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Optimal Power Allocation for Average Detection
Probability Criterion over Flat Fading Channels

Serkan Sarıtaş, Berkan Dulek, Ahmet Dundar Sezer, Sinan Gezici, and Serdar Yüksel

Abstract—In this paper, the problem of optimal power allo-
cation over flat fading additive white Gaussian noise channels
is considered for maximizing the average detection probability
of a signal emitted from a power constrained transmitter in the
Neyman-Pearson framework. It is assumed that the transmitter
can perform power adaptation under peak and average power
constraints based on the channel state information fed back
by the receiver. Using results from measure theory and convex
analysis, it is shown that this optimization problem, which is
in general nonconvex, has an equivalent Lagrangian dual that
admits no duality gap and can be solved using dual decomposi-
tion. Efficient numerical algorithms are proposed to determine
the optimal power allocation scheme under peak and average
power constraints. Furthermore, the continuity and monotonicity
properties of the corresponding optimal power allocation scheme
are characterized with respect to the signal-to-noise ratio for any
given value of the false alarm probability. Simulation examples
are presented to corroborate the theoretical results and illustrate
the performance improvements due to the proposed optimal
power allocation strategy.

Index Terms– Detection probability, power allocation, fading,
Neyman-Pearson, power constraint.

I. I NTRODUCTION

Due to time-varying nature of wireless channels, dynamic
allocation of communication resources has a significant impact
on the performance of communication systems. In particular,
the use of dynamic power allocation instead of a fixed strategy
can lead to significant performance improvements in the
presence of fading. In the literature, dynamic power allocation
has mostly been employed for enhancing the channel capacity
of communication systems (e.g., [1]–[3]). For a fading additive
white Gaussian noise (AWGN) channel with perfect channel
state information (CSI) available at both the transmitter and
the receiver, the optimal power allocation problem is studied in
order to maximize the ergodic capacity subject to an average
power constraint in [1]. It is shown that the optimal power
allocation policy corresponds to the water-filling solution, in
which no power is transmitted until the received signal-to-
noise ratio (SNR) exceeds a certain threshold, and higher
power levels are allocated as the channel condition improves.
In [2], the optimal power allocation strategies are obtained
to maximize the ergodic capacity and the outage capacity of
secondary users in cognitive radio networks. In the presence
of average/peak transmit and interference power constraints,
it is demonstrated that the average power constraints are
more flexible than the peak power constraints in terms of the
capacity improvements for the secondary users. In a similar
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context, the optimal power allocation is investigated in [3] for
energy-efficient capacity maximization over fading cognitive
radio channels and similar results to those in [2] are obtained.

Although less numerous in the literature, dynamic power
allocation is also considered for performance metrics other
than the channel capacity in order to utilize the communication
channel effectively. In [4], optimal power allocation strategies
are derived in order to minimize the average bit error rate
(BER) for secondary users in a cognitive radio network. In
[5], the optimal power allocation over space and time is
considered for BER minimization of multiple-input single-
output (MISO) communications over Rayleigh fading channels
subject to an average power constraint and a peak-to-average
power ratio constraint. In [6], the optimal power allocation
strategy is presented for the minimization of outage probability
in fading channels and it is shown that the optimal power allo-
cation policy is to employ the “save-then-transmit” protocol,
that is, no power transmission occurs until the accumulated
power becomes sufficiently high and then transmission is
performed continuously with non-decreasing power. In [7],
the optimal power adaptation is considered for a frequency-
selective fading channel in the context of energy efficiency.
Similarly, energy-efficient optimal power allocation is also
studied in [8] for an orthogonal frequency division multiple
access (OFDMA) system in which flat fading channels exist.
In [9], the optimal power allocation is considered for multiple-
input multiple-output (MIMO) flat fading channels in order to
maximize the effective SNR under sum energy and total block
length constraints. In [10], an energy-efficient power allocation
method is proposed for Nakagami-m flat-fading channels in
the presence of delay-outage probability constraint. For coop-
erative wireless sensor networks, an optimized dynamic power
control approach is proposed in [11] with the considerationof
quality of service (QoS) requirements. In [12], the optimal
power and rate adaptation scheme is investigated in order to
maximize the spectral efficiency of a communication system
where multilevel quadrature amplitude modulation (MQAM)
is considered over Rayleigh flat-fading channels. The common
thread in this line of research is to devise power allocation
algorithms that can adapt to varying channel conditions in an
efficient, preferably optimal, manner and hence improve the
system performance beyond that of the conventional uniform
power allocation approach.

Although the problem of optimal power allocation over fad-
ing channels has been considered under various criteria such as
channel capacity (e.g., [1]–[3]), BER (e.g., [4], [5], [13]–[15]),
outage probability (e.g., [6], [16], [17]), and energy efficiency
(e.g., [3], [7], [8]), no studies in the literature have investigated
the optimal power allocation problem over fading channels
within the context of the Neyman-Pearson framework. This
can, in part, be attributed to the lack of closed form solutions
and the nonconvex nature of the optimization problem for
practical values of the false alarm rate. In particular, results
for the convexity properties of the detection probability are
established in [18] for the problem of determining the presence
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of a transmitted signal immersed in additive Gaussian noise
in the absence of fading. In addition to the convexity analysis,
the optimal power allocation strategy is derived for an average
power constrained jammer trying to reduce the detection
probability at the receiver. In a related study [19], the detection
probability is analyzed for cooperative spectrum sensing over
Rayleigh fading channels in cognitive radio systems, and itis
concluded that cooperation among secondary users improves
the detection performance.

In this paper, the optimal power allocation problem is
considered for maximizing the average detection probability
over a flat fading AWGN channel subject to average and
peak power constraints. In order to obtain the optimal power
allocation policy, the convexity properties of the detection
probability are analyzed with respect to the received SNR,
which is subject to flat fading. Then, it is shown that a
dual problem that admits dual decomposition with no duality
gap can be constructed. Based on the primal and dual for-
mulations, various algorithms are proposed for the optimal
power allocation. Furthermore, the optimal power allocation
strategies are characterized according to the desired false alarm
probability and it is obtained that the optimal power allocation
scheme for the maximization of average detection probability
is completely different from the uniform power allocation
strategy. Numerical examples are presented to investigatethe
validity of the theoretical results. The main contributions of
this study can be summarized as follows:

• For the first time in the literature, solutions to the opti-
mal power allocation problem are proposed for average
detection probability maximization in the presence of flat
fading AWGN channels.

• The formulated optimization problem is generic in the
sense that it takes into account both average and peak
power constraints and it applies to any continuous fading
distribution (Sec. II).

• Using results from measure theory and convex analysis,
it is shown that the Lagrangian dual problem admits no
duality gap. This, in turn, provides an efficient framework
for the solution of the original optimization problem,
which is nonconvex in general (Secs. III-A–III-C).

• The computational complexity of the problem is reduced
significantly by applying dual decomposition. The re-
sulting subproblems are coupled only through a single
parameter (Sec. III-D).

• The proposed algorithms are guaranteed to converge to
the global optimum with desired accuracy (Secs. III-E–
III-F).

• For various probabilities of false alarm, the continuity and
monotonicity properties of the optimal power allocation
scheme are investigated and the conditions, which must
be satisfied by any optimal power allocation policy, are
derived (Theorem 1 and Theorem 2 in Sec. III-H).

The rest of the paper is organized as follows: Sec. II presents
the problem formulation for the optimal power allocation
subject to the average and peak power constraints. In Sec. III,
the solution of the optimization problem and the optimal power
allocation algorithms are provided together with the theorems
characterizing optimal power allocation. In Sec. IV, numerical
examples are presented to corroborate the theoretical results.
Finally, Sec. V concludes the paper with remarks.

II. PROBLEM FORMULATION

Consider a transmitter and a receiver that communicate over
a flat fading AWGN channel. The task of the receiver is to

decide between two hypotheses,H0 andH1, which correspond
to the absence and presence of a signal, respectively. The
observation model under each hypothesis is expressed as
follows:

H0 : Y = σN, H1 : Y =
√
Pt s h+ σN (1)

where Y denotes a real-valued scalar observation,1 N is a
standard Gaussian random variable with zero mean and unit
variance; i.e.,N ∼ N (0, 1), σ > 0 is the standard deviation
of the noise at the receiver,

√
Pt s denotes the transmitted

signal, andh denotes the scalar channel gain after carrier
phase synchronization at the receiver, which is assumed to be
nonzero. Without loss of generality, it is assumed thats = 1 in
(1); hence,Pt represents the power allocated by the transmitter.
It is noted that the scalar observation model in (1) provides
an abstraction for a continuous-time system which processes
the received signal by down-conversion, matched filtering and
sampling at the symbol rate with precise symbol timing; hence,
the effects of modulator, additive noise channel, fading, and
receiver front-end processing are taken into account in the
discrete-time baseband model [18], [20]. In addition, it is
assumed that the receiver has the knowledge of the channel
coefficienth (i.e., perfect CSI) and the standard deviation of
the noise,σ.

In this work, the Neyman-Pearson (NP) criterion is con-
sidered; i.e., the receiver implements the optimal NP decision
rule which maximizes the probability of detection subject to
a constraint on the probability of false alarm, denoted byα
[21].2 In accordance with the NP criterion, the likelihood ratio
test (LRT) corresponding to (1) is obtained as follows:

L (Y ) =

1√
2πσ

e
−(Y −

√
Pth)

2

2σ2

1√
2πσ

e
−Y 2

2σ2

= e

√
PthY

σ2 −Pth
2

2σ2

H1

R
H0

η , (2)

which can be simplified into

sgn(h)Y
H1

R
H0

σ2 ln η

|h|√Pt

+

√
Pt|h|
2

, η̃ . (3)

The optimum NP decision rule satisfies the constraint on
the probability of false alarm with equality [21]. From (1)
and (3), the probability of false alarm can be obtained as
PF = Pr[L(Y ) > η | H0] = Pr[sgn(h)Y > η̃ | H0] =
Q(η̃/σ), whereQ(·) denotes theQ-function; i.e.,Q(x) =
(
√
2π)−1

∫∞
x e−t2/2dt. Setting the probability of false alarm

equal toα, the threshold is calculated asη̃ = σQ−1(α), where
Q−1(·) is the inverseQ-function. Hence, the NP decision rule
is given by

sgn(h)Y
H1

R
H0

σQ−1(α) . (4)

The detection probability corresponding to the decision rule
in (4) can be obtained from (1) as

PD = Pr[sgn(h)Y > σQ−1(α) | H1] (5)

= Q
(
Q−1(α)−

√
Pt|h|
σ

)
, Q

(
Q−1(α)−

√
Ptγ

)

