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Abstract—Light emitting diode (LED) based visible light posi-
tioning (VLP) networks can provide accurate location information
in environments where the global positioning system (GPS) suffers
from severe signal degradation and/or cannot achieve high preci-
sion, such as indoor scenarios. In this paper, we propose to employ
cooperative localization for hybrid infrared/visible light networks
that involve multiple LED transmitters having known locations
(e.g., on the ceiling) and visible light communication (VLC) units
equipped with both LEDs and photodetectors (PDs) for the purpose
of cooperation. In the considered scenario, downlink transmissions
from LEDs on the ceiling to VLC units occur via visible light
signals, while the infrared spectrum is utilized for device-to-device
communications among VLC units. First, we derive the Cramér-
Rao lower bound (CRLB) and the maximum likelihood estimator
(MLE) for the localization of VLC units in the proposed cooperative
scenario. To tackle the nonconvex structure of the MLE, we adopt a
set-theoretic approach by formulating the problem of cooperative
localization as a quasiconvex feasibility problem, where the aim
is to find a point inside the intersection of convex constraint sets
constructed as the sublevel sets of quasiconvex functions resulting
from the Lambertian formula. Next, we devise two feasibility-
seeking algorithms based on iterative gradient projections to
solve the feasibility problem. Both algorithms are amenable to
distributed implementation, thereby avoiding high-complexity cen-
tralized approaches. Capitalizing on the concept of quasi-Fejér
convergent sequences, we carry out a formal convergence analysis
to prove that the proposed algorithms converge to a solution of
the feasibility problem in the consistent case. Numerical examples
illustrate the improvements in localization performance achieved
via cooperation among VLC units and evidence the convergence
of the proposed algorithms to true VLC unit locations in both the
consistent and inconsistent cases.

Index Terms– Positioning, visible light, infrared, cooperative lo-
calization, set-theoretic estimation, quasiconvex feasibility, gradient
projections, quasi-Fejér convergence.

I. INTRODUCTION

A. Background and Motivation

Accurate wireless positioning plays a decisive role in var-
ious location-aware applications, including patient monitoring,
inventory tracking, robotic control, and intelligent transportation
systems (ITSs) [1]–[4]. In the last two decades, radio frequency
(RF) based techniques have commonly been employed for
wireless indoor positioning [5], [6]. Recently, light emitting
diode (LED) based visible light positioning (VLP) networks
have emerged as an appealing alternative to RF-based solu-
tions, providing high-accuracy and low-cost localization ser-
vices [7]. While visible light networks can be harnessed for
enhancing localization performance in indoor scenarios [8], they
also offer illumination and high speed data communications
simultaneously without incurring additional installation costs via
the use of existing LED infrastructure [9]. In VLP networks,
various position-dependent parameters such as received signal
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strength (RSS) [10], [11], time-of-arrival (TOA) [12], [13], time-
difference-of-arrival (TDOA) [14] and angle-of-arrival (AOA)
[15] can be employed for position estimation. In order to
quantify performance bounds for such systems, several accuracy
metrics are considered, including the Cramér-Rao lower bound
(CRLB) [10], [12], [13], [16] and the Ziv-Zakai Bound (ZZB)
[17].

Based on the availability of internode measurements, wire-
less localization networks can broadly be classified into two
groups: cooperative and noncooperative. In the conventional
noncooperative approach, position estimation is performed by
utilizing only the measurements between anchor nodes (which
have known locations) and agent nodes (the locations of which
are to be estimated) [18], [19]. On the other hand, cooperative
systems also incorporate the measurements among agent nodes
into the localization process to achieve improved performance
[19]. Benefits of cooperation among agent nodes are more
pronounced specifically for sparse networks where agents cannot
obtain measurements from a sufficient number of anchors for
reliable positioning [20]. There exists an extensive body of
research regarding the investigation of cooperation techniques
and the development of efficient algorithms for cooperative
localization in RF-based networks (see [18]–[20] and references
therein). In terms of implementation of algorithms, centralized
approaches attempt to solve the localization problem via the
optimization of a global cost function at a central unit to which
all measurements are delivered. Among various centralized
methods, maximum likelihood (ML) and nonlinear least squares
(NLS) estimators are the most widely used ones, both leading to
nonconvex and difficult-to-solve optimization problems, which
are usually approximated through convex relaxation approaches
such as semidefinite programming (SDP) [21]–[23], second-
order cone programming (SOCP) [24], [25], and convex under-
estimators [26]. In distributed algorithms, computations related
to position estimation are executed locally at individual nodes,
thereby reinforcing scalability and robustness to data congestion
[19]. Set-theoretic estimation [27]–[30], factor graphs [19],
and multidimensional scaling (MDS) [31] constitute common
tools employed for cooperative distributed localization in the
literature.

Despite the ubiquitous use of cooperation techniques in RF-
based wireless localization networks, no studies in the literature
have considered the use of cooperation in VLP networks. In this
study, we extend the cooperative paradigm to infrared and visible
light domains. More specifically, we set forth a cooperative
localization framework for hybrid infrared/visible light networks
whereby LED transmitters on the ceiling function as anchors
with known locations and visible light communication (VLC)
units with unknown locations are equipped with LEDs and
photodetectors (PDs) for the purpose of communications with
both LEDs on the ceiling and other VLC units1. Utilization

1In this paper, “VLP network” (when used in the context of cooperation)
and “hybrid infrared/visible light network” are used interchangeably to refer to
an indoor VLC system where LED transmitters on the ceiling emit visible light
signals to VLC units for downlink communications and VLC units communicate
with one another using infrared wavelengths.



of the proposed framework is primarily motivated by indoor
VLC systems endowed with infrared uplink capability. Since
infrared LEDs and PDs are already available in some VLC
systems for efficient uplink transmission [8], [32]–[35], they can
also be utilized for device-to-device communications to achieve
cooperation among VLC units. An additional benefit of using
infrared wavelengths for cooperation is that it helps mitigate
eye safety risks incurred by communications among VLC units
[36]2.

The proposed network facilitates the definition of arbitrary
connectivity sets between the LEDs on the ceiling and the
VLC units, and also among the VLC units, which can pro-
vide significant performance enhancements over the traditional
noncooperative approach employed in the VLP literature. Based
on the noncooperative (i.e., between LEDs on the ceiling and
VLC units) and cooperative (i.e., among VLC units) RSS
measurements, we first derive the CRLB and the MLE for the
localization of VLC units. Since the MLE poses a challenging
nonconvex optimization problem, we follow a set-theoretic
estimation approach and formulate the problem of cooperative
localization as a quasiconvex feasibility problem (QFP) [37],
where feasible constraint sets correspond to sublevel sets of cer-
tain type of quasiconvex functions. The quasiconvexity arising
in the problem formulation stems from the Lambertian formula,
which characterizes the attenuation level of infrared/visible light
channels3. Next, we design two feasibility-seeking algorithms,
having cyclic and simultaneous characteristics, which employ
iterative gradient projections onto the specified constraint sets.
From the viewpoint of implementation, the proposed algorithms
can be implemented in a distributed architecture that relies
on computations at individual VLC units and a broadcasting
mechanism to update position estimates. Moreover, we provide
a formal convergence proof for the projection-based algorithms
based on quasi-Féjer convergence, which enjoys decent proper-
ties to support theoretical analysis [38].

B. Literature Survey on Set-Theoretic Estimation

The applications of convex feasibility problems (CFPs) en-
compass a wide variety of disciplines, such as wireless local-
ization [27]–[30], [39], compressed sensing [40], image recovery
[41], image denoising [42] and intensity-modulated radiation
therapy [43]. In contrary to optimization problems where the
aim is to minimize the objective function while satisfying
the constraints, feasibility problems seek to find a point that
satisfies the constraints in the absence of an objective function
[40]. Hence, the goal of a CFP is to identify a point inside
the intersection of a collection of closed convex sets in a
Euclidean (or, in general, Hilbert) space. In feasibility problems,
a commonly pursued approach is to perform projections onto
the individual constraint sets in a sequential manner, rather than
projecting onto their intersection due to analytical intractability
[44]. The work in [27] formulates the problem of acoustic
source localization as a CFP and employs the well-known
projections onto convex sets (POCS) technique for convergence
to true source locations. Following a similar methodology, the
noncooperative wireless positioning problem with noisy range
measurements is modeled as a CFP in [28], where POCS
and outer-approximation (OA) methods are utilized to derive
distributed algorithms that perform well under non-line-of-sight
(NLOS) conditions. In [39], a cooperative localization approach
based on projections onto nonconvex boundary sets is proposed

2Please see Remark 2 in Section II-B for an eye-safety analysis of infrared
LEDs.

3Throughout the paper, the near-infrared region between 780 nm and
950 nm is considered as the infrared spectrum [36]. The Lambertian channel
attenuation model is valid in both the visible light spectrum and the infrared
region from 780 nm to 950 nm [36].

for sensor networks, and it is shown that the proposed strategy
can achieve better localization performance than the centralized
SDP and the distributed MDS although it may get trapped
into local minima due to nonconvexity. Similarly, the work in
[29] designs a POCS-based distributed positioning algorithm for
cooperative networks with a convergence guarantee regardless
of the consistency of the formulated CFP, i.e., whether the
intersection is nonempty or not.

Although CFPs have attracted a great deal of interest in
the literature, QFPs have been investigated only rarely. QFPs
represent generalized versions of CFPs in that the constraint
sets are constructed from the lower level sets of quasiconvex
functions in QFPs whereas such functions are convex in CFPs
[37]. The study in [37] explores the convergence properties
of subgradient projections based iterative algorithms utilized
for the solution of QFPs. It is demonstrated that the iterations
converge to a solution of the QFP if the quasiconvex functions
satisfy Hölder conditions and the QFP is consistent, i.e., the
intersection is nonempty. In this work, we show that the Lamber-
tian model based (originally non-quasiconvex) functions can be
approximated by appropriate quasiconvex lower bounds, which
convexifies the (originally nonconvex) sublevel constraint sets,
thus transforming the formulated feasibility problem into a QFP.

C. Contributions

The previous work on VLP networks has addressed the prob-
lem of position estimation based mainly on the ML estimator
[13], [16], [45], the least squares estimator [15], [45], trian-
gulation [11], [46], and trilateration [14] methods. This paper,
however, considers the problem of localization in VLP networks
as a feasibility problem and introduces efficient iterative algo-
rithms with convergence guarantees in the consistent case. In
addition, the theoretical bounds derived for position estimation
are significantly different from those in [16], [45] via the
incorporation of terms related to cooperation, which allows for
the evaluation of the effects of cooperation on the localization
performance in any three dimensional cooperative VLP scenario.
Furthermore, unlike the previous research on localization in
RF-based wireless networks via CFP modeling [27]–[29], [39],
where a common approach is to employ POCS-based iterative
algorithms, we formulate the localization problem as a QFP
for VLP networks, which necessitates the development of more
sophisticated algorithms (e.g., gradient projections) and different
techniques for studying the convergence properties of those
algorithms (e.g., quasiconvexity and quasi-Fejér convergence).
The main contributions of this paper can be summarized as
follows:

• For the first time in the literature, we propose to employ
cooperative localization for VLP networks via a generic
configuration that allows for an arbitrary construction of
connectivity sets and transmitter/receiver orientations.

• The CRLB for localization of VLC units is derived in the
presence of cooperative measurements (Section II). The
effects of cooperation on the performance of localization in
VLP networks are illustrated based on the provided CRLB
expression (Section VI-A).

