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Abstract—In this study, optimal deterministic encoding of a
vector parameter is investigated in the presence of an eaves-
dropper. The objective is to minimize the expectation of the
conditional Cramér-Rao bound (ECRB) at the intended receiver
while satisfying an individual secrecy constraint on the mean-
squared error (MSE) of estimating each parameter at the
eavesdropper. The eavesdropper is modeled to employ the linear
MMSE (LMMSE) estimator based on the noisy observation of the
encoded parameter without being aware of encoding. First, the
problem is formulated as a constrained optimization problem in
the space of vector-valued functions. Then, two practical solution
strategies are developed based on nonlinear individual encoding
and affine joint encoding of parameters. Theoretical results on
the solutions of the proposed strategies are provided for various
scenarios on channel conditions and parameter distributions.
Finally, numerical examples are presented to illustrate the
performance of the proposed solution approaches.

Index Terms—Fisher information matrix (FIM), parameter
estimation, Cramér-Rao bound (CRB), secrecy, optimization.

I. I NTRODUCTION

Secure transmission of data to an intended receiver in
the presence of an eavesdropper has been a crucial problem
for communications. Physical layer secrecy is based on the
idea of exploiting the randomness in wireless channels to
ensure secure communication. In recent years, there has been
a renewed interest in the physical layer secrecy with the
advances in wireless communication systems. As the age of
Internet of Things (IoT), smart homes and cities, and wireless
sensor networks with vast amount of nodes has already arrived,
ensuring the security of data in such networks appears to be a
challenging task. Key-based cryptographic approaches such as
[1] and [2] have been employed in many applications to ensure
confidential communication, and they may still be a valuable
option and even necessary for certain applications such as
military communications. However, as the management of
key generation and distribution can be very challenging in
heterogeneous and dynamic networks with a vast number of
device connections, cryptographic approaches may no longer
be the most suitable solution [3], [4].

Traditionally, information theoretical metrics such as mutual
information have been employed to quantify the secrecy levels
in physical layer security over wireless networks [5]–[10].
In particular, Wyner proved that when the channel between
the transmitter and the eavesdropper is a degraded version
of the channel between the transmitter and the intended
receiver, then reliable communication can be achieved without
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information leakage to the eavesdropper [5]. Alternatively,
estimation theoretic tools such as mean-squared error (MSE)
and Fisher information have recently been used to measure
security performance of communication systems to design
low-complexity, practical and secure systems [11]–[22].

Estimation theoretic security has found applications in a
wide variety of problems. For example, such tools can be
employed in distributed inference networks, where the infor-
mation coming to a fusion center from various sensor nodes
can also be observed by eavesdroppers [12]–[14]. In [11], the
secret communication problem is investigated for Gaussian
interference channels in the presence of eavesdroppers for
vector parameters. The problem is formulated to minimize the
total minimum mean-squared error (MMSE) at the intended
receivers while keeping the MMSE at the eavesdroppers above
a certain level, where joint artificial noise and linear precoding
schemes are used to satisfy the secrecy constraint. In [15],
privacy of households using smart meters is considered in
the presence of adversary parties. The Fisher information is
employed as a metric of privacy for both scalar and multi-
variable case and the optimal policies for the utilization of
batteries are derived to achieve privacy. In [16], a decentral-
ized estimation problem is considered in an insecure sensor
network environment, where each sensor network performs
stochastic encryption based on the 1-bit quantized versionof a
noisy sensor measurement to achieve secret communication.In
[17], the optimal deterministic encoding of scalar parameters
is investigated based on the minimization of the expectation of
conditional Cramér-Rao bound (ECRB) in order to guarantee
a certain level of estimation accuracy at the intended receiver
while keeping the estimation error at the eavesdropper above
a certain level. In [18], a robust parameter encoding approach
is developed and the optimization is based on the worst-case
CRB (equivalently, the worst-case Fisher information) of the
parameter in order to guarantee a certain level of estimation
accuracy at the intended receiver.

In the estimation theoretic secrecy framework, Fisher in-
formation and Cramér-Rao bounds provide crucial metrics to
evaluate performance of estimators and have been employed
in various security problems [15]–[18]. Even though the CRB
and the Fisher information for a given value of a parameter
of interest have very clear interpretations as a measure of
estimation efficiency, they are not directly applicable in the
Bayesian framework. In such a case, the expectation of the
conditional Cramér-Rao bound (ECRB), can be utilized as
a metric of estimation accuracy, when the prior information
about transmitted parameters is available [23]. The ECRB has
been employed in various different contexts in the literature
[24], [25], and utilized as a metric to quantify estimation
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accuracy in security/privacy problems [15], [17]. In particular,
the ECRB facilitates theoretical investigations for achieving
intuitive understanding of the parameter encoding problem
and it does not assume any fixed estimator structure in order
to be calculated [17]. Also, the MSE of the MAP estimator
converges to the ECRB in the high SNR region [23]; hence,
ECRB-based optimization also guarantees optimizing the per-
formance of certain practical estimators. Based on all these
reasons, the ECRB is employed in this study, as well.