1The results can also be extended to vector observations (seeSec. V).
2The NP framework is well-suited for applications in which the detection

and false alarm events have different importance levels. Asan example,
consider a scenario in which the transmitter, equipped withsome sensors,
sends a signal to the receiver whenever it detects the presence of a person in
a restricted area (or, fire in a forest).
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whereγ , h2/σ2. In the presence of a signal,γ determines the
signal-to-noise ratio (SNR) at the receiver since|h| represents
the channel gain andσ2 denotes the average noise power (see
(1)). In the sequel, it is assumed thatγ takes values in an
intervalΓ ⊂ R

+ and that the transmitter has the knowledge of
γ, which is commonly provided via feedback from the receiver
in practice [22, Ch. 4]. Equipped with the knowledge ofγ, it
is assumed that the transmitter can perform power adaptation;
i.e., the transmit power can be adjusted based on the current
value ofγ according to the power adaptation strategy given by
Pt(γ) : Γ → [0,∞). Consequently, the detection probability
in (5) can be written as

PD(Pt(γ), γ) = Q
(
Q−1(α) −

√
Pt(γ)γ

)

=
1√
2π

∫ ∞

Q−1(α)−
√

Pt(γ)γ

e−
x2

2 dx. (6)

Although the optimal power allocation problem in the
presence of CSI at the transmitter has been investigated for
various metrics such as Shannon capacity, outage capacity,
and average probability of error (e.g., [1]–[17]), the optimal
power allocation problem for the maximization of average
detection probability over flat fading AWGN channels has not
been considered to the best of authors’ knowledge. The aim in
this work is to obtain the optimal power allocation strategythat
maximizes the average detection probability under an average
power constraint, i.e., to solve the following optimization
problem:

sup
Pt(γ)

Eγ [PD(Pt(γ), γ)] s.t. Eγ [Pt(γ)] ≤ P , (7)

where Eγ [·] denotes the expectation over the continuous
random variableγ, P denotes the average transmit power
limit, and Pt(γ) is a Lebesgue-measurable function with
0 ≤ Pt(γ) ≤ Ppeak ∀γ ∈ Γ, andPpeak denotes the peak
power constraint satisfyingPpeak > P . More explicitly,

sup
0≤Pt(γ)≤Ppeak

∫

γ∈Γ

Q
(
Q−1(α)−

√
Pt(γ)γ

)
p(γ) dγ

s.t.
∫

γ∈Γ

Pt(γ)p(γ) dγ ≤ P , (8)

wherep(γ) is the probability density function (PDF) ofγ and
satisfies the conditions for a valid PDF, i.e.,p(γ) ≥ 0 ∀γ ∈ Γ,
and

∫
γ∈Γ

p(γ) dγ = 1.
Remark 1: It is noted from (8) that the transmitter calcu-

lates the average detection probability and the average power
by using the PDF ofγ, which must be estimated in practice.
Such an estimation process can be performed when the channel
characteristics are constant for a sufficiently long time interval
(e.g., when the transmitter and the receiver stay in the same
environment for some time and do not move very rapidly). In
the presence of imperfect estimation, the results in this study
can be regarded as theoretical upper bounds on the average
detection probability.

III. O PTIMAL POWER ALLOCATION

In this section, first, the convexity properties of the detection
probability are analyzed with respect to the transmitted signal
power. Then, the dual of the optimal power allocation problem
is formulated and it is shown that the duality gap between
the original problem and the dual problem is zero. In order

to solve the dual problem, the dual decomposition method is
presented, and the related algorithms are provided in order
to obtain the optimal power allocation strategy numerically.
Finally, the properties of the optimal power allocation strategy
are investigated for various probabilities of false alarm.

A. Convexity/Concavity Properties

To obtain the optimal power allocation policy based on the
optimization problem in (7) (equivalently, (8)), the convexity
properties of the detection probability are discussed with
respect to the transmitted signal power based on the results
obtained in [18].

Lemma 1. For α ∈ [Q(2), 1), PD(Pt(γ), γ) is a monoton-
ically increasing and strictly concave function ofPt(γ) ∈
(0,∞) for any given value ofγ ∈ Γ. For α ∈ (0,Q(2)),
PD(Pt(γ), γ) is a monotonically increasing function with two
inflection pointsI1(γ) < I2(γ) such thatPD(Pt(γ), γ) is
strictly concave forPt(γ) ∈ (0, I1(γ)), strictly convex for
Pt(γ) ∈ (I1(γ), I2(γ)), and strictly concave forPt(γ) ∈
(I2(γ),∞) for any given value ofγ ∈ Γ.

Proof: The proof is similar to that of Proposition 1 in
[18], which was derived in the absence of fading (hence,
no power allocation with respect to fading). First, the lim-
its of the detection probability are noted. For any fixed
value of γ ∈ Γ, limPt(γ)→0PD(Pt(γ), γ) = α and
limPt(γ)→∞ PD(Pt(γ), γ) = 1. Furthermore, the first-order
derivative of the detection probability with respect toPt(γ) is
given by

∂PD(Pt(γ), γ)

∂Pt(γ)
=

√
γ

2
√
2π

√
Pt(γ)

× exp

{
−1

2

(
Q−1(α)−

√
Pt(γ)γ

)2
}
, (9)

which is positive for all values ofPt(γ) > 0 and γ ∈ Γ.
Hence the detection probability is a strictly increasing function
of the transmit powerPt(γ). Similarly, the limits of the first-
order derivative are given aslimPt(γ)→0

∂PD(Pt(γ),γ)
∂Pt(γ)

= ∞
and limPt(γ)→∞

∂PD(Pt(γ),γ)
∂Pt(γ)

= 0. Differentiating once more
with respect toPt(γ) yields

∂2PD(Pt(γ), γ)

∂ (Pt(γ))
2 =

(
γPt(γ)−Q−1(α)

√
Pt(γ)γ + 1

)
(10)

× −√
γ

4
√
2π(Pt(γ))3/2

exp

{
−1

2

(
Q−1(α)−

√
Pt(γ)γ

)2
}

︸ ︷︷ ︸
,A(Pt(γ),γ)

.

Since A(Pt(γ), γ) is negative for allPt(γ) > 0 and γ ∈
Γ, the sign of the second-order derivative is determined by
the first term,

(
γPt(γ) − Q−1(α)

√
Pt(γ)γ + 1

)
. Let x ,√

Pt(γ)γ. Then, in order to identify the sign of the second-
order derivative, we need to check the sign off(x) , x2 −
Q−1(α)x + 1 for x > 0, which can be determined from its
discriminant,∆ =

(
Q−1(α)

)2 − 4. For α ∈ (Q(2),Q(−2)),
the discriminant is negative, which indicates thatf(x) > 0
∀x > 0. For ∆ = (Q−1(α))2 − 4 > 0, the real roots of

f(x) occur atx1,2 =
(
Q−1(α) ±

√
(Q−1(α))

2 − 4
)
/2. If

Q−1(α) ≥ 2, we haveα ≤ Q(2) and both roots are positive.
Thus,f(x) > 0 for 0 ≤ x < x1 andx > x2, whereasf(x) <
0 for x1 < x < x2. On the other hand, ifQ−1(α) ≤ −2, that
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is, if α ≥ Q(−2), then both roots are negative, which implies
that f(x) > 0 for all x ≥ 0.

From the analysis above, it follows thatPD(Pt(γ), γ) is
a monotonically increasing and strictly concave function of
Pt(γ) ∈ (0,∞) for α ∈ (Q(2), 1). For α ∈ (0,Q(2)),
PD(Pt(γ), γ) is a monotonically increasing function with two
inflection pointsI1(γ) < I2(γ), where

I1(γ) =
1

4γ

(
Q−1(α)−

√
(Q−1(α))

2 − 4

)2

I2(γ) =
1

4γ

(
Q−1(α) +

√
(Q−1(α))

2 − 4

)2

(11)

such that PD(Pt(γ), γ) is strictly concave forPt(γ) ∈
(0, I1(γ)), strictly convex forPt(γ) ∈ (I1(γ), I2(γ)), and
strictly concave forPt(γ) ∈ (I2(γ),∞) for any given value
of γ ∈ Γ.

Based on Lemma 1, whenα ∈ [Q(2), 1), the optimization
problem in (8) becomes a convex optimization problem since
PD(Pt(γ), γ) is a concave function ofPt(γ) for all values
of Pt(γ) > 0. However, in many practical applications, the
required values for the probability of false alarm are smaller
than Q(2) ≈ 0.02275. In such cases, i.e., forα < Q(2),
the optimization problem in (8) is in general nonconvex since
PD(Pt(γ), γ) is no longer a concave function ofPt(γ) for
all values ofPt(γ) > 0. Nonetheless, based on the results
established in [23], it can be shown that the duality gap of
the optimization problem is zero (Sec. III-C). This, in turn,
leads to efficient numerical algorithms for the solution of
the nonconvex optimization problem in the dual domain, as
discussed in the sequel.

B. Dual Problem

For the optimization problem in (8), the corresponding
Lagrangian function is expressed as

L (Pt(γ), λ) =

∫

γ∈Γ

Q
(
Q−1(α)−

√
Pt(γ)γ

)
p(γ) dγ (12)

+ λ

(
P −

∫

γ∈Γ

Pt(γ)p(γ) dγ

)

=

∫

γ∈Γ

(
Q
(
Q−1(α) −

√
Pt(γ)γ

)
− λPt(γ)

)
p(γ) dγ + λP ,

and the dual function is given by

g(λ) , sup
Pt(γ)

L (Pt(γ), λ)

s.t. 0 ≤ Pt(γ) ≤ Ppeak, ∀γ ∈ Γ

Pt(·) is Lebesgue measurable (13)

Then, the Lagrangian dual problem of (8) is defined as

min
λ

g (λ) s.t. λ ≥ 0 . (14)

Let P ∗ and D∗ denote the optimal values obtained as the
solutions of the original problem in (8) and its dual in (14).It
should be noted that the latter optimization problem is convex
whereas the former is not necessarily so. From weak duality,
it follows thatP ∗ ≤ D∗ [24]. In general, the primal in (8) is
not equivalent to the dual in (14). In the following, it is shown
that the duality gap is zero whenγ takes values in an interval
Γ. Hence, strong duality holds and the solution of (8) can be
obtained from the solution of its dual in (14).

C. Strong Duality

In order to show that the duality gap between (8) and (14)
is zero, we follow a similar approach to that employed in [23]
and [25], which relies on a variant of Lyapunov theorem due
to Blackwell [26], [27].

Lemma 2. [23, Lemma 1], [25, Theorem 1] Letν be a
nonatomic3 measure on a Borel fieldB generated from subsets
of a spaceΓ. Let gi (x (·) , ·) be a B-measurable function
wheneverx (·) is B-measurable fori = 1, 2, . . . ,m. Then,






∫
Γg1 (x (·) , ·) dν∫
Γ
g2 (x (·) , ·) dν

...∫
Γgm (x (·) , ·) dν




∣∣∣∣∣x is B-measurable &x ∈ [0, xmax]





is a convex set.