• The problem of cooperative localization in VLP networks
is formulated as a quasiconvex feasibility problem, which
circumvents the complexity of the nonconvex ML estimator
and facilitates efficient feasibility-seeking algorithms (Sec-
tion III).

• We design gradient projections based low-complexity iter-
ative algorithms to find solutions to the feasibility problem
(Section IV). The proposed set-theoretic framework favors
the implementation of algorithms in a distributed architec-
ture.



Fig. 1. Cooperative VLP network.

• We provide formal convergence proofs for the proposed
algorithms in the consistent case based on the concept of
quasi-Fejér convergence (Section V).

II. SYSTEM MODEL AND THEORETICAL BOUNDS

A. System Model

The proposed cooperative VLP network consists of NL LED
transmitters and NV VLC units, as illustrated in Fig. 1. The
location of the jth LED transmitter is denoted by yj and
its orientation vector is given by ñT,j for j ∈ {1, . . . , NL}.
The locations and the orientations of the LED transmitters are
assumed to be known, which is a reasonable assumption for
practical systems [45], [46]. In the proposed system, each VLC
unit not only gathers signals from the LED transmitters but also
communicates with other VLC units in the system for cooper-
ation purposes. To that aim, the VLC units are equipped with
both LEDs and PDs; namely, there exist Li LEDs and Ki PDs
at the ith VLC unit for i ∈ {1, . . . , NV }. The unknown location
of the ith VLC unit is denoted by xi, where i ∈ {1, . . . , NV }.
For the jth PD at the ith VLC unit, the location is given by

xi + ai,j and the orientation vector is denoted by n
(i)
R,j , where

j ∈ {1, . . . ,Ki}. Similarly, for the jth LED at the ith VLC unit,
the location is given by xi + bi,j and the orientation vector is

represented by n
(i)
T,j , where j ∈ {1, . . . , Li}. The displacement

vectors, ai,j’s and bi,j’s, are known design parameters for the
VLC units. Also, the orientation vectors for the LEDs and PDs
at the VLC units are assumed to be known since they can be
determined by the VLC unit design and by auxiliary sensors
(e.g., inertial measurement unit (IMU) consisting of gyroscope,
accelerometer and magnetometer [47]–[49]4). To distinguish the
LED transmitters at known locations from the LEDs at the VLC
units, the former are called as the LEDs on the ceiling (as in
Fig. 1) in the remainder of the text.

At a given time, each PD can communicate with a subset of
all the LEDs in the system. Therefore, the following connectivity
sets are defined to specify the connections between the LEDs
and the PDs:

S̃
(j)
k =

{
ℓ ∈ {1, . . . , NL} | ℓth LED on ceiling is

connected to kth PD of jth VLC unit
}

(1)

S
(i,j)
k =

{
ℓ ∈ {1, . . . , Li} | ℓth LED of ith VLC unit is

connected to kth PD of jth VLC unit
}
. (2)

Namely, S̃
(j)
k represents the set of LEDs on the ceiling that are

connected to the kth PD at the jth VLC unit. Similarly, S
(i,j)
k

is the set of LEDs at the ith VLC unit that are connected to the
kth PD at the jth VLC unit.

4Relative locations and orientations of PDs and LEDs on VLC units can
easily be calculated via simple linear operations (i.e., rotations and translations)
based on IMU orientation measurements.

The aim is to estimate the unknown locations, x1, . . . ,xNV
,

of the VLC units based on the RSS observations (measurements)

at the PDs. Let P̃
(j)
ℓ,k represent the RSS observation at the kth PD

of the jth VLC unit due to the transmission from the ℓth LED

on the ceiling. Similarly, let P
(i,j)
ℓ,k denote the RSS observation

at the kth PD of the jth VLC unit due to the ℓth LED at the

ith VLC unit. Based on the Lambertian formula [12], [50], P̃
(j)
ℓ,k

and P
(i,j)
ℓ,k can be expressed as follows5:

P̃
(j)
ℓ,k = α̃

(j)
ℓ,k(xj) + η̃

(j)
ℓ,k (3)

P
(i,j)
ℓ,k = α

(i,j)
ℓ,k (xj ,xi) + η

(i,j)
ℓ,k (4)

where

α̃
(j)
ℓ,k(xj) , −m̃ℓ + 1

2π
P̃T,ℓA

(j)
k

(
(d̃

(j)
ℓ,k)

T ñT,l

)m̃ℓ(d̃
(j)
ℓ,k)

Tn
(j)
R,k∥∥d̃(j)

ℓ,k

∥∥m̃ℓ+3

(5)

α
(i,j)
ℓ,k (xj ,xi) , −m

(i)
ℓ + 1

2π
P

(i)
T,ℓA

(j)
k

×
(
(d

(i,j)
ℓ,k )Tn

(i)
T,ℓ

)m(i)
ℓ (d

(i,j)
ℓ,k )Tn

(j)
R,k

∥∥d(i,j)
ℓ,k

∥∥m(i)
ℓ

+3
· (6)

for j ∈ {1, . . . , NV }, k ∈ {1, . . . ,Kj}, i ∈ {1, . . . , NV } \ j

and ℓ ∈ S
(i,j)
k , where d̃

(j)
ℓ,k , xj + aj,k − yℓ and d

(i,j)
ℓ,k ,

xj+aj,k−xi−bi,ℓ. In (5) and (6), m̃ℓ (m
(i)
ℓ ) is the Lambertian

order for the ℓth LED on the ceiling (at the ith VLC unit), A
(j)
k

is the area of the kth PD at the jth VLC unit, and P̃T,ℓ (P
(i)
T,ℓ)

is the transmit power of the ℓth LED on the ceiling (at the ith

VLC unit). In addition, the noise components, η̃
(j)
ℓ,k and η

(i,j)
ℓ,k , are

modeled by zero-mean Gaussian random variables each with a
variance of σ2

j,k. Considering the use of a certain multiplexing
scheme (e.g., time division multiplexing among the LEDs at
the same VLC unit and on the ceiling, and frequency division
multiplexing among the LEDs at different VLC units or on the

ceiling), η̃
(j)
ℓ,k and η

(i,j)
ℓ,k are assumed to be independent for all

different (j, k) pairs and for all ℓ and i.

B. ML Estimator and CRLB

Let x ,
[
xT
1 . . . xT

NV

]T
denote the vector of unknown

parameters (which has a size of 3NV × 1) and let P
represent a vector consisting of all the measurements in (3)
and (4). The elements of P can be expressed as follows:{{{

P̃
(j)
ℓ,k

}
ℓ∈S̃

(j)
k

}
k∈{1,...,Kj}

}
j∈{1,...,NV }

,
{{{

{P (i,j)
ℓ,k }

ℓ∈S
(i,j)
k

}
i∈{1,...,NV }\{j}

}
k∈{1,...,Kj}

}
j∈{1,...,NV }

.

Then, the conditional probability density function (PDF) of P
given x, i.e., the likelihood function, can be stated as

f(P |x) =
( NV∏

j=1

Kj∏

k=1

1

(
√
2π σj,k)N

(j,k)
tot

)
e
−

∑NV
j=1

∑Kj

k=1

hj,k(x)

2σ2
j,k

(7)
where N

(j,k)
tot represents the total number of LEDs that can

communicate with the kth PD at the jth VLC unit; that is,

N
(j,k)
tot , |S̃(j)

k |+∑NV

i=1,i 6=j |S
(i,j)
k |, and hj,k(x) is defined as

5Since the wavelength of the infrared/visible light carrier (on the order of
10−6 m) is much lower than dimensions of typical PDs (i.e., 10−2 m), multipath
reflections are averaged out by integration of the incident optical power over
the area of a PD [33], [36], [51]. Hence, in this study, only line-of-sight (LOS)
links are taken into account in the infrared/visible light channel model.



hj,k(x) ,
∑

ℓ∈S̃
(j)
k

(
P̃

(j)
ℓ,k − α̃

(j)
ℓ,k(xj)

)2

+

NV∑

i=1,i 6=j

∑

ℓ∈S
(i,j)
k

(
P

(i,j)
ℓ,k − α

(i,j)
ℓ,k (xj ,xi)

)2
. (8)

From (7), the maximum likelihood estimator (MLE) is obtained
as

x̂ML = argmin
x

NV∑

j=1

Kj∑

k=1

hj,k(x)

σ2
j,k

(9)

and the Fisher information matrix (FIM) [52] is given by

[J]t1,t2 = E

{
∂ log f(P |x)

∂xt1

∂ log f(P |x)
∂xt2

}
(10)

where xt1 (xt2 ) represents element t1 (t2) of vector x with
t1, t2 ∈ {1, 2, . . . , 3NV }. Then, the CRLB is stated as

CRLB = trace(J−1) ≤ E{
∥∥x̂− x

∥∥2} (11)

where x̂ represents an unbiased estimator of x. From (7) and
(8), the elements of the FIM in (10) can be calculated after some
manipulation as

[J]t1,t2 =

NV∑

j=1

Kj∑

k=1

1

σ2
j,k

(
∑

ℓ∈S̃
(j)
k

∂α̃
(j)
ℓ,k(xj)

∂xt1

∂α̃
(j)
ℓ,k(xj)

∂xt2

+

NV∑

i=1,i 6=j

∑

ℓ∈S
(i,j)
k

∂α
(i,j)
ℓ,k (xj ,xi)

∂xt1

∂α
(i,j)
ℓ,k (xj ,xi)

∂xt2

)
.

(12)
Based on (11) and (12), the CRLB for location estimation can

be obtained for cooperative VLP networks (please see Section S-
VIII in the supplementary material for the partial derivatives in
(12)). The obtained CRLB expression is generic for any three-
dimensional configuration and covers all possible cooperation
scenarios via the definitions of the connectivity sets (see (1)
and (2)). To the best of authors’ knowledge, such a CRLB
expression has not been available in the literature for cooperative
VLP networks.

Remark 1: From (12), it is noted that the first summation term
in the parentheses is related to the information from the LED
transmitters on the ceiling whereas the remaining terms are due
to the cooperation among the VLC units. In the noncooperative
case, the elements of the FIM are given by the expression in the
first line of (12).

Via (11) and (12), the effects of cooperation on the accu-
racy of VLP networks can be quantified, as investigated in
Section VI.

Remark 2: According to [53], the irradiance value of the
infrared emitters should be lower than 100W/m2 to eliminate
the cornea/lens risk in the range from 780 nm to 3000 nm. Based
on [36, Sec. II-C], the irradiance at a distance d (m) and an
irradiation angle φ is given by

I(d, φ) = PT

m+ 1

2πd2
cosm(φ) (W/m2) (13)

where PT is the optical power of the LED (W ) and m is the
Lambertian order. Setting m = 1 and φ = 0 (i.e., directly
looking at the infrared source, which is the worst case from
an eye-safety perspective), the value in (13) becomes

I(d, φ = 0◦) =
PT

πd2
(W/m2) . (14)

Considering the limit value of 100W/m2, for an eye looking
directly at the infrared source at a distance of d = 0.2m, the
optical power of the infrared LED should satisfy

PT ≤ 12.56 W (15)

so that the LED does not pose any risks to the cornea/lens of
the eye. As observed from the numerical results in Section VI,
significant cooperation benefits can be achieved with 1W optical
power for the LEDs on the VLC units (i.e., the LEDs employed
for cooperation). Therefore, the optical power values for which
the proposed system can enjoy the advantages of cooperation are
well below the eye-safety limits of the cornea/lens presented in
[53]. Regarding the thermal retinal risks and blue light hazard,
the irradiance limit is given by 3.77W/sr/(0.2)2 = 94.25W/m2

[53], which yields the condition PT ≤ 11.84 W for d = 0.2m.
Similar to the case of the cornea/lens risk, the optical power
values in typical indoor scenarios considered in this paper
satisfy the eye-safety limits related to the thermal retinal risks
and blue light hazard.