Even though the optimal parameter encoding problem has
been investigated for scalar parameters in [17] and [18] from
a CRB-based optimization perspective, it is possible that
the channel input can contain multiple parameters in many
practical scenarios such as [11], [15], [19]–[22]. Estimation of
multiple parameters is required in many applications such as
in localization [26] and joint frequency and phase estimation
[23]. Secure transmission of multiple parameters has also been
investigated in the literature for different applicationsand
scenarios. In [19], the filter design with secrecy constraints is
studied for a multiple-input multiple-output (MIMO) Gaussian
wiretap channel, where the parameter of interest is a vector,
each component of which is zero mean with a unit variance
and is independent of others. In [20], a beamforming scheme
is proposed for a downlink multiuser MIMO system for
secure communication, where the vector parameter carries the
unit-energy data symbols of each user. In [21], the binary
stochastic encryption introduced in [16] is extended to the
vector parameter estimation case. Another important use-case
for the secure multiple parameter estimation problem occurs
in smart grids/homes and internet of things (IoT) systems [22].
For example, the vector parameter carries the state of the grid,
i.e., the voltage angles and magnitudes at each of the buses,
in the scenario of state estimation problem in a smart-grid
system. In another example, the parameter is the state of the
position and velocity of an autonomous vehicle. In a further
example, the parameter represents the pollutant concentration
over an entire city in an air monitoring system in a smart city,
where each individual component of the vector can represent
the pollutant concentration in a certain neighborhood [22].

Based on the preceding motivations, we focus on a secure
multi-parameter transmission scenario in this study. Similarly
to [17] and [18], the parameter is encoded using an encoding
function prior to transmission. It is important to emphasize
that the difference of the multiparameter scenario investigated
in this manuscript from the single parameter case studied in
[17] is not only based on the number of parameters. In the
encoding of a scalar parameter, a single scalar valued function
is utilized as an encoder. In this manuscript, as the parameter
of interest is a random vector, the encoding function becomes a
vector valued function, which generates different opportunities
compared to the scalar case during the encoding operation such
as joint encoding of parameters using a nonlinear function.As
a simple example, consider a scenario in which the parameter
involves the coordinates of the location of a target. Then,
before sending the true coordinate, a simple shuffle of the
coordinates can create a considerable amount of localization
error at the eavesdropper as the eavesdropper is not aware that
such a secret-key is employed. This means that the problem of

optimal encoding of multiple parameters requires new analyses
and theoretical investigations as the theoretical analysis and
tools employed in [17] are not able to cover it directly in
general. When the encoding function is assumed to be an affine
function as a special case, it corresponds to employing a linear
precoding matrix strategy, which has been employed in various
studies to ensure security [11], [12].

In this work, the objective of encoding design is to minimize
the ECRB, which is defined as the average of the trace of the
inverse Fisher Information Matrix (FIM). The eavesdropper
is modeled to employ the linear MMSE (LMMSE) estimator
based on the noisy observation of the encoded parameter
without being aware of encoding. Compared to other studies
in the estimation theoretic security literature, the proposed for-
mulation is a novel approach for problems involving multiple
parameters. Also, the possible correlations among the param-
eters and the correlations in the noise components of intended
receiver/eavesdropper are taken into account, which is notap-
plicable in [17]. First, the optimization problem is formulated
to obtain the optimal encoding function for a given target
MSE level based on the assumption that the joint encoding
approach is applied via a nonlinear encoding function. Based
on this formulation, two special cases of the generic form of
the encoding function is studied to develop practical encoders.
In the first approach, each element of the vector parameter
is encoded individually by a nonlinear scalar function. For
this strategy, it is shown that when the transmitted parameters
are independent and the channel noise for the eavesdropper
is white, the optimization problem decouples into individual
scalar problems, which are investigated in [17]. Then, the case
for colored Gaussian noise for the eavesdropper is investigated,
where the optimization problem cannot be decoupled. For
the two-parameters case, fundamental insights are provided
about the optimal solution of the multiple parameter case by
considering the correlation in the noise components, which
cannot be obtained by studying the single parameter case.
In the second approach, the encoding function is assumed to
be an affine function. This method allows for joint encoding,
or simple shuffle and scale of the parameters, which cannot
be utilized in the single parameter case. Therefore, all the
theoretical analyses related to this approach are new contri-
butions. For this strategy, first the secrecy requirements are
omitted, and an optimal solution is derived theoretically when
the channel noise for the intended receiver is white. Next,
the MSE constraint for the eavesdropper is considered and
several theoretical results are provided regarding the form of
the optimal affine joint encoder. Finally, numerical examples
are provided to investigate various scenarios for both nonlinear
individual encoding and affine joint encoding strategies. The
main contributions in this manuscript can be summarized as
follows:

• The optimal encoding of multiple parameters is proposed
by utilizing the ECRB metric at the intended receiver and
a MSE target at the eavesdropper. Two practical encoding
strategies, nonlinear individual encoding and affine joint
encoding, are introduced as possible encoding solutions.