It should be emphasized that no assumption is imposed
in Lemma 2 on the convexity of functionsgi or the setΓ.
The convexity of the image of the mapping stems from the
nonatomic property of measureν. This condition is satisfied
if an absolutely continuous probability measure with PDFp(γ)
is assumed in the problem formulation. Then, the following
result is obtained.

Proposition 1. Let v
(
P
)

denote the solution of(8) for an
absolutely continuous probability measure with PDFp(γ).
Then,v

(
P
)

is a concave function ofP .

Proof: The statement in the proposition can be
proved based on similar arguments to those in Theorem 7
of [23]. Let P

1
and P

2
represent two average power

limits, and let P 1
t (γ) and P 2

t (γ) denote ε−optimal
solutions of the optimization problem in (8) under average
power limits P

1
and P

2
, respectively, so thatv

(
P

i
)

≤
PD

i
=

∫
γ∈Γ Q

(
Q−1(α) −

√
P i
t (γ)γ

)
p(γ) dγ + ε.

Then, Lemma 2 implies that for each0 ≤ θ ≤ 1, there
exists a nonnegative Lebesgue measurable functionP̂t (γ)

such that
∫
γ∈Γ

Q
(
Q−1(α)−

√
P̂t (γ)γ

)
p(γ) dγ =

θPD
1

+ (1− θ)PD
2 − ε and

∫
γ∈Γ P̂t (γ) p(γ) dγ =

θ
∫
γ∈Γ P 1

t (γ) p(γ) dγ + (1− θ)
∫
γ∈Γ P 2

t (γ) p(γ) dγ ≤
θP

1
+ (1− θ)P

2
. This holds for everyε > 0; therefore,

the supremum of (8) under an average power limit
θP

1
+ (1− θ)P

2
satisfies v

(
θP

1
+ (1− θ)P

2
)

≥
θPD

1
+ (1− θ)PD

2
= θv

(
P

1
)
+ (1− θ) v

(
P

2
)

, from

which the concavity ofv
(
P
)

with respect toP follows.

In Proposition 1, it is stated that the optimal valuev
(
P
)

of the objective function in (8) is a concave function of the
average power limitP for absolutely continuousp(γ). Then,
it follows that the Lagrangian dual problem admits no duality
gap with the original problem [28, Theorem 2], [29]. Hence,
the following corollary is obtained.

Corollary 1. The duality gap between the solutions of(8) and
(14) is zero.

3A measure is nonatomic if every set of nonzero measure has a subset with
strictly less nonzero measure. The standard Lebesgue measure is nonatomic.
The uniform measure on a finite set is atomic [23].
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D. Dual Decomposition

Since the equivalence of the primal and dual formulations is
now established, the solution of the optimization problem can
be investigated based on the dual problem. The dual function
in (13) involves the maximization of Lagrangian function
L (Pt(γ), λ) for a given value ofλ. It is observed from (12)
that the Lagrangian functionL (Pt(γ), λ) can be decomposed
into

L (Pt(γ), λ) =

∫

γ∈Γ

Lγ (Pt(γ), λ) p(γ) dγ + λP , (15)

whereLγ (Pt(γ), λ) , Q
(
Q−1(α) −

√
Pt(γ)γ

)
− λPt(γ).

Evidently, the optimal power allocation that maximizes
L (Pt(γ), λ) obtained from (13) should also maximize
Lγ (Pt(γ), λ) for each given value ofγ. This is known as dual
decomposition and it facilitates the decomposition of the dual
problem into suboptimization problems which are coupled
only throughλ [24]. More explicitly, we need to compute

sup
0≤Pt(γ)≤Ppeak

Lγ (Pt(γ), λ)

= sup
0≤Pt(γ)≤Ppeak

Q
(
Q−1(α) −

√
Pt(γ)γ

)
− λPt(γ) (16)

for each value ofγ ∈ Γ. It is also required to search through
values ofλ which place sufficient emphasis on the power
constraint term inLγ (Pt(γ), λ) so that the average power
constraint in (8) is satisfied.

E. Algorithms

In this part, two algorithms are presented for the proposed
optimum power allocation problem over flat fading AWGN
channels. Both algorithms contain a loop that searches overλ.
The first algorithm employs a subgradient method to iteratively
updateλ, whereas the second algorithm employs a bisection
method [4], [30], [31]. In both methods, the search direction
for λ suggests thatλ should increase if the constraint is ex-
ceeded; i.e.,

∫
γ∈Γ

Pt(γ)p(γ) dγ > P , and decrease otherwise.
This is because a larger value ofλ places more emphasis on
the power constraint in the Lagrangian and results in a lower
average power.

Algorithm 1. Optimal Power Allocation Algorithm - Subgra-
dient Method

Initialize λ1, k = 1
do

solve Pt
∗(γ) = argsup

x∈[0,Ppeak]

Q
(
Q−1(α) −√

xγ
)
− λk ∀γ ∈ Γ

λk+1 =
[
λk + αk

(∫
γ∈Γ

Pt
∗(γ)p(γ) dγ − P

)]+

k = k + 1
while |λk+1 − λk| > ǫ

In Algorithm 1, k is the iteration number,αk > 0 is the
step size for thekth iteration (a decreasing sequence ofk),
[ · ]+ , max{·, 0}, and ǫ > 0 is a small number used to
signal convergence. The subgradient update is guaranteed to
converge to the optimal value ofλ as long asαk is chosen to
be sufficiently small [32]. As mentioned in [31, Sec. IV-A],
when the norm of the subgradient is bounded, the choice of
αk = β/k is guaranteed to converge to the optimal for some
constantβ.

The second algorithm, which relies on a bisection search to
updateλ and converges in general faster than the subgradient
method [30], [31], is described next.

Algorithm 2. Optimal Power Allocation Algorithm - Bisection
Method
Initialize λmin = 0, λmax (described in Algorithm 3)
do

λ = λmin+λmax

2
solve Pt

∗(γ) = argsup
x∈[0,Ppeak]

Q
(
Q−1(α)−√

xγ
)
− λx ∀γ ∈ Γ

if
∫
γ∈Γ Pt

∗(γ)p(γ)dγ ≤ P , then λmax = λ, else λmin = λ
while |λmax − λmin| > ǫ

In the initialization stage of the bisection based algorithm, it
is necessary to find a value ofλmax that guarantees that the
average power constraint is satisfied. Algorithm 3 tackles this
problem.

Algorithm 3. How to computeλmax

λmax = 1
while

∫
γ∈Γ

Pt
∗(γ)p(γ) dγ > P

λmax = 2λmax

solve Pt
∗(γ) = argsup

x∈[0,Ppeak]

Q
(
Q−1(α)−√

xγ
)
− λmaxx ∀γ ∈ Γ

end

Although we have decoupled the original optimization
problem across different values ofγ (for fixed λ) via dual
decomposition, we still need to solve a nonconvex optimiza-
tion problem (forα < Q(2)) at each iteration to compute
Pt

∗(γ) = argsup
x∈[0,Ppeak]

Q
(
Q−1(α) −√

xγ
)
− λx for all γ ∈ Γ.

Fortunately, the optimal solution forPt
∗(γ) can be obtained

with desired accuracy using tools from convex optimization.
This is explained in the next part.

F. Subroutines

In Sec. III-A, it is shown thatPD(x) , Q
(
Q−1(α) −√

xγ
)

is a monotonically increasing and strictly concave function of
x ∈ (0,∞) for all α ≥ Q(2) and γ > 0. Therefore, the
following optimization problem

Pt
∗(γ) = argsup

x∈[0,Ppeak]

PD(x) − λx

= argsup
x∈[0,Ppeak]

Q
(
Q−1(α) −√

xγ
)
− λx (17)

is convex for the specified range of
parameter values. If PD

′(Ppeak) =√
γ

2
√
2π
√

Ppeak

exp
{
− 1

2

(
Q−1(α) −

√
Ppeakγ

)2} ≥ λ,

then Pt
∗(γ) = Ppeak. If PD

′(Ppeak) < λ, we need
to numerically evaluatePD

′(x) = λ or more explicitly√
γ

2
√
2π

√
x
exp

{
− 1

2

(
Q−1(α)−√

xγ
)2}

= λ. SincePD
′(x) is

a monotonically decreasing function (from infinity to 0) of
x and λ is a constant, there is a uniquePt

∗(γ) which can
be calculated based on a simple bisection search, which is
described as follows:

Algorithm 4. Solution for concavePD(x)

xmin = 0
xmax = Ppeak

do
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x = xmin+xmax

2
if PD

′(x) > λ, then xmin = x, else xmax = x
while |xmax − xmin| > ǫ

On the other hand, forα ∈ (0,Q(2)), it is shown in
Sec. III-A thatPD(x) = Q

(
Q−1(α) −√

xγ
)

is a monotoni-
cally increasing function with two inflection pointsI1(γ) and
I2(γ) (as specified in (11)) such thatPD(x) is strictly concave
for x ∈ (0, I1(γ)), strictly convex forx ∈ (I1(γ), I2(γ)), and
strictly concave forx ∈ (I2(γ),∞) for any given value of
γ. Fig. 1 presents a generic graphical description ofPD(x)
as a function ofx for an arbitrary value ofγ > 0 when
α ∈ (0,Q(2)). Consequently, the optimization problem in (17)
is not convex forα ∈ (0,Q(2)).

upper boundary of P̃D(x)
(the convex hull of PD(x))

1

I1(γ) I2(γ)T1(γ) T2(γ)

α

PD(x)

x

limx→∞ PD
′(x) = 0

PD
′(0) = ∞

0

Fig. 1. An illustrative description ofPD(x) for an arbitrary value ofγ > 0
whenα ∈ (0,Q(2)). The tangent points{T1(γ), T2(γ)} and the inflection
points{I1(γ), I2(γ)} are shown on the graph.

Based on a careful analysis of the behavior ofPD(x)
in Fig. 1, efficient numerical methods are proposed for the
solution of the optimization problem in (17) under different
cases. Prior to the description of the proposed methods, the
following lemmas are presented.

Lemma 3. Let α ∈ (0,Q(2)), and I1(γ) and I2(γ) be the
inflection points ofPD(x) as given in(11). There exist unique
points T1(γ) ∈ [0, I1(γ)] and T2(γ) ≥ I2(γ) such that the
tangent toPD(x) at T1(γ) is also tangent atT2(γ) and this
tangent lies abovePD(x) for all γ > 0.

Proof: Similar to [18, Appendix A].

Lemma 4. Let λ > 0 and P̃D(x) denote the upper boundary
of the convex hull ofPD(x) (as depicted in Fig. 1). Then,
argsup

x>0
PD(x) − λx = argsup

x>0
P̃D(x)− λx.