III. COOPERATIVE LOCALIZATION AS A QUASICONVEX

FEASIBILITY PROBLEM

In this section, the problem of cooperative localization in VLP
networks is investigated in the framework of convex/quasiconvex
feasibility. First, the feasibility approach to the localization
problem is motivated, and the problem formulation is presented.
Then, the convexity analysis is carried out for the resulting
constraint sets.

A. Motivation

For the localization of the VLC units, the MLE in (9) has
very high computational complexity as it requires a search
over a 3NV dimensional space. In addition, the formulation in
(9) presents a nonconvex optimization problem; hence, convex
optimization tools cannot be employed to obtain the (global)
optimal solution of (9). As the number of VLC units increases,
centralized approaches obtained as solutions to a given op-
timization problem (such as (9)) may become computation-
ally prohibitive. Besides scalability issues, centralized methods
also require all measurements gathered at the VLC units to
be relayed to a central unit for joint processing, which may
lead to communication bottlenecks. Therefore, low-complexity
algorithms amenable to distributed implementation are needed
to efficiently solve the cooperative localization problem in VLP
networks. To that aim, the localization problem is cast as a
feasibility problem with the purpose of finding a point in a finite
dimensional Euclidean space that lies within the intersection
of some constraint sets. Feasibility-seeking methods enjoy the
advantage of not requiring an objective function, thereby elim-
inating the concerns for nonconvexity or nondifferentiability of
the objective function [54]. Hence, modeling the localization
problem as a feasibility problem (i) alleviates the computational
burden of minimizing a (possibly nonconvex) cost function in
the highly unfavorable centralized setting and (ii) facilitates
the use of efficient distributed algorithms involving parallel or
sequential processing at individual VLC units.

B. Problem Formulation

Considering the Lambertian formula in (3)–(6), an RSS
measurement at a PD can be expressed as

P̂r = Pr + η (16)

where Pr is the true observation (as in (5) or (6)) and η is the
measurement noise. Suppose that the RSS measurement errors



are negative, which yields P̂r ≤ Pr.6 Then, based on (5) and
(6), the following inequality is obtained:

g(x;y,nT ,nR,m, γ) ≤ 0 (17)

where g : Rd → R is the Lambertian function with respect to
the unknown PD location x, defined as

g(x;y,nT ,nR,m, γ) , γ −
[
(x− y)TnT

]m
(y − x)TnR∥∥x− y
∥∥m+3 ,

(18)

y, nT , nR, and m are known, d is the dimension of the visible

light localization network, and γ is given by γ = P̂r

Pt

2π
(m+1)A .

The field-of-views (FOVs) of the LED transmitters and the PDs
are taken as 90◦, which implies that (x−y)TnT ≥ 0 and (y−
x)TnR ≥ 0. Under the assumption of negative measurement
errors, the feasible set in which the true PD location resides is
given by the following lower level set of g(x):

L =
{
x ∈ R

d
∣∣∣ g(x;y,nT ,nR,m, γ) ≤ 0

}
(19)

which will hereafter be referred to as the Lambertian set. In RF
wireless localization networks, such feasible sets are generally
obtained as balls [27], [29], hyperplanes [56], or ellipsoids [57],
all of which lead to closed-form expressions for orthogonal
projection. For k ∈ {1, 2, . . . ,Kj} and j ∈ {1, 2, . . . , NV }, the
Lambertian set corresponding to the kth PD of the jth VLC unit
based on the signal received from the ℓth LED on the ceiling

for ℓ ∈ S̃
(j)
k is defined as follows:

N (j)
ℓ,k =

{
z ∈ R

d
∣∣∣ g̃(j)ℓ,k(z) ≤ 0

}
(20)

where g̃
(j)
ℓ,k(z) is given by

g̃
(j)
ℓ,k(z) , g

(
z;yℓ − aj,k, ñT,ℓ,n

(j)
R,k, m̃ℓ, γ̃

(j)
ℓ,k

)
(21)

and γ̃
(j)
ℓ,k is calculated from (3). Similarly, the Lambertian set

corresponding to the kth PD of the jth VLC unit based on
the signal received from the ℓth LED of the ith VLC unit for

ℓ ∈ S
(i,j)
k is defined as

C(i,j)
ℓ,k =

{
z ∈ R

d
∣∣∣ g(i,j)ℓ,k (z,xi) ≤ 0

}
(22)

where g
(i,j)
ℓ,k (z,xi) is given by

g
(i,j)
ℓ,k (z,xi) , g

(
z;xi + bi,ℓ − aj,k,n

(i)
T,ℓ,n

(j)
R,k,m

(i)
ℓ , γ

(i,j)
ℓ,k

)

(23)

and γ
(i,j)
ℓ,k is calculated from (4). The sets defined as in (20)

represent noncooperative localization as they are constructed
from the RSS measurements corresponding to the LEDs on
the ceiling, whereas the sets in (22) are based on the signals
from the LEDs of the other VLC units and represent the
cooperation among the VLC units. Assuming negatively biased
RSS measurements, the problem of cooperative localization in
a visible light network reduces to that of finding a point in
the intersection of sets as defined in (20) and (22) for each
VLC unit. If the Lambertian function in (18) is assumed to be

6In order to satisfy the negative error assumption, a constant value can
always be subtracted from the actual RSS measurement [55]. Decreasing the
value of an RSS measurement is equivalent to enlarging the corresponding
feasible set. Although this assumption does not have a physical justification,
it facilitates theoretical derivations and feasibility modeling of the localization
problem. It will be justified via simulations in Section VI-B that the proposed
feasibility-seeking algorithms will converge for realistic noise models (e.g.,
Gaussian), as well.

quasiconvex7, then the quasiconvex feasibility problem (QFP)
can be formulated as follows [37], [58]:

Problem 1: Let x , (x1, . . . ,xNV
). The feasibility problem

for cooperative localization of VLC units is given by8

find x ∈ R
dNV

subject to xj ∈ Λj ∩Υj , j = 1, . . . , NV (24)

where

Λj =

Kj⋂

k=1

⋂

ℓ∈S̃
(j)
k

N (j)
ℓ,k (25)

Υj =

Kj⋂

k=1

NV⋂

i=1

⋂

ℓ∈S
(i,j)
k

C(i,j)
ℓ,k . (26)

C. Convexity Analysis of Lambertian Sets

The Lambertian sets as defined in (19) are not convex in
general. The following lemma presents the conditions under
which the Lambertian sets become convex.

Lemma 1: Consider the α-sublevel set

Bα =
{
x ∈ Ω

∣∣∣ gǫ(x) ≤ α
}

(27)

of gǫ(x), which is given by

gǫ(x) = γ − (y − x)TnR∥∥x− y
∥∥k + ǫ

(28)

where ǫ is a small positive constant to avoid non-differentiability
and non-continuity of gǫ(·) at y, as in [59, Eq. 7], k ≥ 1 and
γ > 0 are real numbers, and Ω ⊂ R

d is defined as

Ω =
{
x ∈ R

d
∣∣∣ (y − x)TnR ≥ 0

}
. (29)

Then, Bα is convex for each α ∈ R.

Proof : Please see Section S-I in the supplementary material.
Remark 3: Lemma 1 characterizes the type of Lambertian

functions whose sublevel sets are convex. Since a function whose
all sublevel sets are convex is quasiconvex [60], Lambertian
functions of the form (28) are quasiconvex over the halfspace
Ω in (29). It can be noted that Ω consists of those VLC unit
locations which are able to obtain measurements from an LED
located at y due to the receiver FOV limit of 90◦.

D. Convexification of Lambertian Sets

In this part, we utilize Lemma 1 to investigate the following
two cases in which the Lambertian functions can be transformed
into the form of (28) and Problem 1 becomes a QFP.

7The conditions under which the Lambertian function is quasiconvex are
investigated in Section III-C.

8It may be more convenient to regard the problem in (24) as an implicit

quasiconvex feasibility problem (IQFP) since the Lambertian sets C
(i,j)
ℓ,k

depend

on the locations of the VLC units, which are not known a priori [29]. It should
be emphasized that the feasibility problem posed in Problem 1 is different from
those in RF-based localization systems (e.g., [28], [29]) since the constraint
sets and the associated quasiconvex functions have distinct characteristics as
compared to convex functions (e.g., distance to a ball) encountered in RF-based
systems.



1) Case 1: Convexification via Majorization: We propose
to approximate the Lambertian function g(x) in (18) by a
quasiconvex minorant g̃(x) such that g̃(x) ≤ g(x) for x ∈ Ω
and L ⊆ L̃, where L̃ ,

{
x ∈ Ω

∣∣ g̃(x) ≤ 0
}

represents a

majorization of the original set L ,
{
x ∈ Ω

∣∣ g(x) ≤ 0
}

.
Assuming x ∈ Ω, we have

g(x) = γ −
[
(x− y)TnT

]m
(y − x)TnR∥∥x− y
∥∥m+3 (30)

≥ γ −
∥∥x− y

∥∥m∥∥nT

∥∥m(y − x)TnR∥∥x− y
∥∥m+3 (31)

= γ − (y − x)TnR∥∥x− y
∥∥3 , g̃(x) (32)

where (31) is due to the Cauchy-Schwarz inequality and x ∈ Ω,
and (32) follows from the unit norm property of the orientation
vector. Then, including ǫ in the denominator, we construct the
Lambertian sets as (hereafter called expanded Lambertian sets)

L =
{
x ∈ Ω

∣∣∣ g̃ǫ(x) ≤ 0
}

(33)

with

g̃ǫ(x) = γ − (y − x)TnR∥∥x− y
∥∥3 + ǫ

(34)

and Ω being as in (29). According to Lemma 1, L in (33) is
convex, g̃ǫ(x) in (34) is quasiconvex over Ω and the resulting
problem of determining a point inside the intersection of such
sets turns into a QFP, which can be studied through iterative
projection algorithms [37], [58].

2) Case 2: Known VLC Height, Perpendicular LED: In this
case, as in [10], [12], [13], [61], it is assumed that the LED
transmitters on the ceiling have perpendicular orientations, i.e.,

ñT,j = [0 0 − 1]
T

for each j ∈ {1, 2, . . . , NL}, and the
height of each VLC unit is known. This assumption is valid
for some practical scenarios, an example of which is a VLP
network where the LEDs on the ceiling are pointing downwards
and the VLC units are attached to robots that move over a
two-dimensional plane [7, Fig. 3]. Assuming that the height
of the LED transmitters relative to the VLC units is h and
nT = [0 0 − 1]

T
, the Lambertian function in (18) can be

rewritten as follows:

g(x;y,nT ,nR,m, γ) = γ − hm(y − x)TnR∥∥x− y
∥∥m+3 · (35)

Then, the Lambertian set corresponding to the function in (35)
by introducing ǫ in the denominator is obtained as

L =
{
x ∈ Ω

∣∣∣ g̃ǫ(x) ≤ 0
}

(36)

with

g̃ǫ(x) = γ̃ − (y − x)TnR∥∥x− y
∥∥m+3

+ ǫ
(37)

where Ω is given by (29) and γ̃ = γ/hm. Note that the Lam-
bertian set in (36) is effectively defined on R

2 since the height
of the VLC unit is already known. According to Lemma 1,
the set defined in (36) is convex. Therefore, in this case, the
noncooperative sets as defined in (20) are originally convex.

