables by hotanQ ”Qat far & [O’ﬂ’

; > Y SV (o, k) € [Vinin, Vinaz], WhereV,,;, = k*y%/12 andV,,,4. =
the LMMSE value is to be maximized over the possiblgsz. > A2 i ;

. R4y /124 (1 — k)y#/4. Then, (19) is rewritten as

values of V, C, and u. It is noted that the slope constraint 2 2
\ v, G \ 2k +1)V2+ HV + F
induces limitations on the possible values @af V, and C. max 2(V) = 5
Let S¥ denote the feasible set of V, and C values in the VEWVmin,Vmaz] h2V +1
presence of the constraiit < |f/(0)|. As parameterd is where H = (h?y%/12)(4 — 4k + 3k* — k3) + k — 1 and
distributed uniformly on the intervdD,~], E(8) = v/2 and F = (v2/12)(4 — 6k + 4k? — k3). Then, according to the
Var(#) = v%/12. Then, the optimization problem in (11) canWeierstrass theorem, the global maximum exists for (2@, an

(20)

be expressed as the solution can be found by applying Fermat's rule. Namely,
h2V(V —20) N2 A2 . the optimal solution either satisfies(V') = 0 or is at the
max, WJr( - 5) + 1 (1w, V,C) e S boundary, i.e.,V = Vin OF' V. = Vipae. For 2/(V) = 0,

(15) VZ+2V/h? +d/ht =0, whered = (H — Fh?)/(k + 1).

After some manipulation, the objective function in (15) @& Then,V = —h=2 + h=2y/1—d is a candidate solution.
stated as\(V)E(| X —0]*)+(1=A(V))(pu? —yu+~?/3), where However, V should belong to[V,.in, Vinaz]. TO guarantee
A(V) £ A2V /(h?V + 1). Note that for a giveru, E(]X — this condition,h?V,,.. > V1 —d — 1 > h*V,,,, should be



satisfied. Thereforéi?V,,,;,, +1 < /1 — d. If this holds, then
sgn(limy,_,,+ 2/(V) = sgn(V,2;,+2h"*Vipin+h~*d) < 0.
In conclusion, it is possible that a candidate solution &de
the feasible intervalV,,,in, Vinaz]; however, there is only one
such solution and’ is decreasing at the beginning of the in-
terval. Due to continuity, it is noted thatf € (Vi,in, Vinaz )
then it is in fact the global minimum. Hence, it is concluded
that the solution of (20) is eithdr,,,;,, or V,,.., excluding the
possibility of the other case. Finally, the regions in which
certain end point is optimal are characterized. The coomliti
of 2(Vinin) > 2(Vimae) OCcurs ifh and k satisfy

2.2
h ; 2k — k2) > (k + 1) (A2Vimin + 1) (A2Vinas + 1)
and z(Vinin) < 2(Vinaz) holds otherwise. Note that if the
optimal solution isV,,,4., thena = ~/2. If the optimal solution
iS Vinin, bothé = 0 and & = « are the optimal solutionsHl

As the form of the optimal encoding function that max-
imizes the LMMSE at the eavesdropper is derived for any
value of the minimum slope constrairit)(via Proposition 2,
the optimal encoding function based on the worst-case Fishe
information metric can be obtained by finding the maximum
of such constraints. Hence, the problem reduces to the de-
termination of the best (maximum) value bfe (0,1] such
that 3f € F* in the form specified by (12) that satisfies
the secrecy constraint. This approach can be implemented by
using the procedure shown in Algorithm 1. It is noted that
E(|B(X%) — 6| in Algorithm 1 can be calculated explicitly
via (10) and (12).
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Algorithm 1: f,,;, = ENCODER(7)) Fig. 2: fope(0) versuse for h = 0.5.

% A is the decrement of slope at each iteration.

are also provided in the same figure. (The proposed scheme

k1 provides higher worst-case Fisher information than the BCR
while & > 0 do . based scheme since the latter aims to optimize the average
Picka =0 or o = 1, if (13) holds. Elsen = /2. CRB.) In Fig. 2, the optimal encoding functions based on the
X* = fop(0) as given in (12) worst-case Fisher information metric are provided for asi
i'}”%%é‘fé'ﬁfgf] ) =0l n valugs forh =0.5. As justifjed in Rroposition_ 2, the optimal
= encoding function is either linear with a certain slope hestw
g’;gtak:X 0 and 1, or piecewise linear with a single discontinuity at
else 6 = v/2 depending on the target secrecy leyel
| k+k—-A In Fig. 1, it is observed that as the target secrecy level
end increases, the worst-case Fisher information achievechéy t
end proposed algorithm decreases, as expected. In additiés, it
if k<O0then _ possible to obtain higher worst-case Fisher informatidnes
| Problem is infeasible whenh = 1.5 for the same MSE target compared to the case of
e||seretum f h = 0.5 since the distortion due to the encoding is transmitted
end ovt to the eavesdropper more effectively under better channel

conditions. Note that wheh = 0.5, the three different regions
are observable in the performance figure. Wherd 7, =
IV. NUMERICAL RESULTS AND CONCLUSIONS 16/39 = 0.4101, employingk = 1, that is, fo:(0) = v —6, is

In this section, a numerical example is provided based on tfidfficient to attain the target secrecy levels. In genefatan
theoretical results and the proposed algorithm in Sectibn P& found asy = 0.25y (h*~2/(h*y? +12) +1/3). When
The channel parameters are selectedvas- o, = 1 for the 7 < 7 =< 72 with 7o = 0.4708, it is observed that the
intended receiver antl = 0.5 andh = 1.5 for the eavesdrop- OPtimala value becomes/2. It is noted thaty, can be found
per. The parametet is assumed to be uniformly distributedPy determining the point at which (13) becomes an equality
in the interval of[0, 2]; i.e., v = 2. The eavesdropper employsn general. Therefore, in this region, the optimal encoding
the LMMSE estimator by using the observations based on tfction has a single discontinuity ét= ~/2. Finally, when
encoded parametek = f(6). Also, A is set t00.001 in 2 <7 < 4/3, the optimal is 0; hence, the optimal encoding
the proposed algorithm for calculating the optimal encgdirfU”Ct'On is linear with no gjlscor_ltlnwtles_. It is interewgi to
functions. In Fig. 1, the worst-case Fisher informatioruesi note that the worst-case Fisher information decreasesr fast

achieved by the proposed algorithm are presented with cesp@€ second region, and it decays to zero in the third region
to the target secrecy level for = 0.5 and h = 1.5. For Mmore slowly as compared to the second region. On the other

comparison purposes, the worst-case Fisher informatiresa Nand, when = 1.5, only two of such regions are observed
corresponding to the ECRB based encoding algorithm in [16) Fig. 1.
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