Proof: Since PD(x) ≤ P̃D(x) for all x > 0, we get
sup
x>0

PD(x)−λx ≤ sup
x>0

P̃D(x)−λx for all x > 0. Furthermore,

P̃D(x) is concave and the maximum occurs at(P̃D)′(x∗) = λ,
wherex∗ ∈ (0, T1(γ)]∪[T2(γ),∞) for all values ofλ > 0. But
noting thatPD(x) = P̃D(x) overx ∈ (0, T1(γ)]∪ [T2(γ),∞),
the result follows.

Lemma 4 is the key observation in the development of our
methods for the solution of (17). It indicates that the maximum
of the nonconvex optimization problem argsup

x>0
PD(x) − λx

coincides with the maximum of the convex optimization
problem argsup

x>0
P̃D(x) − λx, which can be computed easily

by obtaining the solutionsx1 = argsup
x∈(0,T1(γ)]

PD(x) − λx and

x2 = argsup
x∈[T2(γ),∞)

PD(x) − λx, and selecting the solution

with the highest scorex∗ = argsup
{x1, x2}

PD(x) − λx.4 To this

end, the tangent pointsT1(γ) andT2(γ) should be computed
first. This can be achieved with desired accuracy using the
following numerical method. (For a detailed explanation, see
[18, Algorithm 1].)

Algorithm 5. Computation of tangent pointsT1(γ) andT2(γ)
whenα ∈ (0,Q(2))

βmin = PD
′(I1(γ)) , βmax = PD

′(I2(γ))
xmin,1 = 0 , xmax,1 = I1(γ)
xmin,2 = I2(γ) , xmax,2 = ∞
do

β = βmin+βmax

2
x1 = argsup

x∈(xmin,1,xmax,1)

PD(x)− βx

x2 = argsup
x∈(xmin,2,xmax,2)

PD(x)− βx

if PD(x1)− βx1 > PD(x2)− βx2

then βmax = β , xmin,1 = x1 , xmin,2 = x2

else βmin = β , xmax,1 = x1 , xmax,2 = x2

while |βmax − βmin| > ǫ

At convergence, the tangent points and the slope of the tan-
gent line that constitutes the upper boundary of the convex hull
of PD(x) corresponding toγ can be obtained asT1(γ) ≈ x1,
T2(γ) ≈ x2, andPD

′(T1(γ)) ≈ PD
′(T2(γ)) ≈ β. Although

I1(γ), I2(γ), T1(γ), and T2(γ) should be computed for all
γ ∈ Γ separately, they do not depend on the value ofλ
employed in (17). Consequently, they can be computed offline
before either Algorithm 1 or Algorithm 2 is employed to find
the optimal power allocation.

It should be noted that the peak power constraint is not
employed in Lemma 4. In the sequel, we first present the
proposed numerical method for the solution of (17) in the
absence of a peak power constraint, i.e.,

Pt
∗(γ) = argsup

x≥0
PD(x)−λx = argsup

x≥0
Q
(
Q−1(α)−√

xγ
)
−λx

Algorithm 6. Numerical method to computePt
∗(γ) in (17)

without peak power constraint whenα ∈ (0,Q(2))

if PD
′(T1(γ)) ≤ λ
Pt

∗(γ) = argsup
x∈(0,T1(γ)]

PD(x)− λx

else

Pt
∗(γ) = argsup

x∈[T2(γ),∞)

PD(x) − λx

When a peak power constraint is imposed on the transmitter
power as in (17), we can obtain the solution to (17) with some
modifications depending on the relationship betweenI1(γ),
T2(γ), andPpeak.

Case 1. Ppeak ≤ I1(γ) : Since PD(x) is concave for
x ≤ I1(γ), the optimization problem in (17) is convex and
the following algorithm computes the solution with desired
accuracy.

Algorithm 7. Numerical method to computePt
∗(γ) in (17)

for Ppeak ≤ I1(γ) whenα ∈ (0,Q(2))
4As will be seen in Algorithm 6, it is possible to improve on this result as

well by noting that the optimal pointx∗ satisfiesPD
′(x∗) = λ andPD

′(x)
monotonically decreases over the intervals(0, T1(γ)] and [T2(γ),∞) with
PD

′(T1(γ)) = PD
′(T2(γ)).
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if PD
′(Ppeak) ≥ λ
Pt

∗(γ) = Ppeak

else

Pt
∗(γ) = argsup

x∈[0,Ppeak]

PD(x)− λx

Case 2. Ppeak ≥ T2(γ) : In this case, the solution can
be obtained with a slight modification to the one obtained
assuming that no peak power constraint is imposed. This is
because the convex hull of the upper boundary ofPD(x) is
unchanged with respect to that scenario.

Algorithm 8. Numerical method to computePt
∗(γ) in (17)

for Ppeak ≥ T2(γ) whenα ∈ (0,Q(2))

if PD
′(Ppeak) ≥ λ
Pt

∗(γ) = Ppeak

else if PD
′(Ppeak) < λ < PD

′(T2(γ))
Pt

∗(γ) = argsup
x∈[T2(γ),Ppeak]

PD(x) − λx

else λ ≥ PD
′(T2(γ))

Pt
∗(γ) = argsup

x∈[0,T1(γ)]

PD(x)− λx

Case 3. I1(γ) < Ppeak < T2(γ) : Since the transmitter
power x cannot take values greater thanPpeak, the upper
boundary of the convex hull ofPD(x) over the interval
[0, Ppeak] is different from the previous cases. In order to
present the solution of the optimization problem in (17) under
this scenario, we need the following lemma.

Lemma 5. Let α ∈ (0, Q(2)), and I1(γ) and I2(γ) be
the inflection points ofPD(x). Suppose also thatT1(γ) and
T2(γ) be the contact points of the tangent line as described in
Lemma 3. Given a pointPpeak ∈ [I1(γ), T2(γ)], there exists
a unique pointC(γ) ∈ [T1(γ), I1(γ)] such that the tangent at
C(γ) passes through the point(Ppeak, PD(Ppeak)) and lies
abovePD(x) for all x ∈ (0, Ppeak).

A graphical description of the tangent pointC(γ) is pre-
sented in Fig. 2.

upper boundary of P̂D(x)
(the convex hull of PD(x) for x ∈ [0, Ppeak])

1

I1(γ)T1(γ) T2(γ)

α

PD(x)

x0 C(γ) Ppeak

Fig. 2. PD(x) and the upper boundary of the convex hull ofPD(x) for
x ∈ (0, Ppeak) for an arbitrary value ofγ > 0 whenα ∈ (0,Q(2)) and
Ppeak ∈ (I1(γ), T2(γ)). The corresponding tangent pointC(γ) is also
shown on the graph.

Based on a similar argument to that presented in
Lemma 4, it can be shown that argsup

x∈[0, Ppeak]

PD(x) − λx =

argsup
x∈[0, Ppeak]

P̂D(x)−λx, whereP̂D(x) denotes the upper bound-

ary of the convex hull ofPD(x) for x ∈ [0, Ppeak], which is

obtained such that the values ofPD(x) for x > Ppeak are
not taken into account. This observation in conjunction with
Fig. 2 suggest that whenPpeak ∈ (I1(γ), T2(γ)), the solution
of the nonconvex optimization problem can be obtained via
the following algorithm.

Algorithm 9. Numerical method to computePt
∗(γ) in (17)

for Ppeak ∈ (I1(γ), T2(γ)) whenα ∈ (0,Q(2))

if PD
′(C(γ)) > λ
Pt

∗(γ) = Ppeak

else

Pt
∗(γ) = argsup

x∈[0,(C(γ)]

PD(x)− λx

Obviously, the value ofC(γ) is required to implement
Algorithm 9. To that aim, Algorithm 10 provides an effective
bisection search method.

Algorithm 10. Computation of tangent pointC(γ) for
I1(γ) < Ppeak < T2(γ) whenα ∈ (0,Q(2))

βmin = PD
′(I1(γ)) , βmax = PD

′(T1(γ))
xmin = T1(γ) , xmax = I1(γ)
do

β = βmin+βmax

2
x = argsup

x∈(xmin,xmax)

PD(x)− βx

if PD(x) + PD
′(x)(Ppeak − x) > PD(Ppeak)

then βmax = β , xmin = x
else βmin = β , xmax = x

while |βmax − βmin| > ǫ

At convergence, the tangent point and the slope of the
tangent line that constitutes the upper boundary of the convex
hull of PD(x) for x ∈ [0, Ppeak] can be obtained asC(γ) ≈ x
andPD

′(C(γ)) ≈ β. AlthoughC(γ) must be computed for
all γ ∈ Γ separately, it does not depend on the value ofλ
employed in (17). Consequently, it can be computed offline
together withI1(γ), I2(γ), T1(γ), andT2(γ) prior to the start
of the power adaptation algorithm.

At this point, it should be emphasized that all the sub-
routines that are proposed to obtain the solution of the
optimization problem in (17) under different cases involve
convex problems. Furthermore, the bisection search described
in Algorithm 4 at the beginning of Sec. III-F can be em-
ployed to solve all the problems that are of the general form
Pt

∗(γ) = argsup
x∈[xmin, xmax]

PD(x)−λx (as seen in Algorithms 5-

10) due to the fact that the interval[xmin, xmax] is so arranged
thatPD(x) is concave over the specified interval.

G. Implementation and Complexity

In this section, the implementation of the proposed power
allocation approach is discussed. Based on the dual decom-
position method, the optimal power allocation strategy canbe
obtained by solving the optimization problem in (16) for each
given value ofγ. Since the optimal value ofλ is not known
at the beginning of the iterations,λ is initialized to a certain
value and updated at each iteration based on Algorithm 1 and
Algorithm 2. In order to calculate the optimal power level
for a givenγ value and a fixedλ value, the subroutines are
provided in Section III-F. For different values of the false
alarm probability (α), the following statements specify the
algorithms that can be used to calculate the solution of (16):
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1) If α ≥ Q(2), the optimization problem in (16) becomes
convex and Algorithm 4 addresses the problem.

2) If α ∈ (0,Q(2)) and there is no peak power constraint,
then Algorithm 6 can be used.

3) When there is a peak power constraint forα ∈ (0,Q(2)),
the optimization problem in (16) can be solved by using
one of the algorithms described in Algorithm 7, Algo-
rithm 8, and Algorithm 9.

For complexity comparisons, suppose that there exist
finitely many possible values ofγ, and let Nγ denote the
number of differentγ values. Also, consider the subroutines
(i.e., Algorithms 6, 7, 8, and 9), each of which solves
a 1-dimensional convex optimization problem, and assume
that each of those algorithms has a computational complex-
ity of O(C1D), where O(C1D) denotes the computational
complexity of a 1-dimensional convex optimization problem
with bound constraints. The main algorithm, Algorithm 1 or
Algorithm 2, in Section III-E checks the convergence of the
λ value and decides whether the optimal power allocation
strategy obtained by the subroutines for a fixedλ value satisfy
the average power constraint. In those algorithms, the corre-
sponding optimal power levels for allγ values are calculated
in each iteration. For that reason, in each iteration, the main
algorithm calls a total ofNγ subroutines in order to calculate
the optimal power levels for allγ values. In the context of
the convergence ofλ, the subgradient method in Algorithm 1
requiresO(1/ǫ2) iterations in order to achieve a given tol-
erance level ofǫ, whereas the bisection method employed in
Algorithm 2 requiresO(log((λmax − λmin)/ǫ

2)) iterations,
whereλmin = 0 andλmax is a parameter used in Algorithm
2 that can be obtained by employing Algorithm 3. As a
result, if Algorithm 1 is employed to obtain the optimal power
allocation strategy, the overall complexity of the proposed
solution is in the order ofO(Nγ×1/ǫ2)×O(C1D). Otherwise,
if Algorithm 2 is used to find the optimal strategy, the overall
complexity isO(Nγ × log((λmax − λmin)/ǫ

2))×O(C1D).