Based on the discussion above, it is concluded that in the
case of a known VLC height and perpendicular LED transmitter
orientations, the expanded Lambertian sets in (33) defined on R

2

must be used for the measurements among the VLC units (i.e.,
cooperative measurements) in order to ensure that Problem 1

is a QFP. For the general case in which the LED orientations
are arbitrary and/or the heights of the VLC units are unknown,
all the noncooperative and cooperative Lambertian sets must be
replaced by the corresponding expanded versions in (33).

A noncooperative VLP network is illustrated in Fig. 2(a),
where there exist four LED transmitters on the ceiling and
two VLC units. In the network, it is assumed that the heights
of the VLC units are known and the LEDs on the ceiling
have perpendicular orientations so that Case 2 type convex
Lambertian sets can be utilized for the measurements between
the LEDs on the ceiling and the VLC units. Fig. 2(b) shows
the cooperative version of the VLP network with cooperative
Lambertian sets including both the nonexpanded (original) sets
as in (22) and Case 1 type expanded sets as in (33). It is noted
from Fig. 2(b) that incorporating cooperative Lambertian sets
into the localization geometry can significantly reduce the region
of intersection of the Lambertian sets.

IV. GRADIENT PROJECTIONS ALGORITHMS

In this section, we design iterative subgradient projections
based algorithms to solve Problem 1. The idea of using sub-
gradient projections is to approach a convex set defined as a
lower contour set of a convex/quasiconvex function by moving
in the direction that decreases the value of that function at each
iteration, i.e., in the opposite direction of the subgradient of the
function at the current iterate [44], [62]. First, the definition of
the gradient projector is presented as follows:

Definition 1: The gradient projection operator Gλ
f : Rd →

R
d onto the zero-sublevel set of a continuously differentiable

function f : Rd → R is given by [63]

Gλ
f : x 7→




x− λ f(x)∥∥∇f(x)

∥∥2∇f(x), if f(x) > 0

x, if f(x) ≤ 0
(38)

where λ is the relaxation parameter and ∇ is the gradient
operator. The gradient projector can also be expressed as

Gλ
f (x) = x− λ

f+(x)
∥∥∇f(x)

∥∥2∇f(x) (39)

with f+(x) denoting the positive part, i.e., f+(x) =
max{0, f(x)}. In the sequel, it is assumed that Gλ

f (x) = x
when x is outside the region where f is quasiconvex.

A. Projection Onto Intersection of Halfspaces

Since the functions of the form (28) are continuously differ-
entiable and quasiconvex on the halfspace Ω in (29), a special
case of subgradient projections, namely, gradient projections,
can be utilized to solve Problem 1, under the constraint that
iterates must be inside Ω to guarantee quasiconvexity. Hence,
at the start of each iteration of gradient projections, projections
onto the intersection of halfspaces of the form Ω in (29) can
be performed to keep the iterates inside the quasiconvex region.
The procedure for projection onto the intersection of halfspaces

Γj =

Kj⋂

k=1

⋂

ℓ∈S̃
(j)
k

Ω̃
(j)
ℓ,k (40)

corresponding to the jth VLC unit for j ∈ {1, 2, . . . , NV }, with
the halfspaces given by

Ω̃
(j)
ℓ,k ,

{
x ∈ R

d
∣∣∣ (yℓ − aj,k − x)Tn

(j)
R,k ≥ 0

}
, (41)
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Fig. 2. (a) A noncooperative VLP network consisting of four LED transmitters
on ceiling and two VLC units. VLC-1 is connected to LED-1 and LED-2, and
VLC-2 is connected to LED-3 and LED-4. Green and blue regions represent
the noncooperative Lambertian sets for VLC-1 and VLC-2, respectively. (b)
Cooperative version of the VLP network in Fig. 2(a), shown by zooming
onto VLC units. Case 1 type expanded cooperative Lambertian sets and their
nonexpanded (original) counterparts are illustrated along with noncooperative
Lambertian sets. Cooperation helps shrink the intersection region of Lambertian
sets for VLC units.

is provided in Algorithm 19. In order to find a point inside
the intersection of halfspaces, the method of alternating (cyclic)
projections is employed in Algorithm 1, where the current iterate
is projected onto each halfspace in a cyclic manner. Convergence
properties of this method are well studied in the literature [64],
[65]. Γj is guaranteed to be nonempty since it represents the
set of possible locations for the jth VLC unit at which the
RSS measurements from the connected LEDs on the ceiling
can be acquired. However, the intersection of the halfspaces
corresponding to the LEDs of the other VLC units that are

9PC(x) denotes the orthogonal projection operator, i.e., PC(x) =
argmin

w∈C

∥∥w − x
∥∥.

connected to the jth VLC unit may be empty due to the VLC
unit locations being unknown and variable during iterations.

Algorithm 1 Projection Onto Intersection of Halfspaces Γj

function PΓj
(xj )

Initialization: x
(0)
j = xj

Iterative Step: Given the nth iterate x
(n)
j ∈ R

d

for k = 1, . . . ,Kj do

for ℓ ∈ S̃
(j)
k

do

x
(n)
j = P

Ω̃
(j)
ℓ,k

(x
(n)
j ) (42)

end for
end for
Set x

(n+1)
j = x

(n)
j

Stopping Criterion:
∥∥x(n+1)

j − x
(n)
j

∥∥ < δ for some δ > 0.

end function

B. Step Size Selection

An important phase of the proposed projection algorithms is
determining the relaxation parameters (i.e., step sizes) associated
with the gradient projector. The step size selection procedure
exploits the well-known Armijo rule, which is an inexact line
search method used extensively for gradient descent methods in
the literature [66], [67], [68, Section 1.2]. Algorithm 2 provides
an Armijo-like procedure for step size selection given a set
of Lambertian functions, the initial step size value λ, a fixed
constant β ∈ (0, 1) specifying the degree of decline in the value
of the function, step size shrinkage factor ξ ∈ (0, 1), and the
current point x. The guarantee of existence of a step size as
described in Algorithm 2 can be shown similarly to [69, Lemma
4].

Algorithm 2 Armijo Rule for Step Size Selection

function J ({fi}Mi=1, λ, β, ξ,x)

Output: New step size λ̃
Set the step size as

λ̃ = λξm̃ (43)
where

m̃ = min{m ∈ Z≥0 |

fi(G
λξm

fi
(x)) ≤ fi(x)(1− βλξm), ∀i ∈ {1, 2, . . . ,M}} (44)

end function

C. Iterative Projection Based Algorithms

In this work, two classes of gradient projections algorithms,
namely, sequential (i.e., cyclic) [62] and simultaneous (i.e.,
parallel) [70] projections, are considered for the QFP described
in Problem 1. The proposed algorithm for cyclic projections,
namely, the cooperative cyclic gradient projections (CCGP)
algorithm, for cooperative localization of VLC units is provided
in Algorithm 3. In the proposed cyclic projections, the current
iterate, which signifies the location of the given VLC unit, is
first projected onto the intersection of halfspaces correspond-
ing to the LEDs on the ceiling via Algorithm 1. Then, the
resulting point is projected onto the noncooperative Lambertian
set that leads to the highest function value, i.e., the most
violated constraint set [37]. Similarly, projection onto the most
violated constraint set among the cooperative Lambertian sets is
performed and the projections obtained by noncooperative and
cooperative sets are weighted to obtain the next iterate.

The cooperative simultaneous gradient projections (CSGP)
algorithm is proposed as detailed in Algorithm 4. Simultaneous
projections are based on projecting the current point onto each
noncooperative and cooperative Lambertian set separately and
then averaging all the resulting points to obtain the next iterate.



At each iteration, the parallel projection stage is preceded by
projection onto the intersection of halfspaces, which aims to
ensure that the current iterate resides in the region where all the
Lambertian functions corresponding to the fixed anchors (i.e.,
the LEDs on the ceiling) are quasiconvex. It should be noted that
for both cyclic and simultaneous projections, the cooperative
Lambertian sets are determined by the latest estimates of the
VLC unit locations [29], which are updated in the ascending
order of their indices. In addition, the step sizes are updated
using the Armijo rule in Algorithm 2.

Remark 4: Both Algorithm 3 and Algorithm 4 can be
implemented in a distributed manner by employing a gossip-like
procedure among the VLC units [71]. After refining its location
estimate via projection methods, each VLC unit broadcasts the
resulting updated location to other VLC units to which it is
connected. In order to save computation time, a synchronous
counterpart of this asynchronous/sequential algorithm can be
devised, where VLC units work in parallel to update their loca-
tions based on the most recent broadcast information. Hence, the
synchronous/parallel implementation trades off the localization
accuracy for faster convergence to the desired solution.

Algorithm 3 Cooperative Cyclic Gradient Projections (CCGP)

Initialization: Choose an arbitrary initial point
(
x
(0)
1 , . . . ,x

(0)
NV

)
∈ R

dNV .

Iterative Step: Given the nth iterate
(
x
(n)
1 , . . . ,x

(n)
NV

)
∈ R

dNV

for j = 1, . . . , NV do
Projection Onto Intersection of Halfspaces Γj by Algorithm 1:

x̃
(n)
j = PΓj

(x
(n)
j ) (45)

Most Violated Constraint Control for Noncooperative Projections:

(k̂nc, ℓ̂nc) = argmax
k,ℓ

g̃
(j)
ℓ,k

(
x̃
(n)
j

)
(46)

Most Violated Constraint Control for Cooperative Projections:

(k̂c, îc, ℓ̂c) = argmax
k,i,ℓ

G
(n)
j (47)

where G
(n)
j ,

{
g
(i,j)
ℓ,k

(x̃
(n)
j ,x

(n̂)
i )

∣∣∣ x̃(n)
j ∈ Ω

(i,j)
ℓ,k

}
(48)

Ω
(i,j)
ℓ,k

,

{
x ∈ R

d
∣∣∣ (x(n̂)

i + bi,ℓ − aj,k − x)Tn
(j)
R,k

≥ 0
}

(49)

with n̂ = n for i > j, n̂ = n+ 1 for i < j.
Averaging:

x
(n+1)
j = ϑncG

λ
(n)
j,nc

g̃
(j)

ℓ̂nc,k̂nc

(x̃
(n)
j ) + ϑcG

λ
(n)
j,c

g
(îc,j)

ℓ̂c,k̂c
(·,x

(n̂)
i

)
(x̃

(n)
j ) (50)

where ϑnc + ϑc = 1 and ϑnc ≥ 0, ϑc ≥ 0.
end for
Stopping Criterion:

∑NV
j=1

∥∥x(n+1)
j − x

(n)
j

∥∥2 < δ for some δ > 0.

Relaxation Parameters: Initialize λ
(0)
j,nc = λ

(0)
j,c = λ0 and update using

Algorithm 2 as

λ
(n)
j,nc = J (g̃

(j)

ℓ̂nc,k̂nc
, λ

(n−1)
j,nc , β, ξ, x̃

(n)
j ) (51)

λ
(n)
j,c =




J (g

(̂ic,j)

ℓ̂c,k̂c
(·,x

(n̂)
i ), λ

(n−1)
j,c , β, ξ, x̃

(n)
j ), if G

(n)
j 6= ∅

λ
(n−1)
j,c otherwise

(52)

for j ∈ {1, 2, . . . , NV }.

D. Complexity Analysis

In this part, we provide the complexity analysis of Algo-
rithm 3, Algorithm 4, and the MLE in (9).

1) Complexity Analysis for Algorithm 3: We first analyze the
complexity of Algorithm 3 for the jth VLC unit at each iteration.
Each sub-step in the iterative step of Algorithm 3 is investigated
as follows:

Assume that Algorithm 1 requires O(N1) iterations for
convergence. Then, the computational complexity of (45) is

Algorithm 4 Cooperative Simultaneous Gradient Projections
(CSGP)

Initialization: Choose an arbitrary initial point
(
x
(0)
1 , . . . ,x

(0)
NV

)
∈ R

dNV .