H. Characterization of Optimal Power Allocation

In this section, the properties of the optimal power allocation
strategy are analyzed. To that aim, first, it can be shown
that the average power constraint must hold with equality
for the solution of (8) since any power allocation policy with∫
Γ Pt(γ)p(γ)dγ < P cannot be optimal as it can be improved

by allocating higher power levels for some values ofγ such
that

∫
Γ Pt(γ)p(γ)dγ = P (due to the monotone increasing

nature of the probability of detection). Then, the Karush-
Kuhn-Tucker (KKT) conditions [24] can be stated for the
optimization problem in (8) as follows:

∂
(
Q
(
Q−1(α)−

√
Pt(γ)γ

))

∂ (Pt(γ))
p(γ)− λp(γ) + µ(γ)− ν(γ) = 0

(18)∫

γ∈Γ

Pt(γ)p(γ) dγ = P , Pt(γ) ≥ 0, γ ∈ Γ (19)

µ(γ) ≥ 0, ν(γ) ≥ 0, γ ∈ Γ (20)
µ(γ)Pt(γ) = 0, γ ∈ Γ (21)
ν(γ) (Ppeak − Pt(γ)) = 0, γ ∈ Γ (22)

where λ, µ(γ), and ν(γ) are the KKT multipliers. The
stationarity condition in (18) can also be written as

√
γ

2
√
2π

√
Pt(γ)

e−
(Q−1(α)−

√
Pt(γ)γ)2

2 = λ+
ν(γ)− µ(γ)

p(γ)
·

(23)

From (19)–(22), one of the following cases must be satisfied
for eachγ: (i) Pt(γ) = 0, µ(γ) ≥ 0, and ν(γ) = 0, or
(ii) 0 < Pt(γ) < Ppeak, µ(γ) = 0, and ν(γ) = 0, or (iii)
Pt(γ) = Ppeak, µ(γ) = 0, and ν(γ) ≥ 0. In Case(i), the
left-hand-side (LHS) of (23) becomes infinity for anyγ > 0;
hence,λ must be infinity in that case sinceµ(γ) ≥ 0 and
p(γ) > 0 ∀γ ∈ Γ andµ(γ) = 0 for all γ such thatPt(γ) = 0.
On the other hand, in Case(ii), the LHS of (23) is finite for
anyγ and it must be equal toλ sinceµ(γ) = 0 andν(γ) = 0.
Therefore, if Case(i) holds for anyγ > 0 (meaning thatλ
becomes infinity), then Case(ii) cannot hold for any value of
γ > 0, leading to the violation of the average power constraint
in (19). Hence, Case(i) cannot hold for anyγ > 0; that is,
Pt(γ) > 0 must be satisfied forγ > 0. (Since p(γ) is a
continuous random variable, this implies that for an optimal
power allocation policy,Pt(γ) > 0 almost surely.) For the
case withPt(γ) = Ppeak for someγ ∈ Γ (i.e., Case(iii)), the
statementPD

′(Ppeak, γ) ≥ λ is satisfied sinceµ(γ) = 0 and
ν(γ) ≥ 0 for that γ ∈ Γ. Based on these cases, the solution
of (8) must satisfy

PD
′(Pt(γ), γ) = (24)




√
γ

2
√
2π
√

Pt(γ)
e−

(Q−1(α)−
√

Pt(γ)γ)
2

2 = λ∗, if 0 < Pt(γ) < Ppeak

√
γ

2
√
2π
√

Ppeak

e−
(Q−1(α)−

√
Ppeakγ)2

2 ≥ λ∗, if Pt(γ) = Ppeak

and
∫
Γ
Pt(γ)p(γ) dγ = P (cf. (6) and (9)).5

The following lemma specifiesγ values for which the
optimal power level is equal toPpeak; that is,P ∗

t (γ) = Ppeak.

Lemma 6. For Q(2) < α < 1, if PD
′(Ppeak, γ) ≥ λ∗ for

someγ ∈ Γ, thenP ∗
t (γ) = Ppeak for those values ofγ.

Proof: Consider thatQ(2) < α < 1 andPD
′(Ppeak , γ) ≥

λ∗ for someγ ∈ Γ. Then, suppose thatP ∗
t (γ) 6= Ppeak for

those values ofγ ∈ Γ; that is, 0 < P ∗
t (γ) < Ppeak. Since

PD
′(Pt(γ), γ) is monotone decreasing forPt(γ) ∈ (0, Ppeak)

in the case ofα ∈ (Q(2), 1), PD
′(Pt(γ), γ) satisfies for all

Pt(γ) ∈ (0, Ppeak) thatPD
′(Pt(γ), γ) > PD

′(Ppeak, γ) ≥ λ∗.
However, PD

′(P ∗
t (γ), γ) = λ∗ for 0 < P ∗

t (γ) < Ppeak

based on (24), which contradicts with the inequality that
PD

′(P ∗
t (γ), γ) > λ∗. Therefore,P ∗

t (γ) = Ppeak if there exist
γ ∈ Γ which satisfyPD

′(Ppeak, γ) ≥ λ∗.
Based on Lemma 6 and the expression in (24), it can be

stated forQ(2) < α < 1 that the optimal power level is
P ∗
t (γ) = Ppeak if and only if there exists aγ such that

PD
′(Ppeak, γ) ≥ λ∗.

To provide a further analysis, the expression in (24) can
also be motivated based on dual decomposition. As discussed
in Sec. III-D, the optimal power allocation policy can be
determined by choosing the optimum powerPt(γ) for each
value ofγ ∈ Γ based on the dual decomposition approach. Let
the minimizerλ of the dual problem in (14) be denoted by

5From (19)–(23), it can be shown thatPt(γ) = 0 for γ = 0 in the optimal
solution. In addition, via (19) and (24),Pt(γ) → 0 asγ → 0, implying that
the optimal power allocation policy is continuous atγ = 0.
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λ∗. Then, from the dual decomposition approach, the optimal
power allocation is specified as

P ∗
t (γ) = argsup

0≤Pt(γ)≤Ppeak

PD(Pt(γ), γ)− λ∗Pt(γ) (25)

for any given value ofγ ∈ Γ (cf. (5) and (16)). This
implies that the optimum powerP ∗

t (γ) must satisfy (24),
that is, PD

′(P ∗
t (γ), γ) = λ∗ if 0 < P ∗

t (γ) < Ppeak and
PD

′(P ∗
t (γ), γ) ≥ λ∗ if P ∗

t (γ) = Ppeak. Recall that, by
Lemma 1, forα ∈ (0,Q(2)), PD

′(Pt(γ), γ) is monotone
decreasing forPt(γ) ∈ (0, I1(γ)), monotone increasing
for Pt(γ) ∈ (I1(γ), I2(γ)), and monotone decreasing for
Pt(γ) ∈ (I2(γ),∞) for any given value ofγ ∈ Γ, where
I1(γ) andI2(γ) are the two inflection points ofPD(Pt(γ), γ)
with I1(γ) < I2(γ) (see (11)). Thus, ifλ∗ > PD

′(I2(γ), γ)
or λ∗ < PD

′(I1(γ), γ), then PD
′(P ∗

t (γ), γ) = λ∗ has a
unique solution P ⋆

t (γ); otherwise, there exist three (or,
two) candidates for the optimal power level. From (6),
(9), and (11), it can be shown that the inflection points
I1(γ) and I2(γ) decrease asγ increases; however, the
value of PD

′ at the inflection points increases withγ. Let
γl and γu be defined such thatλ∗ = PD

′(I2(γl), γl) and
λ∗ = PD

′(I1(γu), γu), respectively. From (9) and (11),

λ∗ = PD
′(I2(γl), γl) =

γl√
2π

(

Q−1(α)+
√

(Q−1(α))2−4
) exp

{
−

1
2

(
Q−1(α)

2 −
√

(Q−1(α))2−4

2

)2}
is obtained, which results in

γl = λ∗√2π
(
Q−1(α)+

√
(Q−1(α))

2 − 4
)
exp

{
1
2

(
Q−1(α)

2 −√
(Q−1(α))2−4

2

)2}
. Similarly, λ∗ = PD

′(I1(γu), γu) =

γu√
2π

(

Q−1(α)−
√

(Q−1(α))2−4
) exp

{
− 1

2

(
Q−1(α)

2 +
√

(Q−1(α))2−4

2

)2}
implies that γu = λ∗√2π

(
Q−1(α) −

√
(Q−1(α))

2 − 4
)
exp

{
1
2

(
Q−1(α)

2 +

√
(Q−1(α))2−4

2

)2}
.

Hence, λ∗ > PD
′(I2(γ), γ) for every γ < γl and

λ∗ < PD
′(I1(γ), γ) for every γ > γu, which imply

that PD
′(Pt(γ), γ) = λ∗ has a unique solutionP ⋆

t (γ), and
consequently,P ∗

t (γ) = min{P ⋆
t (γ), Ppeak}. Therefore, it

is concluded that the optimal power allocation policy is a
continuous function ofγ for γ < γl and forγ > γu. However,
the behavior of the the optimal power allocation for values of
γ betweenγl andγu depends on the false alarm level,α, as
specified in the following theorems.

Theorem 1. LetQ(2) < α < 1. Then, the optimal power level
according to(8) is a continuous function ofγ, which satisfies
one of the following conditions:

(i) It increases withγ up to some unique value and then
decreases asγ increases.

(ii) It increases up toPpeak as γ goes toγ̄l > 0, stays at
Ppeak for a certain interval ofγ ∈ [γ̄l, γ̄u], and then
decreases asγ > γ̄u increases.

Proof: Please see Appendix A.
From Theorem 1 and Footnote 3, it is concluded for

α > Q(2) that only two possible scenarios exist for the
optimal power allocation policy. In the first scenario, the
optimal power level starts from zero atγ = 0 and increases
monotonically with γ up to a unique value, after which it
decreases monotonically. In the second one, the optimal power
level starts from zero atγ = 0 and increases monotonically
with γ up to Ppeak, and then remains atPpeak for a certain

interval after which it decreases monotonically for higher
values ofγ. Based on these scenarios, the characterization
of the optimal power allocation policy in Theorem 1 can
be interpreted as follows: For low values ofγ (i.e., for
unfavorable channel conditions), the transmitter employslow
power levels for the transmitted signal, and it increases the
power level asγ increases. However, after a certain value ofγ,
it becomes more preferable to transmit with lower power levels
since high detection probabilities can already be achievedwith
lower power levels (as the channel condition is very favorable),
which leads to savings in the average transmit power.