Iterative Step: Given the nth iterate
(
x
(n)
1 , . . . ,x

(n)
NV

)
∈ R

dNV

for j = 1, . . . , NV do
Projection Onto Intersection of Halfspaces Γj by Algorithm 1:

x̃
(n)
j = PΓj

(
x
(n)
j

)
(53)

Parallel Projection Onto Lambertian Sets:

x
(n+1)
j =

Kj∑

k=1

[
∑

ℓ∈S̃
(j)
k

κ̃
(j)
ℓ,k

G
λ
(n)
j

g̃
(j)
ℓ,k

(x̃
(n)
j )

+

NV∑

i=1,i 6=j

∑

ℓ∈S
(i,j)
k

κ
(i,j)
ℓ,k

G
λ
(n)
j

g
(i,j)
ℓ,k

(·,x
(n̂)
i

)
(x̃

(n)
j )

]
(54)

where n̂ = n for i > j, n̂ = n+ 1 for i < j and the weights satisfy

Kj∑

k=1




∑

ℓ∈S̃
(j)
k

κ̃
(j)
ℓ,k

+

NV∑

i=1,i 6=j

∑

ℓ∈S
(i,j)
k

κ
(i,j)
ℓ,k


 = 1 (55)

and κ̃
(j)
ℓ,k

≥ 0, κ
(i,j)
ℓ,k

≥ 0, ∀i, ℓ, k.

end for
Stopping Criterion:

∑NV
j=1

∥∥x(n+1)
j − x

(n)
j

∥∥2 < δ for some δ > 0.

Relaxation Parameters: Initialize λ
(0)
j = λ0 and update using Algorithm 2

as
λ
(n)
j = J (F̃j ∪ S

(n)
j , λ

(n−1)
j , β, ξ, x̃

(n)
j ) (56)

for j ∈ {1, 2, . . . , NV }, where F̃j and Fj are given by (S10) and (S11) in
the supplementary material, respectively, and

S
(n)
j ,

{
f ∈ Fj | f(x̃

(n)
j ) ≤ γ

(i,j)
ℓ,k

}
. (57)

given by O
(
N1

∑Kj

k=1|S̃
(j)
k |
)

. Since the number of functions

g̃
(j)
ℓ,k

(
·
)

in (46) is equal to
∑Kj

k=1|S̃
(j)
k |, evaluating (46)

has the complexity O
(∑Kj

k=1|S̃
(j)
k |
)

. Similar to the case of

noncooperative projections in (46), evaluating (47) requires a

computational complexity of O
(∑Kj

k=1

∑NV

i=1,i 6=j |S
(i,j)
k |

)
. To

analyze (51) and (52), assume that Algorithm 2 requires O(N2)
trials for determining a non-negative integer m. At each trial,
(44) requires O(M) operations, where M is the number of
functions at the input of Algorithm 2. Then, the computational
complexity of step size selection in (51) and (52) is computed

as O
(
N2

∑Kj

k=1

[
|S̃(j)

k |+∑NV

i=1,i 6=j |S
(i,j)
k |

])
. Since the evalu-

ation of the gradient projection operator in (39) requires O(1)
operations, the averaging step in (50) has the complexity of
O(1). Therefore, the overall complexity for the jth VLC unit is

given by O
(
∑Kj

k=1

[
(N1+N2)|S̃(j)

k |+N2

∑NV

i=1,i 6=j |S
(i,j)
k |

])
.

Assuming that the number of iterations for the convergence of
Algorithm 3 is on the order of O(N3), the overall complexity
of Algorithm 3 can be expressed as

O
(
N3

NV∑

j=1

Kj∑

k=1

[
(N1 +N2)|S̃(j)

k |︸ ︷︷ ︸
noncooperative

+N2

NV∑

i=1,i 6=j

|S(i,j)
k |

︸ ︷︷ ︸
cooperative

])
.

(58)



where we can observe the contribution of the terms correspond-
ing to noncooperative and cooperative projections separately.

2) Complexity Analysis for Algorithm 4: Following a similar
approach to that in Algorithm 3, the complexity of Algorithm 4
can be obtained as

O
(
N3

NV∑

j=1

Kj∑

k=1

[
(N1 +N2)|S̃(j)

k |︸ ︷︷ ︸
noncooperative

+N2

NV∑

i=1,i 6=j

|S(i,j)
k |

︸ ︷︷ ︸
cooperative

])
.

(59)

3) Complexity Analysis for MLE in (9): Due to the noncon-
vexity of the MLE, we evaluate the complexity by assuming the
use of the exhaustive search method over a bounded region. Sup-
pose that each VLC unit can take Nsmp different values in each
of the three axes. Then, the number of possible locations for NV

VLC units is on the order of O(Nsmp
3NV ). At each search lo-

cation, we need O
(
∑NV

j=1

∑Kj

k=1

[
|S̃(j)

k |+∑NV

i=1,i 6=j |S
(i,j)
k |

])

operations for evaluating the cost function in (9). Hence, the
overall complexity of the MLE can be computed as

O
(
Nsmp

3NV

NV∑

j=1

Kj∑

k=1

[
|S̃(j)

k |︸ ︷︷ ︸
noncooperative

+

NV∑

i=1,i 6=j

|S(i,j)
k |

︸ ︷︷ ︸
cooperative

])
.

(60)

As observed from (58) and (59), the complexity of the
proposed algorithms depends on the number of iterations and the
size of the connectivity sets. On the other hand, the complexity
of the MLE, expressed in (60), is exponential in the number
of VLC units, which limits its scalability, as discussed in
Section III-A. Hence, the proposed projection based algorithms
provide low-complexity alternatives to the MLE in cooperative
VLP scenarios.

V. CONVERGENCE ANALYSIS

In this section, the convergence analysis of the proposed
algorithms in Algorithm 3 and Algorithm 4 is performed in
the consistent case. To that aim, it is assumed that for each
j ∈ {1, 2, . . . , NV }, the intersection of the noncooperative
and cooperative Lambertian sets in (24) is nonempty; that is,
Λj ∩ Υj 6= ∅, where Λj and Υj are given by (25) and (26),
respectively. In the following, we present the definitions of
quasiconvexity and quasi-Fejér convergence, which will be used
for the convergence proofs.

Definition 2 (Quasiconvexity [72]): A differentiable function
f : Rn → R is quasiconvex if and only if f(x) ≤ f(y) implies
∇f(y)T (x− y) ≤ 0 ∀x,y ∈ R

n.
Definition 3 (Quasi-Fejér Convergence [38]): A sequence

{yk} ⊂ R
n is quasi-Fejér convergent to a nonempty set V if

for each y ∈ V , there exists a non-negative integer M and a
sequence {ǫk} ⊂ R≥0 such that

∑∞
k=0 ǫk < ∞ and

∥∥yk+1 − y
∥∥2 ≤

∥∥yk − y
∥∥2 + ǫk, ∀k ≥ M. (61)

For the convergence analysis, we make the following assump-
tions:

• A1. Considering any xj ∈ Λj ∩ Υj and x̂j /∈ Λj ∩ Υj ,

the inequality g
(i,j)
ℓ,k (xj ,x

(n)
i ) ≤ g

(i,j)
ℓ,k (x̂j ,x

(n)
i ) holds for

every iteration index n and ∀ℓ, k, i, j.
• A2. The sequence of path lengths taken by the iterations

of the proposed algorithms are square summable, i.e.,

∑∞
n=0

(∥∥x̃(n)
j − x

(n)
j

∥∥2 +
∥∥x(n+1)

j − x̃
(n)
j

∥∥2) < ∞ for

j ∈ {1, 2, . . . , NV }.

Assumption A1 is valid especially when the cooperative al-
gorithms can be initialized at some x = (x1, . . . ,xNV

) with
xj ∈ Λj , ∀j ∈ {1, 2, . . . , NV }. Assumption A1 implies that
any point inside the intersection of the noncooperative and
cooperative constraint sets is closer, in terms of the function
value (whose zero-sublevel sets are the constraint sets), to the co-
operative constraint sets than any point outside the intersection.
When the iterations in the cooperative case start from coarse
location estimates obtained in the absence of cooperation, the
corresponding cooperative sets, which are dynamically changing
at each iteration, may involve the set Λj ∩Υj , but exclude the

points outside Λj ∩ Υj , which yields g
(i,j)
ℓ,k (xj ,x

(n)
i ) ≤ 0 <

g
(i,j)
ℓ,k (x̂j ,x

(n)
i ). On the other hand, Assumption A2 represents a

realistic scenario through the Armijo rule in (43) and (44), which
ensures a certain level of decline in the Lambertian functions at
each iteration and generates a nonincreasing sequence of step
sizes.

A. Quasi-Fejér Convergence

In the convergence analysis, the proof of convergence is
based on the concept of quasi-Fejér convergent sequences, which
possess nice properties that facilitate further investigation, as
will be presented in Lemma 2. The following proposition estab-
lishes the quasi-Fejér convergence of the sequences generated
by Algorithm 4 to the set Λj ∩Υj .

Proposition 1: Assume A1 and A2 hold. Let {x(n)}∞n=0

be any sequence generated by Algorithm 4, where x(n) ,(
x
(n)
1 , . . . ,x

(n)
NV

)
. Then, for each j ∈ {1, 2, . . . , NV }, the

sequence {x(n)
j }∞n=0 is quasi-Fejér convergent to the set Λj∩Υj .

Proof : Please see Section S-II in the supplementary material.
The following proposition states the quasi-Fejér convergence

of the sequences generated by Algorithm 3.
Proposition 2: Assume A1 and A2 hold. Let {x(n)}∞n=0

be any sequence generated by Algorithm 3, where x(n) ,(
x
(n)
1 , . . . ,x

(n)
NV

)
. Then, for each j ∈ {1, 2, . . . , NV }, the

sequence {x(n)
j }∞n=0 is quasi-Fejér convergent to the set Λj∩Υj .

Proof : Please see Section S-III in the supplementary material.
As the quasi-Fejér convergence of the sequences generated by

the proposed algorithms is stated, the following lemma presents
the properties of quasi-Fejér convergent sequences.

Lemma 2 (Theorem 4.1 in [38]): If a sequence {yk} is quasi-
Fejér convergent to a nonempty set V , the following conditions
hold:

1) {yk} is bounded.
2) If V contains an accumulation point of {yk}, then {yk}

converges to a point y ∈ V .

B. Limiting Behavior of Step Size Sequences

In this part, we investigate the limiting behavior of the step
size sequences, which are updated according to the procedure
in Algorithm 2. The following two lemmas prove that the step
size sequences generated by Algorithm 4 and Algorithm 3 have
positive limits.

Lemma 3: Any step size sequence λ
(n)
j generated by Algo-

rithm 4 has a positive limit, i.e.,

lim
n→∞

λ
(n)
j > 0. (62)

Proof : Please see Section S-IV in the supplementary material.



Lemma 4: Any step size sequences λ
(n)
j,nc and λ

(n)
j,c generated

by Algorithm 3 have positive limits, i.e.,

lim
n→∞

λ
(n)
j,nc > 0 and lim

n→∞
λ
(n)
j,c > 0. (63)

Proof : Please see Section S-V in the supplementary material.
Lemma 3 and Lemma 4 will prove to be useful for deriving

the fundamental convergence properties of the proposed algo-
rithms, as investigated next.