Theorem 2. Let 0 < α < Q(2). Then, the optimal power
allocation policy is continuous everywhere except at one point,
and there exists a positive jump at the discontinuity point.
Further, in the absence of the peak power constraint, the
optimal power level can never take values betweenI1(γ) and
I2(γ); i.e., eitherP ∗

t (γ) < I1(γ) or P ∗
t (γ) > I2(γ).

Proof: Please see Appendix B.
Theorem 2 specifies the discontinuous nature of the optimal

power allocation strategy for low false alarm levels, i.e.,
for α < Q(2). The statements in Theorems 1 and 2 are
investigated via numerical examples in Sec. IV.

IV. N UMERICAL EXAMPLES

In this section, the proposed optimal power allocation strat-
egy for the maximization of the average detection probability
is investigated via numerical examples. In the examples, both
exponential distribution (corresponding to Rayleigh fading
channels) and uniform distribution are considered for param-
eterγ in (8), which is defined asγ = h2/σ2. For comparison
purposes, the results for the uniform power allocation strategy
are also presented. In the simulations, the average power limit
is taken as one; i.e.,P = 1 in (8), and the peak power limit in
(8) is set toPpeak = 20. For the maximization of the average
detection probability according to the proposed approach,the
solution of (16) is obtained for a givenλ for everyα andγ;
then, the bisection-based update method is used to obtain the
optimalλ and the corresponding power allocation strategy.

In Fig. 3, the average detection probabilities of the proposed
optimal power allocation strategy and the uniform power
allocation strategy are plotted versus the probability of false
alarm,α, for exponentially distributedγ, where the average
values ofγ are specified bȳγ = 1 and γ̄ = 2. In addition,
Fig. 4 illustrates the region of low false alarm rates in more
detail by zooming into Fig. 3 forα ∈ [0, 0.1]. From the figures,
it is observed that the proposed power allocation strategy
achieves higher detection probabilities than the uniform power
allocation strategy for all values of the probability of false
alarm, which indicates that employing a constant power level
is not an optimal strategy for the considered problem. In par-
ticular, significant gains are achieved in the average detection
probability for small values ofα in this example (see Fig. 4).
In addition, as expected, improved detection performance is
achieved as the mean ofγ increases as it leads to a more
favorable distribution for the SNR.

Next, uniform distribution is employed forγ, and the
average detection probabilities of the proposed optimal power
allocation strategy and the uniform power allocation strategy
are plotted versus the probability of false alarm in Fig. 5,
where the intervals[0, 2] and [0, 4] are considered for the
uniform distribution. Also, Fig. 6 zooms into Fig. 5 for
α ∈ [0, 0.1]. As in the exponentially distributed case, the
proposed power allocation strategy leads to higher detection
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Fig. 3. Average detection probability versus the probability of false alarm
for the proposed optimal power allocation strategy and the uniform power
allocation strategy, whereγ is exponentially distributed with mean1 or 2.
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Fig. 4. The zoomed version of Fig. 3 forα ∈ [0, 0.1].

probabilities than the uniform power allocation strategy,as ex-
pected. In addition, higher detection probabilities are observed
whenγ is distributed between0 and4.

To illustrate the results in Section III-H, the transmitted
power levels are plotted versusγ for the proposed optimal
power allocation strategy in Fig. 7, whereγ is exponentially
distributed with a mean of1, α is set to0.001, 0.01, 0.03, and
0.1, and the peak power limit is given byPpeak = 3. Also, the
transmitted power according to the uniform power allocation
strategy is shown in the figure for comparison purposes.
(In addition, Fig. 8 zooms into Fig. 7 forγ ∈ [0, 20].) In
accordance with Theorem 1, the optimal transmitted power is
a continuous function ofγ for α = 0.1 andα = 0.03 in Fig. 7,
whereα > Q(2). In addition, the optimal power allocation
policy for α = 0.1 satisfies condition(i) in Theorem 1, which
first increases up to a unique value ofγ (namely,γ = 1.636)
and then decreases monotonically. Forα = 0.03, condition
(ii) in Theorem 1 holds, which states that the optimal power
level increases asγ increases tōγl = 1.61, stays atPpeak = 3
for γ̄l ≤ γ ≤ γ̄u where γ̄u = 1.97, and then decreases for
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Fig. 5. Average detection probability versus the probability of false alarm
for the proposed optimal power allocation strategy and the uniform power
allocation strategy, whereγ is uniformly distributed over[0, 2] or [0, 4].
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Fig. 6. The zoomed version of Fig. 5 forα ∈ [0, 0.1].

γ > γ̄u. On the other hand, forα = 0.01 and α = 0.001,
the condition in Theorem 2 is satisfied; i.e.,α < Q(2),
and discontinuities are observed in the optimal transmitted
power curves. In particular, the transmitted power level is
continuous before and after a certain value ofγ, and there
exists one positive jump in the optimal power level, which
are in compliance with Theorem 2. To specify the application
of Theorem 2 in more detail,α = 0.001 is considered as
an example, for which parametersγl andγu are obtained as
γl = 0.488 and γu = 2.508. As stated in the theorem, the
optimal power allocation policy forα = 0.001 is continuous
for γ ≤ γl = 0.488 and γ ≥ γu = 2.508, and there exists
a positive jump forγl < γ < γu, which is at γ = 1.11.
Another observation from Fig. 7 is that asα decreases,
the optimal transmission strategy becomes more peaky in
order to satisfy the false alarm constraint while maximizing
the average probability of detection. Regarding the uniform
power allocation policy, it is noted that the employed power
allocation strategy is significantly different from the optimal
one.
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Fig. 7. The transmitted power level versusγ for the proposed optimal power
allocation strategy and the uniform power allocation strategy, whereγ is
exponentially distributed with mean1.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

γ

P
t

 

 
Optimal Strategy (α=0.1)
Optimal Strategy (α=0.03)
Optimal Strategy (α=0.01)
Optimal Strategy (α=0.001)
Uniform Strategy

Fig. 8. The zoomed version of Fig. 7 forγ ∈ [0, 20].

In Fig. 9, the transmitted power levels are plotted versus
γ for the proposed optimal power allocation strategy and
the uniform power allocation strategy, whereγ is uniformly
distributed between0 and2 and the peak power limit is set to
Ppeak = 5. Similar to the previous scenario, the statements
in Theorem 1 and Theorem 2 can be verified based on
the transmitted power levels of the optimal power allocation
strategy for various values ofα. For example, forα = 0.1, the
optimal power level increases untilγ = 1.917 and decreases
after that value in accordance with Theorem 1. In addition, as
the false alarm limit decreases, the transmitter employs higher
power levels for some values ofγ while sending very low
powers at other values, leading to a more peaky transmission
strategy as in the previous scenario.

Finally, the concavity property of the optimal average de-
tection probability with respect to the average power limit,
P , is illustrated in Fig. 10, where both uniform distribution
(between0 and2) and exponential distribution (with a mean
of 1) are considered. As stated in Proposition 1, the average
probability of detection corresponding to the solution of (8) is
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Fig. 9. The transmitted power level versusγ for the proposed optimal power
allocation strategy and the uniform power allocation strategy, whereγ is
uniformly distributed between0 and2.

a concave function of the average power limit for any value
of α.
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Fig. 10. The optimal average detection probability versus the average power
limit, P .

V. CONCLUSIONS ANDEXTENSIONS

In this study, the optimal power allocation problem has
been proposed to maximize the average detection probability
for detecting the presence of a signal in an AWGN channel
with flat fading. An optimization problem has been formulated
under average and peak power constraints when perfect CSI
is available at the transmitter and the receiver. Utilizing
the analytical properties of the detection probability, a dual
problem with no duality gap with the original problem has
been obtained. The dual decomposition approach has been
employed and various algorithms and subroutines have been
proposed to specify the optimal power allocation scheme under
average and peak power constraints. In addition, for all values
of the false alarm probability, the continuity and monotonic-
ity properties of the optimal power allocation scheme have
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been characterized with respect toγ, the ratio between the
channel power gain and the noise power. Numerical examples
have provided some examples of the theoretical results and
illustrated the improvements achieved via the optimal power
allocation approach.

Although scalar observations are considered in (1), the
results can also be extended to vector observations in the
presence of AWGN since the detection probability can be
expressed similarly to (6) by updating the definition ofγ.

APPENDIX

A. Proof of Theorem 1

The proof consists of two parts. In the first part of the proof,
the aim is to prove that ifPD

′(Ppeak , γ) < λ∗ for all γ ∈
Γ, then the optimal power allocation policy is a continuous
function ofγ, which increases withγ up to some unique value
and then decreases asγ increases. SincePD

′(Ppeak, γ) < λ∗

for all γ ∈ Γ, P ∗
t (γ) 6= Ppeak for all γ ∈ Γ based on (24); that

is, P ∗
t (γ) satisfies0 < P ∗

t (γ) < Ppeak for all γ ∈ Γ. First, the
limiting cases of the equation in (24) are investigated for0 <
P ∗
t (γ) < Ppeak. Namely, it is observed that asγPt(γ) goes

to zero,Pt(γ)/γ converges to a constant. Similarly, asγPt(γ)
goes to infinity,Pt(γ)/γ converges to zero. Letx , √

γ, y ,√
Pt(γ), andG(x, y) , x

2
√
2πλ∗

exp
{
− 1

2

(
Q−1(α) − xy

)2}
.

Then, from (24), the following relation is obtained:

y = G(x, y) = x

2
√
2πλ∗ exp

{
−1

2

(
Q−1(α)− xy

)2
}
. (26)

Now suppose thatdydx exists. Then, dydx = ∂G
∂y

dy
dx + ∂G

∂x ,

which leads tody
dx = ∂G/∂x

1−∂G/∂y , F(x, y). These derivative
expressions are calculated, from (26), as follows:
∂G(x, y)

∂x
=

1

2
√
2πλ∗ exp

{
−1

2

(
Q−1(α)− xy

)2
}

×
(
1 + xy

(
Q−1(α) − xy

))
=

y

x

(
1 + xy

(
Q−1(α) − xy

))

∂G(x, y)
∂y

=
x2

2
√
2πλ∗ exp

{
−1

2

(
Q−1(α)− xy

)2
}

×
(
Q−1(α) − xy

)
= xy

(
Q−1(α)− xy

)

F(x, y) =
y
x

(
1 + xy

(
Q−1(α)− xy

))

1− xy (Q−1(α)− xy)

= − y

x

(
1 +

2

xy (Q−1(α)− xy)− 1

)

∂F(x, y)

∂y
= − 1

x

(
1 +

2

xy (Q−1(α)− xy)− 1

)

+
2y

(
Q−1(α)x − 2x2y

)

x (xy (Q−1(α) − xy)− 1)
2 ·

Note thatF(x, y) and∂F(x, y)/∂y are continuous functions
for x > 0 and y > 0 except at the points that satisfy
xy

(
Q−1(α)− xy

)
− 1 = 0. Let t , xy. Then, the solutions

of h(t) , t2−Q−1(α)t+1 = 0 are sought. In Lemma 1, it is
shown that ifα > Q(2), h(t) > 0 for t > 0, and ifα < Q(2),

there are two rootst1 < t2 wheret1 =
Q−1(α)−

√
(Q−1(α))2−4

2

andt2 =
Q−1(α)+

√
(Q−1(α))2−4

2 with h(t) > 0 for t < t1 and
t > t2, andh(t) < 0 for t1 < t < t2. Thus, if α > Q(2),
F(x, y) and∂F(x, y)/∂y are continuous functions forx > 0
and y > 0, which implies thatdydx = F(x, y) has a unique

solution by the existence and uniqueness theorems for first-
order ordinary differential equations (ODEs) [33]. Hence,y
is differentiable inx, which implies thaty is a continuous
function ofx, or, equivalently,Pt(γ) is a continuous function
of γ. This proves the continuity of the power allocation policy
for α > Q(2).

Since x =
√
γ and y =

√
Pt(γ), dx = dγ/(2

√
γ)

and dy = dPt(γ)/(2
√
Pt(γ)) are obtained. Then, from

dy
dx = − y

x

(
1 + 2

xy(Q−1(α)−xy)−1

)
in the previous paragraph,

the following relation is achieved:

dPt(γ)

dγ
=

√
Pt(γ)√
γ

dy

dx

= −Pt(γ)

γ


1 +

2
√
Pt(γ)γ

(
Q−1(α)−

√
Pt(γ)γ

)
− 1


 .

Based on the observations at the beginning of the proof,
limγPt(γ)→0 Pt(γ)/γ = c1, where c1 is some pos-
itive constant and limγPt(γ)→∞ Pt(γ)/γ = 0. Thus,
limγPt(γ)→0

dPt(γ)
dγ = c2, wherec2 is some positive constant

andlimγPt(γ)→∞
dPt(γ)

dγ = 0−. From the analysis of the limit
cases above, the optimal power linearly increases with respect
to γ for small values ofγ and decreases with respect toγ for
large values ofγ.

Up to this point, it is shown that the optimal power increases
linearly for smallγ, and decreases for largeγ. Hence, there
must be a maximum power value, which can be found by
setting ∂Pt(γ)

∂γ to zero.

∂Pt(γ)

∂γ
= 0 ⇒ 1 +

2(
Q−1(α)−

√
γPt(γ)

)√
γPt(γ)− 1

= 0

⇒ γPt(γ)−Q−1(α)
√

γPt(γ)− 1 = 0

⇒
√
γPt(γ) =

Q−1(α) +

√
(Q−1(α))2 + 4

2
· (27)

From (24) and (27), the(γ, Pt(γ)) pair that specifies the power
level andγ for which the maximum power is employed can
be obtained uniquely as follows:

γ = λ∗√2π

(
Q−1(α) +

√
(Q−1(α))2 + 4

)
(28)

× exp

{
1

8

(
Q−1(α)−

√
(Q−1(α))

2
+ 4

)2
}

Pt(γ) =
1

4λ∗
√
2π

(
Q−1(α) +

√
(Q−1(α))

2
+ 4

)

× exp

{
−1

8

(
Q−1(α)−

√
(Q−1(α))

2
+ 4

)2
}
.

In the second part, the aim is to prove that if
PD

′(Ppeak, γ) ≥ λ∗ for someγ ∈ Γ, the optimal power alloca-
tion policy is a continuous function ofγ, which increases up to
Ppeak asγ increases tōγl, stays atPpeak for a certain interval
(i.e., γ̄l ≤ γ ≤ γ̄u), and then decreases asγ > γ̄u increases.
To that aim, considerPD

′(Ppeak, γ) for all γ ∈ Γ and note that
PD

′(Ppeak, γ) is a continuous function ofγ, which increases
up to a certain value and decreases for higher values ofγ.
Then, it is stated that ifPD

′(Ppeak, γ) ≥ λ∗ for someγ ∈ Γ,
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then there exists only a unique interval,γ ∈ [γ̄l, γ̄u], such that
PD

′(Ppeak, γ) ≥ λ∗ for all γ ∈ Γ̄ where Γ̄ = [γ̄l, γ̄u] and
Γ̄ ⊆ Γ. Based on the statement in Lemma 6, it is obtained
that P ∗

t (γ) = Ppeak for all γ ∈ Γ̄. Next, considerγ ∈ Γ \ Γ̄
and note thatPD

′(Ppeak, γ) = λ∗ for γ = γ̄l andγ = γ̄u, and
consequently,P ∗

t (γ̄l) = Ppeak and P ∗
t (γ̄u) = Ppeak. Then,

from (24) and Lemma 6,PD
′(P ∗

t (γ), γ) = λ∗ for γ ∈ (0, γ̄l]
or γ ∈ [γ̄u,∞) whereP ∗

t (γ) ∈ (0, Ppeak]. Based on a similar
approach to that in the first part of the proof,P ∗

t (γ) is a
continuous function ofγ for γ ∈ (0, γ̄l], which increases with
γ up to P ∗

t (γ) = Ppeak for γ = γ̄l. Similarly, P ∗
t (γ) is a

continuous function ofγ for γ ∈ [γ̄u,∞), which reduces asγ
increases. Overall,P ∗

t (γ) is a continuous function ofγ where
γ ∈ Γ and satisfies the second condition in Theorem 1 if
PD

′(Ppeak, γ) ≥ λ∗ for someγ ∈ Γ. �

B. Proof of Theorem 2

Consider the relation in (24), which must be satisfied
for the optimum power levels. Since the inflection points
I1(γ) and I2(γ) decrease asγ increases, and the value of
PD

′(Pt(γ), γ) at the inflection points increases asγ increases,
there exist5 different cases with respect toλ∗ and the value
of PD

′(Pt(γ), γ) at the inflection points for a givenγ. These
cases occur in the order of1-2-3-4-5asγ increases.

1) λ∗ > PD
′(I2(γ), γ) : This case is valid forγ ∈ (0, γl).

In this case, allPt(γ) values that satisfyPD
′(Pt(γ), γ) ≥

λ∗ cannot exceedI1(γ); that is, Pt(γ) < I1(γ). Therefore,
P ∗
t (γ) < I1(γ) for all γ ∈ (0, γl). Also, PD

′(Pt(γ), γ) is
monotone decreasing forPt(γ) ∈ (0, I1(γ)). Then, based on
the equation in (24), one of the following conditions holds:

• If PD
′(Ppeak , γ) < λ∗ for all γ ∈ (0, γl),

PD
′(P ∗

t (γ), γ) = λ∗ for all γ ∈ (0, γl). Also,
PD

′(Pt(γ), γ) = λ∗ has only one solution (optimal
power level) P ∗

t (γ), where P ∗
t (γ) < I1(γ). Based

on the definitions in the proof of Theorem 1, if
Pt(γ) < I1(γ), then t = xy =

√
γPt(γ) <

√
γI1(γ) =

√
γ

(

Q−1(α)−
√

(Q−1(α))2−4
)2

4γ =

Q−1(α)−
√

(Q−1(α))2−4

2 = t1. We also haveh(t) > 0
for t < t1. Thus, due to a similar reasoning to that in
the proof of Theorem 1,P ∗

t (γ) constitutes a continuous
function of γ for γ ∈ (0, γl).

• If PD
′(Ppeak , γ) ≥ λ∗ for some γ ∈ (0, γl),

PD
′(Ppeak, γ) ≥ λ∗ for γ ∈ [γ̄l, γ̄u] due to the function

properties ofPD
′(Ppeak, γ) whereγ̄l and γ̄u are positive

finite values. If γ̄l < γ̄u < γl holds, P ∗
t (γ) = Ppeak

for γ ∈ [γ̄l, γ̄u] and P ∗
t (γ) is continuous function of

γ for γ ∈ (0, γl), which increases forγ ∈ (0, γ̄l) and
decreases forγ ∈ (γ̄u, γl) based on a similar approach
to that in the first condition. Otherwise, if̄γl = γl ≤ γ̄u,
P ∗
t (γ) is a continuous function ofγ for γ ∈ (0, γl), which

increases forγ ∈ (0, γ̄l) and becomes equal toPpeak for
γ ∈ [γ̄l, γl].

2) λ∗ = PD
′(I2(γ), γ) : This case is valid forγ = γl.

In this case,PD
′(Pt(γ), γ) = λ∗ has two solutions; i.e.,

there are two candidates for the optimal power level. Let
these candidates beP ∗,1

t (γ) and P ∗,2
t (γ) with P ∗,1

t (γ) <
I1(γ) < I2(γ) = P ∗,2

t (γ). Also, there is another candidate,
P ∗,3
t (γ) = Ppeak. If P ∗,3

t (γ) = Ppeak ≤ P ∗,1
t (γ) < P ∗,2

t (γ);
then, the optimal power level isP ∗

t (γ) = P ∗,3
t (γ) = Ppeak

due to the peak power constraint. Also,P ∗,3
t (γ) = Ppeak

must satisfyPD
′(P ∗,3

t (γ), γ) ≥ λ∗ based on (24) if the
optimal power level isP ∗,3

t . SincePD
′(Pt(γ), γ) < λ∗ for

Pt(γ) ∈ (P ∗,1
t (γ), P ∗,2

t (γ)), P ∗,3
t (γ) = Ppeak cannot be

optimal if P ∗,1
t (γ) < Ppeak < P ∗,2

t (γ) and the optimal power
level is P ∗

t (γ) = P ∗,1
t (γ). If P ∗,1

t (γ) < P ∗,2
t (γ) < Ppeak,

P ∗,3
t (γ) = Ppeak cannot be optimal due to the similar reason.

Then, the maximizer ofPD(P
∗
t (γ), γ) − λ∗P ∗

t (γ) is either
P ∗,1
t (γ) andP ∗,2

t (γ), which can be found by the comparison
below:

PD(P
∗,1
t (γ), γ)− λ∗P ∗,1

t (γ)
P∗,1

t

R
P∗,2

t

PD(P
∗,2
t (γ), γ)− λ∗P ∗,2

t (γ)

(29)

PD(P
∗,1
t (γ), γ)− PD(P

∗,2
t (γ), γ)

P ∗,1
t (γ)− P ∗,2

t (γ)

P∗,1
t

⋚
P∗,2

t

λ∗ (30)

SincePD
′(Pt(γ), γ) < λ∗ for Pt(γ) ∈ (P ∗,1

t (γ), P ∗,2
t (γ)),

PD(P∗,1
t (γ),γ)−PD(P∗,2

t (γ),γ)

P∗,1
t (γ)−P∗,2

t (γ)
< λ∗. Then,P ∗,2

t (γ) cannot be

optimal. Lastly, if P ∗,1
t (γ) < P ∗,2

t (γ) = Ppeak, P ∗,2
t (γ) =

Ppeak cannot be optimal due to the comparison of the candi-
dates as in (30). Thus, the optimal power level forγ = γl can
be selected asP ∗

t (γ) = min{P ∗,1
t (γ), Ppeak}.