C. Main Convergence Results

In this part, we present the main convergence results for
the proposed algorithms, i.e., convergence to a solution of
Problem 1.

Proposition 3: Let {x(n)}∞n=0 be any sequence generated by

Algorithm 4, where x(n) ,

(
x
(n)
1 , . . . ,x

(n)
NV

)
. Then, for each

j ∈ {1, 2, . . . , NV }, the sequence {x(n)
j }∞n=0 converges to a

point xj ∈ Λj ∩Υj , i.e., a solution of Problem 1.
Proof: Please see Section S-VI in the supplementary ma-

terial.
Proposition 4: Let {x(n)}∞n=0 be any sequence generated by

Algorithm 3, where x(n) ,

(
x
(n)
1 , . . . ,x

(n)
NV

)
. Then, for each

j ∈ {1, 2, . . . , NV }, the sequence {x(n)
j }∞n=0 converges to a

point xj ∈ Λj ∩Υj , i.e., a solution of Problem 1.
Proof: Please see Section S-VII in the supplementary

material.

VI. NUMERICAL RESULTS

In this section, numerical examples are provided to investi-
gate the theoretical bounds on cooperative localization in VLP
networks and to evaluate the performance of the proposed
projection-based algorithms. The VLP network parameters are
determined in a similar manner to the work in [12] and [13].
The area of each PD is set to 1 cm2 and the Lambertian order
of all the LEDs is selected as m = 1. In addition, the noise
variances are calculated using [73, Eq. 6]. The parameters for
noise variance calculation are set to be the same as those used
in [73] (see Table I in [73]).

The VLP network considered in the simulations is illus-
trated in Fig. 3. A room of size 10m×10m×5m is considered,
where there exist NL = 4 LED transmitters on the ceiling

which are located at y1 = [1 1 5]
T

m, y2 = [1 9 5]
T

m,

y3 = [9 1 5]
T

m, and y4 = [9 9 5]
T

m. The LEDs on the

ceiling have perpendicular orientations, i.e., ñT,j = [0 0 − 1]
T

for j ∈ {1, 2, 3, 4}. In addition, there exist NV = 2 VLC

units whose locations are given by x1 = [2 5 1]
T

m and

x2 = [6 6 1.5]
T

m. Each VLC unit consists of two PDs and
one LED, with offsets with respect to the center of the VLC

unit being set to aj,1 = [0 − 0.1 0]
T

m, aj,2 = [0 0.1 0]
T

m,

and bj,1 = [0.1 0 0]
T

m for j = 1, 2. The orientation vectors of
the PDs and the LEDs on the VLC units are obtained as the nor-
malized versions (the orientation vectors are unit-norm) of the

following vectors: n
(1)
R,1 = [0.3 − 0.1 1]

T
, n

(2)
R,1 = [0.2 0.4 1]

T
,

n
(1)
R,2 = [0.8 0.6 0.1]

T
, n

(2)
R,2 = [−0.7 0.2 0.1]

T
, n

(1)
T,1 =

[0.9 0.4 0.1]
T

, and n
(2)
T,1 = [−0.8 0.1 0.1]

T
. Furthermore, the

connectivity sets are defined as S
(i,j)
1 = ∅, S

(i,j)
2 = {1} for

i, j ∈ {1, 2}, i 6= j for the cooperative measurements and

S̃
(1)
1 = {1, 2, 3}, S̃

(2)
1 = {2, 3, 4} and S̃

(j)
2 = ∅ for j ∈ {1, 2}

for the noncooperative measurements.
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Fig. 3. VLP network configuration in the simulations. Each VLC unit contains
two PDs and one LED. PD 1 of the VLC units is used to obtain measurements
from the LEDs on the ceiling while PD 2 of the VLC units communicates with
the LED of the other VLC unit for cooperative localization. The squares and
the triangles show the projections of the LEDs and the VLC units on the floor,
respectively.

A. Theoretical Bounds

In this part, the CRLB expression derived in Section II
is investigated to illustrate the effects of cooperation on the
localization performance of VLP networks.

1) Performance with Respect to Transmit Power of LEDs on
Ceiling: In order to analyze the localization performance of the
VLC units with respect to the transmit powers of the LEDs
on the ceiling (equivalently, anchors), individual CRLBs for
localization of the VLC units in noncooperative and cooperative
scenarios are plotted against the transmit powers of LEDs on the
ceiling in Fig. 4, where the transmit powers of the VLC units
are fixed to 1W. As observed from Fig. 4, cooperation among
VLC units can provide substantial improvements in localization
accuracy (about 43 cm and 14 cm improvement, respectively, for
VLC 1 and VLC 2 for the LED transmit power of 300mW).
We note that the improvement gained by employing cooperation
is higher for VLC 1 as compared to that for VLC 2. This is an
intuitive result since the localization of VLC 1 depends mostly
on LED 1 and LED 2 (the other LEDs are not sufficiently
close to facilitate the localization process), and incorporating
cooperative measurements for VLC 1 provides an enhancement
in localization performance that is much greater than that for
VLC 2, which can obtain informative measurements from the
LEDs on the ceiling even in the absence of cooperation as seen
from the network geometry in Fig. 3. In addition, the CRLBs in
the cooperative scenario converge to those in the noncooperative
scenario as the transmit powers of the LEDs increase. Since
the first (second) summand in the FIM expression in (12)
corresponds to the noncooperative (cooperative) localization,
higher transmit powers of the LEDs on the ceiling cause the first
summand to be much greater than the second one, which makes
the contribution of cooperation to the FIM negligible. Hence,
the effect of cooperation on localization performance becomes
more significant as the transmit power decreases, which is in
compliance with the results obtained for RF based cooperative
localization networks [20].

2) Performance with Respect to Transmit Power of VLC
Units: Secondly, the localization performance of the VLC units
is investigated with respect to the transmit powers of the VLC
units when the transmit powers of the LEDs on the ceiling
are fixed to 1W. Fig. 5 illustrates the CRLBs for localization
of the VLC units against the transmit powers of the VLC
units in the noncooperative and cooperative cases. As observed
from Fig. 5, cooperation leads to a higher improvement in the
performance of VLC 1, similar to Fig. 4. In addition, via the
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FIM expression in (12), it can be noted that the contribution
of cooperation to localization performance gets higher as the
transmit powers of the VLC units increase, which is also
observed from Fig. 5. However, the CRLB reaches a saturation
level above a certain power threshold, as opposed to Fig. 4,
where the CRLB continues to decrease as the power increases.
The main reason for this distinction between the effects of the
transmit powers of the LEDs on the ceiling and those of the
VLC units can be explained as follows: For a fixed transmit
power of the VLC units, the localization error by using three
anchors (i.e., three LEDs on the ceiling that are connected to
the corresponding VLC unit) converges to zero as the transmit
powers of the anchors increase regardless of the existence of
cooperation. On the other hand, for a fixed transmit power of the
LEDs on the ceiling, increasing the transmit power of the VLC
unit (i.e., one of the anchors) cannot reduce the localization error
below a certain level. Therefore, the saturation level represents
the localization accuracy that can be attained by four anchors
with three anchors leading to noisy RSS measurements and one
anchor generating noise-free RSS measurements.

B. Performance of the Proposed Algorithms

In this part, the proposed algorithms in Algorithm 3 (CCGP)
and Algorithm 4 (CSGP) are evaluated in terms of localization
performance and convergence speed. For both algorithms, the
initial step size is selected as λ0 = 1, the step size shrinkage
factor and the degree of decline in the Armijo rule in Algo-
rithm 2 are set to ξ = 0.5 and β = 0.001, respectively. The
VLC units are initialized at the positions of the closest LEDs

on the ceiling which are connected to the corresponding VLC
units.

Localization performances of the algorithms are presented in
both the absence and the presence of cooperation and compared
against those of the ML estimator in (9) and the CRLBs derived
in Section II. In order to ensure convergence to the global
minimum, the ML estimator is implemented using a multi-
start optimization algorithm with 100 initial points randomly
selected from the interval [0 10]m at each axis.10 In addition,
two different measurement noise distributions, namely, Gaussian
and exponential, are considered while evaluating the proposed
algorithms as in [28]. The Gaussian noise is used to model
the case in which the RSS measurement noise can be both
positive and negative, whereas the exponentially distributed
noise (subtracted from the true value) represents the scenario
in which the RSS measurements are negatively biased, which
leads to the feasibility modeling of the localization problem
in Section III-B. Furthermore, the average residuals at each
iteration are calculated to assess the convergence speed of the
proposed algorithms [29]:

̺n =
1

MNV

M∑

m=1

∥∥x(n,m) − x(n−1,m)
∥∥ (64)

where x(n,m) =
(
x
(n,m)
1 , . . . ,x

(n,m)
NV

)
denotes the position

vector of all the VLC units at the nth iteration for the mth
Monte Carlo realization of measurement noises and M is the
number of Monte Carlo realizations.

In the simulations, two-dimensional localization is performed
by assuming that the VLC units have known heights. Therefore,
with the knowledge of perpendicular LED orientations, Case 2
type Lambertian sets in Section III-D2 are utilized for localiza-
tion based on the measurements from the LEDs on the ceiling.
The cooperation among the VLC units is modeled by Case 1
type Lambertian sets in Section III-D1.

1) Gaussian Noise: In Fig. 6, the average localization errors
of the VLC units for the different algorithms are plotted against
the transmit power of the LEDs on the ceiling for the case of
the Gaussian measurement noise by fixing the transmit powers
of the LEDs at the VLC units to 1W. From Fig. 6, it is
observed that the cooperative approach can significantly reduce
the localization errors, especially in the low SNR regime (about
60 cm and 70 cm reduction for CSGP and CCGP algorithms,
respectively, for 100 mW LED transmit power). In addition,
both Algorithm 3 (CCGP) and Algorithm 4 (CSGP) can attain
the localization error levels that asymptotically converge to zero
at the same rate as that of the CRLB. Moreover, it can be
inferred from Fig. 6 that the proposed iterative methods achieve
higher localization performance than the ML estimator in the
low SNR regime for both the noncooperative and the cooperative
scenarios. Although the ML estimator is forced to converge to
the global minimum via the multi-start optimization procedure
involving 100 different executions of a local solver, whose
complexity may be prohibitive for practical implementations,
it has lower performance than the proposed approaches, which
depend on low-complexity iterative gradient projections. Hence,
at low SNRs, the proposed algorithms are superior to the MLE
in terms of both the localization performance and the compu-
tational complexity. Furthermore, the simultaneous projections
outperforms the cyclic projections at low SNRs at the cost of
a higher number of set projections, but the two approaches
converge asymptotically as the SNR increases.

10The implemented estimator is effectively a maximum a posteriori probabil-
ity (MAP) estimator with a uniform prior distribution over the interval [0 10]m,
based on the prior information that VLC units are inside the room. Hence, the
implemented ML estimator may achieve smaller RMSEs than the CRLB in the
low SNR regime, where the prior information becomes more significant as the
measurements are very noisy.



10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Transmit Power of LEDs on Ceiling (W)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
M

S
E

 (
m

)

CSGP Coop.

CSGP Noncoop.

CCGP Coop.

CCGP Noncoop.

MLE Coop.

MLE Noncoop.

CRLB Coop.

CRLB Noncoop.
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Fig. 7. Convergence rate of the average residuals in (64) for the proposed
algorithms in Algorithm 3 and Algorithm 4 for the case of Gaussian measure-
ment noise, where the transmit power of LEDs on ceiling is (a) 100mW and
(b) 1W.