3) PD
′(I2(γ), γ) > λ∗ > PD

′(I1(γ), γ) : This case is valid
for γ ∈ (γl, γu). In this case,PD

′(P ∗
t (γ), γ) = λ∗ has three

solutions; i.e., there are three candidates for the optimal
power level. Let these candidates beP ∗,1

t (γ), P ∗,2
t (γ)

and P ∗,3
t (γ) with P ∗,1

t (γ) < P ∗,2
t (γ) < P ∗,3

t (γ). Note
that P ∗,1

t (γ) ∈ [0, I1(γ)), P ∗,2
t (γ) ∈ (I1(γ), I2(γ))

and P ∗,3
t (γ) ∈ (I2(γ),∞). Also notice that

PD(Pt(γ), γ) − λ∗Pt(γ) is an increasing function
of Pt(γ) for Pt(γ) ∈ (0, P ∗,1

t (γ)), a decreasing
function for Pt(γ) ∈ (P ∗,1

t (γ), P ∗,2
t (γ)), increasing

for Pt(γ) ∈ (P ∗,2
t (γ), P ∗,3

t (γ)), and decreasing for
Pt(γ) ∈ (P ∗,3

t (γ),∞). Thus, from the candidates
P ∗,1
t (γ), P ∗,2

t (γ) and P ∗,3
t (γ), either P ∗,1

t (γ) or P ∗,3
t (γ)

is a maximizer for PD(Pt(γ), γ) − λ∗Pt(γ). Since
P ∗,1
t (γ) < I1(γ) < I2(γ) < P ∗,3

t (γ), the optimal power
level cannot take any values betweenI1(γ) and I2(γ)
for the case that no peak power constraint is considered.
On the other hand, the optimal power level may not be
P ∗,1
t (γ) or P ∗,3

t (γ) due to the peak power constraint. If
Ppeak ≤ P ∗,1

t (γ) < P ∗,3
t (γ); then, the optimal power level is

P ∗
t (γ) = Ppeak sincePD

′(Pt(γ), γ) is monotone decreasing
for Pt(γ) ∈ (0, I1(γ)) and Ppeak ≤ P ∗,1

t (γ) < I1(γ).
Otherwise, if P ∗,1

t (γ) < Ppeak, the optimal power level
is either P ∗,1

t (γ) or min{P ∗,3
t (γ), Ppeak}. Note that

P ∗,1
t (γ) and P ∗,3

t (γ) are differentiable functions ofγ for
γ ∈ [γl, γu] as shown in Case-1 and Case-5, respectively,
since P ∗,1

t (γ) < I1(γ) and P ∗,3
t (γ) > I2(γ). Then,

min{P ∗,3
t (γ), Ppeak} is a continuous function ofγ for

γ ∈ [γl, γu] and may not be differentiable at aγ value where
P ∗,3
t (γ) = Ppeak. Let P̃ ∗,3

t , min{P ∗,3
t (γ), Ppeak}

and S(γ) ,
(
PD(P

∗,1
t (γ), γ)− λ∗P ∗,1

t (γ)
)

−(
PD(P̃

∗,3
t (γ), γ)− λ∗P̃ ∗,3

t (γ)
)

, which are continuous

in γ for γ ∈ [γl, γu]. Then, via (29), the optimal power
level can be chosen by comparingS(γ) against zero; that is,
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S(γ)
P∗,1

t

R
P̃∗,3

t

0. In addition, Case-2 (the equivalence case can be

obtained by comparingP ∗,1
t (γl) andP ∗,2

t (γl) = P̃ ∗,3
t (γl)) and

Case-4 (the equivalence case can be obtained by comparing
P̃ ∗,3
t (γu) and P ∗,2

t (γu) = P ∗,1
t (γu)) imply S(γl) > 0 and

S(γu) < 0, respectively. Note the following identity:

∂PD(Pt(γ), γ)

∂ (Pt(γ))
= λ∗

=

√
γ

2
√
2π

√
Pt(γ)

exp

{
−1

2

(
Q−1(α) −

√
Pt(γ)γ

)2
}

=
γ

Pt(γ)

√
Pt(γ)

2
√
2π

√
γ

exp

{
−1

2

(
Q−1(α)−

√
Pt(γ)γ

)2
}

=
γ

Pt(γ)

∂PD(Pt(γ), γ)

∂γ

⇒ ∂PD(Pt(γ), γ)

∂γ
= λ∗Pt(γ)

γ
. (31)

Then, from (31),

dS(γ)

dγ

=

(

∂PD(P
∗,1
t (γ), γ)

∂
(

P
∗,1
t (γ)

)

dP ∗,1
t (γ)

dγ
+

∂PD(P
∗,1
t (γ), γ)

∂γ
− λ

∗ dP
∗,1
t (γ)

dγ

)

−





∂PD(P̃
∗,3
t (γ), γ)

∂
(

P̃
∗,3
t (γ)

)

dP̃ ∗,3
t (γ)

dγ
+

∂PD(P̃
∗,3
t (γ), γ)

∂γ
− λ

∗ dP̃
∗,3
t (γ)

dγ





=

(

λ
∗ dP

∗,1
t (γ)

dγ
+ λ

∗P
∗,1
t (γ)

γ
− λ

∗ dP
∗,1
t (γ)

dγ

)

−

(

λ
∗ dP̃

∗,3
t (γ)

dγ
+ λ

∗ P̃
∗,3
t (γ)

γ
− λ

∗ dP̃
∗,3
t (γ)

dγ

)

= λ
∗P

∗,1
t (γ)− P̃

∗,3
t (γ)

γ
< 0 (32)

is obtained forγ such thatS(γ) is differentiable. The ex-
pression in (32) implies thatS(γ) is a monotone decreasing
continuous function ofγ for γ ∈ [γl, γu], and sinceS(γl) > 0
andS(γu) < 0, there must exist a unique valuẽγ ∈ (γl, γu)
such thatS(γ̃) = 0. The optimal power allocation strategy is
indifferent between the power levelsP ∗,1

t (γ̃) andP̃ ∗,3
t (γ̃) for

γ = γ̃, and the optimal power level isP ∗,1
t (γ) for γl < γ < γ̃,

whereas the optimal power level is̃P ∗,3
t (γ) for γ̃ < γ < γu.

Hence, there exists a positive jump fromP ∗,1
t (γ̃) to P̃ ∗,3

t (γ̃)
at γ = γ̃.

4) λ∗ = PD
′(I1(γ), γ) : This case is valid forγ = γu. In

this case,PD
′(Pt(γ), γ) = λ∗ has two solutions; i.e., there

are two candidates for the optimal power level. Let these
candidates beP ∗,1

t (γ), andP ∗,2
t (γ) with P ∗,1

t (γ) = I1(γ) <
I2(γ) < P ∗,2

t (γ). If Ppeak ≤ P ∗,2
t (γ), P ∗

t (γ) = Ppeak since
PD

′(Pt(γ), γ) ≥ λ∗ for all Pt(γ) ∈ (0, Ppeak]. Otherwise,
if P ∗,2

t (γ) < Ppeak; then, the optimal power level is either
P ∗,1
t (γ) or P ∗,2

t (γ). SincePD
′(Pt(γ), γ) > λ∗ for Pt(γ) ∈

(P ∗,1
t (γ), P ∗,2

t (γ)), PD(P∗,1
t (γ),γ)−PD(P∗,2

t (γ),γ)

P∗,1
t (γ)−P∗,2

t (γ)
> λ∗. Then,

P ∗,1
t (γ) cannot be optimal based on (30). Thus, the optimal

power level can be selected asP ∗
t (γ) = min{P ∗,2

t (γ), Ppeak}.
5) λ∗ < PD

′(I1(γ), γ) : This case is valid forγ ∈ (γu,∞).
In this case,PD

′(Pt(γ), γ) > λ∗ for Pt(γ) ≤ I2(γ) and
PD

′(Pt(γ), γ) is a monotone decreasing function ofPt(γ)

for Pt(γ) ∈ (γu,∞). Based on (24), one of the following
conditions holds:
• If PD

′(Ppeak, γ) < λ∗ for all γ ∈ (γu,∞),
PD

′(P ∗
t (γ), γ) = λ∗ for all γ ∈ (γu,∞). Also,

PD
′(Pt(γ), γ) = λ∗ has only one solution (optimal power

level) P ∗
t (γ), whereP ∗

t (γ) > I2(γ). By using the definitions
in the proof of Theorem 1, ifPt(γ) > I2(γ), then t = xy =

√
γPt(γ) >

√
γI2(γ) =

√
γ

(

Q−1(α)+
√

(Q−1(α))2−4
)2

4γ =

Q−1(α)+
√

(Q−1(α))2−4

2 = t2. We also haveh(t) > 0 for
t > t2. Thus, due to a similar reasoning to that in the proof
of Theorem 1,P ∗

t (γ) constitutes a continuous function inγ
for γ ∈ (γu,∞).
• If PD

′(Ppeak, γ) ≥ λ∗ for some γ ∈ (γu,∞),
PD

′(Ppeak, γ) ≥ λ∗ for γ ∈ [γ̄l, γ̄u] due to the function
properties ofPD

′(Ppeak, γ) whereγ̄l andγ̄u are positive finite
values. Ifγu < γ̄l < γ̄u holds,P ∗

t (γ) = Ppeak for γ ∈ [γ̄l, γ̄u]
andP ∗

t (γ) is continuous function ofγ for γ ∈ (γu,∞), which
increases forγ ∈ (γu, γ̄l) and decreases forγ ∈ (γ̄u,∞) based
on a similar approach to that in the first condition. Otherwise,
if γ̄l = γu ≤ γ̄u, P ∗

t (γ) is a continuous function ofγ for
γ ∈ (γu,∞), which becomes equal toPpeak for γ ∈ [γu, γ̄u]
and decreases forγ ∈ (γ̄u,∞).

Considering the analyses of the different cases above, the
following summary can be stated:

1) For γ < γ̃, the optimal power allocation policy is
continuous inγ and the optimal power level is always lower
thanI1(γ), whereγ̃ ∈ (γl, γu).

2) At γ = γ̃, the optimal power allocation policy has a
positive jump.

3) For γ > γ̃, the optimal power allocation policy is
continuous inγ. �
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