Fig. 7(a) and Fig. 7(b) report the average residuals calculated
by (64) corresponding to the proposed algorithms versus the
number of iterations for 100mW and 1W of transmit powers
of the LEDs on the ceiling, respectively. CSGP in the absence
of cooperation has the fastest convergence rate and exhibits
an almost monotonic convergence behavior. However, CSGP
in the cooperative scenario shows relatively slow convergence
in general and a locally nonmonotonic behavior when several
consecutive iterations are taken into account. This is due to
the cooperative Lambertian sets being involved in the simul-
taneous projection operations. In addition, cyclic projections
tend to settle into limit cycle oscillations11 after few iterations,
thus implying that the sequence itself does not converge to a
point, but it has several subsequences that converge [44]. This
behavior, called cyclic convergence, is encountered in cyclic
(sequential) projections if the feasibility problem is inconsistent
[44], [74]. Furthermore, by comparing Fig. 7(a) and Fig. 7(b), it
is observed that the magnitude of limit cycle oscillations in the
CCGP algorithm gets smaller as the SNR increases since the
region of uncertainty becomes narrower at higher SNR values,
thereby making the convergent subsequences close to each other.

2) Exponential Noise: To investigate the performance of the
algorithms under exponentially distributed measurement noise,
the average localization errors are plotted against the transmit
power of the LEDs on the ceiling for the case of the subtractive
exponential noise in Fig. 8. Similar to the case of the Gaussian
noise, the proposed algorithms succeed in converging to the true
VLC unit positions as the SNR increases. Since the projection
based methods rely on the assumption of negatively biased
measurements, they perform slightly better at low SNRs as
compared to the case of the Gaussian noise. On the other
hand, the MLE produces larger errors at low SNRs for the
exponentially distributed noise since its derivation is based on
the assumption of Gaussian noise.

The average residuals in the case of the exponentially dis-
tributed noise are illustrated in Fig. 9(a) and Fig. 9(b) for two
different LED power levels. In contrary to the case of Gaussian
noise, cyclic projections do not fall into limit cycles and provide
globally monotonic convergence results as the feasibility prob-
lem is consistent, which complies with the results presented in
the literature pertaining to the study of CFPs [44]. In addition,
it is observed that both the cyclic and the sequential projection
methods have faster convergence for lower SNR values since
it takes fewer iterations to get inside the intersection of the
constraint sets, which becomes larger as the SNR decreases.12

VII. CONCLUDING REMARKS

In this paper, a cooperative VLP network has been proposed
based on a generic system model consisting of LED transmitters
at known locations and VLC units with multiple LEDs and PDs.
First, the CRLB on the overall localization error of the VLC
units has been derived to quantify the effects of cooperation
on the localization accuracy of VLP networks. Then, due to
the nonconvex nature of the corresponding ML expression, the
problem of cooperative localization has been formulated as

11 In inconsistent feasibility problems (i.e., those with empty region of inter-
section), the sequence of points obtained by cyclic projections does not converge
[44]. However, it has convergent subsequences each of which converges to a
different point [44]. In the limit, the cyclic projections based algorithm (i.e.,
CCGP) visits each of these limiting points in a sequential fashion, leading to
a cyclic behavior called limit cycle. In this case, average residuals in (64) (i.e.,
distances between consecutive iteration points) can be regarded as limit cycle
oscillations.

12 Since the measured RSS is always smaller than the true RSS value in
the case of negative exponential noise (see (16)), the Lambertian sets become
larger at lower SNR values (as the size of a Lambertian set L in (19) is inversely

proportional to the corresponding RSS measurement P̂r , or, equivalently γ in
(18)).
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Fig. 9. Convergence rate of the average residuals in (64) for the proposed
algorithms in Algorithm 3 and Algorithm 4 for the case of exponentially
distributed measurement noise, where the transmit power of LEDs on ceiling is
(a) 100mW and (b) 1W.

a QFP, which facilitates the development of low-complexity
decentralized feasibility-seeking methods. In order to solve the
feasibility problem, iterative gradient projections based algo-
rithms have been proposed. Furthermore, based on the notion
of quasi-Fejér convergent sequences, formal convergence proofs
have been provided for the proposed algorithms in the consis-
tent case. Finally, numerical examples have been presented to
illustrate the significance of cooperation in VLP networks and
to investigate the performance of the proposed algorithms in
terms of localization accuracy and convergence speed. It has
been verified that the proposed iterative methods asymptotically
converge to the true positions of VLC units at high SNR and
exhibit superior performance over the ML estimator at low SNRs
in terms of both implementation complexity and localization
accuracy.

An important research direction for future studies is to explore
the convergence properties of Algorithm 3 and Algorithm 4
when the proposed QFP is inconsistent. In the inconsistent
case, simultaneous projection algorithms tend to converge to
a minimizer of a proximity function that specifies the distance
to constraint sets [44], [75]. For the implicit CFP (ICFP)
considered in TOA-based wireless network localization, the
POCS based simultaneous algorithm is shown to converge to
the minimizer of a convex function, which is the sum of squares
of the distances to the constraint sets [29]. Therefore, finding
proximity functions characterizing the behavior of simultaneous
projections (e.g., Algorithm 4) for the inconsistent QFPs [37]
would be a significant extension for the set-theoretic estimation
literature.
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SUPPLEMENTARY MATERIAL FOR

COOPERATIVE LOCALIZATION IN HYBRID

INFRARED/VISIBLE LIGHT NETWORKS: THEORETICAL

LIMITS AND DISTRIBUTED ALGORITHMS
MUSA FURKAN KESKIN, OSMAN ERDEM AND SINAN GEZICI

S-I. PROOF OF LEMMA 1

Suppose that x1 ∈ Bα, x2 ∈ Bα, and α < γ. It is clear

that for any λ ∈ (0, 1), λx1 + (1 − λ)x2 ∈ Ω. Also, for any

λ ∈ (0, 1),

gǫ(λx1 + (1− λ)x2) (S1)

= γ −
λ(y − x1)

TnR + (1− λ)(y − x2)
TnR∥∥λ(x1 − y) + (1− λ)(x2 − y)

∥∥k + ǫ
(S2)

≤ γ −
λ(y − x1)

TnR + (1− λ)(y − x2)
TnR

λ
∥∥x1 − y

∥∥k + (1− λ)
∥∥x2 − y

∥∥k + ǫ
(S3)

≤ γ−

λ(γ − α)(
∥∥x1 − y

∥∥k + ǫ) + (1− λ)(γ − α)(
∥∥x2 − y

∥∥k + ǫ)

λ(
∥∥x1 − y

∥∥k + ǫ) + (1− λ)(
∥∥x2 − y

∥∥k + ǫ)
(S4)

= α (S5)

is obtained, where (S3) is due to the convexity of
∥∥.
∥∥k, x1 ∈ Ω,

and x2 ∈ Ω, and (S4) follows from x1 ∈ Bα and x2 ∈ Bα.

Hence, (S1)–(S5) implies the convexity of Bα for α < γ. For

α ≥ γ, gǫ(x) ≤ α is satisfied ∀x ∈ Ω, which implies Bα = Ω.

Therefore, Bα is convex ∀α ∈ R.

S-II. PROOF OF PROPOSITION 1

Since Λj ∩ Υj 6= ∅, consider any point xj ∈ Λj ∩ Υj .

At the nth iteration, it can be assumed that x
(n)
j /∈ Λj ∩ Υj

because otherwise iterations will stop via (54) and (38), which

implies quasi-Fejér convergence of {x
(n)
j }∞n=0 to Λj ∩Υj based

on Definition 3. Then, based on the iterative step in (54), the

following is obtained:
∥∥x(n+1)

j − xj

∥∥2 =
∥∥x̃(n)

j − xj − λ
(n)
j θ

(n)
j

∥∥2 (S6)

where

θ
(n)
j ,

Kj∑

k=1

(
∑

ℓ∈S̃
(j)
k

κ̃
(j)
ℓ,kHg̃

(j)
ℓ,k

(x̃
(n)
j )

+

NV∑

i=1,i 6=j

∑

ℓ∈S
(i,j)
k

κ
(i,j)
ℓ,k H

g
(i,j)
ℓ,k

(·,x
(n̂)
i

)
(x̃

(n)
j )

)
(S7)

with the scaled gradient operator being defined as

Hf (x) =
f+(x)

∥∥∇f(x)
∥∥2∇f(x). (S8)

From (S6), it follows that
∥∥x(n+1)

j − xj

∥∥2 =
∥∥x̃(n)

j − xj

∥∥2 +
(
λ
(n)
j

)2 ∥∥θ(n)
j

∥∥2

− 2λ
(n)
j

(
θ
(n)
j

)T (
x̃
(n)
j − xj

)
. (S9)

Let F̃j and Fj be the sets of Lambertian functions for the jth

VLC unit corresponding to the noncooperative and cooperative

cases, respectively, which are given by

F̃j =
{
{g̃

(j)
ℓ,k}ℓ∈S̃

(j)
k

}

k∈{1,2,...,Kj}
(S10)

Fj =
{
{{g

(i,j)
ℓ,k (·,x

(n̂)
i )}

ℓ∈S̃
(j)
k

}i∈{1,2,...,NV }\j

}

k∈{1,2,...,Kj}

(S11)

For any function f ∈ F̃j ∪ Fj , f(xj) ≤ 0 holds since xj ∈
Λj ∩Υj (see (20), (22), (25), and (26)). Consider the following

mutually exclusive and exhaustive subsets of F̃j ∪ Fj :

F⋆
j,n = {f ∈ F̃j ∪ Fj | f(x̃

(n)
j ) ≤ 0} (S12)

F⋄
j,n = {f ∈ F̃j ∪ Fj | f(x̃

(n)
j ) > 0} . (S13)

It is clear from (S8) that for any f⋆ ∈ F⋆
j,n

Hf⋆(x̃
(n)
j ) = 0 (S14)

is satisfied. On the other hand, for any f⋄ ∈ F⋄
j,n∩F̃j , f⋄(xj) =

0 < f⋄(x̃
(n)
j ), and, for any f⋄ ∈ F⋄

j,n ∩Fj , f⋄(xj) < f⋄(x̃
(n)
j )

via Assumption A1. Then, the following inequality holds for

any f⋄ ∈ F⋄
j,n:

f⋄(xj) < f⋄
(
x̃
(n)
j

)
. (S15)

Since xj and x̃
(n)
j both lie inside the halfspaces of the form

(41) and (49) corresponding to the set of functions F⋄
j,n (xj ∈

Λj ⊂ Γj and x̃
(n)
j ∈ Γj , see (40), (41), (53) and (25)), they are

in the region where any f⋄ ∈ F⋄
j,n is quasiconvex. Hence, from

(S15) and Definition 2,
(
∇f⋄(x̃

(n)
j )
)T (

xj − x̃
(n)
j

)
≤ 0 (S16)

follows, which, based on (S8), implies that
(
Hf⋄(x̃

(n)
j )
)T (

x̃
(n)
j − xj

)
≥ 0 . (S17)

The inner product term in (S9) can be decomposed into two

parts corresponding to the sets F⋆
j,n and F⋄

j,n. The part that

corresponds to F⋆
j,n is 0 via (S14) and the remaining part

is greater than or equal to 0 via (S17). Hence, the following

inequality is obtained:
(
θ
(n)
j

)T (
x̃
(n)
j − xj

)
≥ 0 , (S18)

which, based on (S9), yields∥∥x(n+1)
j − xj

∥∥2 ≤
∥∥x̃(n)

j − xj

∥∥2 + ǫ
(n)
j (S19)

where
ǫ
(n)
j ,

(
λ
(n)
j

)2 ∥∥θ(n)
j

∥∥2. (S20)

From the fact that xj ∈ Γj , the following can be written:∥∥x̃(n)
j − xj

∥∥ =
∥∥PΓj

(x
(n)
j )− PΓj

(xj)
∥∥ (S21)

≤
∥∥x(n)

j − xj

∥∥ (S22)

where (S21) follows from (53), and (S22) is due to the non-

expansivity of the orthogonal projection operator. Combining

(S21) and (S22) with (S19) yields the following inequality:
∥∥x(n+1)

j − xj

∥∥2 ≤
∥∥x(n)

j − xj

∥∥2 + ǫ
(n)
j . (S23)

Based on the parallel projection step in (54), it can easily be

shown that
∥∥x(n+1)

j − x̃
(n)
j

∥∥ = λ
(n)
j

∥∥θ(n)
j

∥∥ (S24)

where θ
(n)
j is given by (S7). Then, from Assumption A2, it

follows that
∑∞

n=0

∥∥x(n+1)
j − x̃

(n)
j

∥∥2 < ∞, which leads to∑∞
n=0 ǫ

(n)
j < ∞ via (S24) and (S20). Finally, using (S23) and

Definition 3 yields the desired result.



S-III. PROOF OF PROPOSITION 2

Following the same steps as stated in the proof of Proposi-

tion 1, the following inequality is obtained based on (50):
∥∥x(n+1)

j − xj

∥∥2 ≤
∥∥x(n)

j − xj

∥∥2 + ǫ
(n)
j (S25)

where

ǫ
(n)
j ,

∥∥ϑncλ
(n)
j,ncHg̃

(j)

ℓ̂nc,k̂nc

(x̃
(n)
j ) + ϑcλ

(n)
j,c Hg

(îc,j)

ℓ̂c,k̂c(·,x
(n̂)
i

)

(x̃
(n)
j )
∥∥2

(S26)

with Hf being defined as in (S8). The averaging step in (50)

leads to
∥∥x(n+1)

j −x̃
(n)
j

∥∥ =
√

ǫ
(n)
j , where ǫ

(n)
j is given by (S26).

Assuming that A2 holds and following an approach similar to

that in the proof of Proposition 1, the inequality
∑∞

n=0 ǫ
(n)
j < ∞

is obtained, thus establishing the quasi-Fejér convergence of the

sequence {x
(n)
j }∞n=0 to Λj ∩Υj .

S-IV. PROOF OF LEMMA 3

The proof is based on contradiction. Suppose that

limn→∞ λ
(n)
j = 0. Then, for each ζ > 0, there exists an

iteration index n(ζ) such that λ
(n(ζ))
j < ζ. Based on the Armijo

step size selection rule (44) in Algorithm 2 and the step size

update equation (56) in Algorithm 4, there exists a function

f◦ ∈ F̃j ∪Fj such that the inequality in (44) is not satisfied for

the step size

ζ̃ = λ
(n(ζ)−1)
j ξm̄ (S27)

where

m̄ = max{m ∈ Z≥0 | λ
(n(ζ)−1)
j ξm > ζ} . (S28)

Hence, the following inequality is obtained:

f◦(Gζ̃
f◦(x̃

(n(ζ))
j )) > f◦(x̃

(n(ζ))
j )(1− βζ̃) . (S29)

It is clear that f◦(x̃
(n(ζ))
j ) > 0 since otherwise the step size

selection procedure would not need to be applied, meaning

that x̃
(n(ζ))
j is inside the zero-sublevel set of every function in

F̃j ∪ Fj , i.e., x̃
(n(ζ))
j ∈ Λj ∩ Υj , which completes the proof

of convergence of the iterates {x
(n)
j }∞n=0 to the set Λj via

Lemma 2. Then, the left hand side of (S29) can be rewritten

using the Taylor series expansion and (39) as follows:

f◦(Gζ̃
f◦(x̃

(n(ζ))
j )) = f◦(x̃

(n(ζ))
j )− ζ̃f◦(x̃

(n(ζ))
j ) +O(ζ̃2)

(S30)

where O(ζ̃2) represents the terms with ζ̃s for s ≥ 2. Since

limζ̃→0 O(ζ̃2)/ζ̃ = 0, there exists υ > 0 such that

O(ζ̃2)/ζ̃ < f◦(x̃
(n(ζ))
j )(1− β) (S31)

is satisfied for 0 < ζ̃ ≤ υ. The existence of υ satisfying (S31) is

guaranteed by f◦(x̃
(n(ζ))
j ) > 0 and β ∈ (0, 1). Inserting (S31)

into (S30) yields the inequality

f◦(Gζ̃
f◦(x̃

(n(ζ))
j )) < f◦(x̃

(n(ζ))
j )(1− βζ̃) , (S32)

which contradicts with (S29). Therefore, the initial assumption

is not valid, which implies limn→∞ λ
(n)
j > 0.

S-V. PROOF OF LEMMA 4

The proof can be obtained by invoking similar arguments to

those in the proof of Lemma 3 and using the step size update

rule in (51) and (52).

S-VI. PROOF OF PROPOSITION 3

From Proposition 1,
∑∞

n=0 ǫ
(n)
j < ∞, where ǫ

(n)
j is given by

(S20) in the supplementary material. Hence, limn→∞ ǫ
(n)
j = 0

is obtained. Based on Lemma 3, (S7), and (S20), it follows that

lim
n→∞

∥∥∥∥
Kj∑

k=1

(
∑

ℓ∈S̃
(j)
k

κ̃
(j)
ℓ,kHg̃

(j)
ℓ,k

(x̃
(n)
j )

+

NV∑

i=1,i 6=j

∑

ℓ∈S
(i,j)
k

κ
(i,j)
ℓ,k H

g
(i,j)
ℓ,k

(·,x
(n̂)
i

)
(x̃

(n)
j )

)∥∥∥∥ = 0 , (S33)

which implies that

lim
n→∞

Jf (x̃
(n)
j ) = 0 (S34)

is satisfied ∀f ∈ F̃j ∪Fj , where the operator Jf defined on R
d

for the set of continuously differentiable functions f : Rd → R

is given by

Jf (x) =

(
f+(x)∥∥∇f(x)

∥∥

)2

. (S35)

For a generic Lambertian function in (28), the norm square of

the gradient can be expressed as

∥∥∇gǫ(x)
∥∥2 =

1
(∥∥x− y

∥∥k + ǫ
)2 (S36)

+

(
(y − x)TnR∥∥x− y

∥∥k + ǫ

)2 k
∥∥x− y

∥∥k−2
(
(k − 2)

∥∥x− y
∥∥k − 2ǫ

)

(∥∥x− y
∥∥k + ǫ

)2 ·

Since the sequence of iterates {x̃
(n)
j }∞n=0 is bounded by

Lemma 2,
{∥∥x̃(n)

j − y
∥∥}∞

n=0
is also bounded, which implies

the boundedness of
∥∥∇gǫ(x)

∥∥ via (S36). Therefore, based on

(S34) and (S35), it follows that

lim
n→∞

f+(x̃
(n)
j ) = 0, ∀f ∈ F̃j ∪ Fj . (S37)

From the Bolzano-Weierstrass Theorem [1, Section 3.4], the

boundedness of {x̃
(n)
j }∞n=0 requires that {x̃

(n)
j }∞n=0 has a con-

vergent subsequence. Denote the limit of this subsequence by

x⋆
j . From (S37), it turns out that x⋆

j ∈ Λj ∩ Υj . Therefore,

Λj ∩ Υj contains a limit point of {x̃
(n)
j }∞n=0, which, based on

Lemma 2, yields the result that {x̃
(n)
j }∞n=0 converges to a point

inside Λj ∩ Υj . Based on (53) and the fact that Λj ⊂ Γj (see

(25) and (40)), it follows that the sequence {x
(n)
j }∞n=0 converges

to a point xj ∈ Λj ∩Υj .



S-VII. PROOF OF PROPOSITION 4

Applying similar steps to those in the proof of Proposition 3

and exploiting Proposition 2 and Lemma 4, the following results

are obtained:

lim
n→∞

[
g̃
(j)

ℓ̂nc,k̂nc
(x̃

(n)
j )
]+

= 0 (S38)

lim
n→∞

[
g
(̂ic,j)

ℓ̂c,k̂c
(x̃

(n)
j ,x

(n̂)
i )
]+

= 0 (S39)

Based on the most violated constraint control in (46) and (47),

it is obvious that

f̃(x̃
(n)
j ) ≤ g̃

(j)

ℓ̂nc,k̂nc
(x̃

(n)
j ), ∀f̃ ∈ F̃j (S40)

f(x̃
(n)
j ) ≤ g

(̂ic,j)

ℓ̂c,k̂c
(x̃

(n)
j ,x

(n̂)
i ), ∀f ∈ Fj (S41)

which implies via (S38) and (S39) that

lim
n→∞

f+(x̃
(n)
j ) = 0, ∀f ∈ F̃j ∪ Fj . (S42)

The rest of the proof is the same as that in Proposition 3.

S-VIII. PARTIAL DERIVATIVES IN (12)

From (5) and (6), the partial derivatives in (12) are obtained as

follows:

∂α̃
(j)
l,k (xj)

∂xt

= −
(m̃l + 1)P̃T,lA

(j)
k

(
(d̃

(j)
l,k )

T ñT,l

)m̃l

2π
∥∥d̃(j)

l,k

∥∥m̃l+3

×
(
m̃lñT,l(t− 3j + 3)(d̃

(j)
l,k )

Tn
(j)
R,k

(
(d̃

(j)
l,k )

T ñT,l

)−1

+ n
(j)
R,k(t− 3j + 3) (S43)

− (m̃l + 3)d̃
(j)
l,k (t− 3j + 3)(d̃

(j)
l,k )

Tn
(j)
R,k

∥∥d̃(j)
l,k

∥∥−2
)

for t ∈ {3j − 2, 3j − 1, 3j} and ∂α̃
(j)
l,k (xj)/∂xt = 0 otherwise,

where ñT,l(t− 3j + 3), n
(j)
R,k(t− 3j + 3), and d̃

(j)
l,k (t− 3j + 3)

represent the (t − 3j + 3)th elements of ñT,l, n
(j)
R,k, and d̃

(j)
l,k ,

respectively. Similarly,

∂α
(i,j)
l,k (xj ,xi)

∂xt

= −
(m

(i)
l + 1)P

(i)
T,lA

(j)
k

(
(d

(i,j)
l,k )Tn

(i)
T,l

)m(i)
l

2π
∥∥d(i,j)

l,k

∥∥m(i)
l

+3

×
(
m

(i)
l n

(i)
T,l(t− 3j + 3)(d

(i,j)
l,k )Tn

(j)
R,k

(
(d

(i,j)
l,k )Tn

(i)
T,l

)−1

+ n
(j)
R,k(t− 3j + 3) (S44)

− (m
(i)
l + 3)d

(i,j)
l,k (t− 3j + 3)(d

(i,j)
l,k )Tn

(j)
R,k

∥∥d(i,j)
l,k

∥∥−2
)

for t ∈ {3j − 2, 3j − 1, 3j}, ∂α
(i,j)
l,k (xi,xj)/∂xt is equal to the

negative of (S44) with (t−3j+3)’s being replaced by (t−3i+

3)’s for t ∈ {3i − 2, 3i − 1, 3i}, and ∂α
(i,j)
l,k (xi,xj)/∂xt = 0

otherwise. In (S44), n
(i)
T,l(t−3j+3) and d

(i,j)
l,k (t−3j+3) denote

the (t− 3j + 3)th elements of n
(i)
T,l and d

(i,j)
l,k , respectively.
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