• For nonlinear individual encoding, it is shown that the



3

optimization problem can be decoupled into independent
problems if the channel noise for the eavesdropper is
white and parameters are independent. It is also proved
that if the prior distribution of a given parameter is sym-
metric on the domain, then the corresponding encoding
function can be limited to decreasing functions.

• For affine joint encoding, the optimal encoding function
is provided when there is no secrecy constraints and the
channel noise for intended receiver is white.

• It is shown that the search for the optimal affine encoding
strategy can be converted to a precoding matrix search;
that is, the constant term can be eliminated from the
optimization problem.

The rest of the manuscript is organized as follows: The op-
timal encoding problem for multiple parameters is formulated
in Section II. The nonlinear individual encoding strategy and
affine joint encoding strategies are studied in Sections IIIand
IV, respectively. Numerical results are presented in Section V
and concluding remarks are given in Section VI.

II. PROBLEM FORMULATION

Consider a scenario in whichN -dimensional random vector
parameterθ = [θ1 θ2 · · · θN ]T ∈ Λ is to be transmitted
to an intended receiver overN channels, andw(θ) denotes
the joint probability density function (PDF) ofθ. A block
fading channel model is assumed such that the instantaneous
fading coefficient at each channel is independent and de-
noted by constanthr,i for i = 1, 2, . . . , N . As this model
considers a slowly fading channel, it is assumed that the
channel coefficients are constant during the transmission of
the parameters. In addition to the transmitter and the intended
receiver, there exists an eavesdropper that tries to estimate the
parameterθ. The objective is to perform accurate estimation
of the parameter at the intended receiver while keeping the
estimation error at the eavesdropper above a certain level [17].
Therefore, vector parameterθ is encoded by using a vector-
valued encoding functionf : Λ → Γ before the transmission
of the parameter.1 Let β ∈ Γ be the encoded version of the
parameter, which is defined as

β , f(θ) =











f1(θ1, θ2, . . . , θN )
f2(θ1, θ2, . . . , θN )

...
fN (θ1, θ2, . . . , θN )











. (1)

Then, the received signal at the intended receiver is expressed
as

Y = Hrβ +Nr (2)

whereHr = diag{hr,1, hr,2, . . . , hr,N} is anN×N diagonal
matrix of channel coefficients andNr is theN -dimensional
channel noise which is modeled as a zero-mean Gaussian
random vector with covariance matrixΣr and is independent
of θ. On the other hand, the eavesdropper observes

Z = Heβ +Ne (3)

1The encoder is designed for each transmission block and should be updated
when the channel realization changes.

θ f (.) × + Y

Hr N r

× +

He N e

Z

β

Fig. 1: System model.

where N e is zero-mean Gaussian noise with covariance
matrix Σe, which is also independent ofθ, and He =
diag{he,1, he,2, . . . , he,N} is anN×N diagonal matrix repre-
senting the channel between the transmitter and the eavesdrop-
per under a block fading channel model. The intended receiver
tries to estimate parameterθ based on observationY whereas
the eavesdropper employs observationZ for estimatingθ, as
illustrated in Fig. 1. Note that the eavesdropper is not aware
of encoding; hence, it effectively tries to estimateβ.

In order to measure estimation accuracy at the intended
receiver, the expectation of Cramer-Rao bound (ECRB) is em-
ployed similarly to [17]. It is also assumed that the eavesdrop-
per employs the LMMSE estimator̂β(Z) whose coefficients
are selected to estimateβ = f (θ) based onZ. The secrecy
goal is achieved when the MSE at the eavesdropper for eachθi
is above a certain threshold. The ECRB for vector parameters
can be expressed as [23]

Eθ

(

I(θ)−1
)

=

∫

Λ

w(θ) I(θ)−1dθ = ECRB (4)

whereI(θ) represents the Fisher information matrix (FIM),
which is given by

I(θ) = E

(

(

∂pY |θ(y|θ)

∂θ

)(

∂pY |θ(y|θ)

∂θ

)T
)

(5)

with pY |θ(y|θ) representing the conditional PDF ofY for a
given value ofθ [26]. Also, the error covariance matrix at the
eavesdropper, who is unaware of the encoding, based on the
estimate of the eavesdropperβ̂(Z) and the true value of the
parameterθ is defined as

Σerr = E

(

(

β̂(Z)− θ
)(

β̂(Z)− θ
)T
)

. (6)

The expression in (4) is a matrix with each diagonal element
representing the estimation accuracy limit for an individual pa-
rameter. Therefore, to determine the optimal encoding function
for the overall vector parameter, the cost function is basedon
the sum of the diagonal elements of the inverse FIM, and the
optimal parameter encoding problem is proposed as follows:

fopt =argmin
f

∫

Λ

w(θ) tr{I(θ)−1}dθ

s.t. Σerr(i) ≥ ηi , i = 1, 2, . . . , N. (7)

where tr{·} denotes the trace operator,Σerr(i) is the ith
diagonal element ofΣerr, and ηi is the MSE target forθi
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at the eavesdropper.
It is important to emphasize that (7) involves optimization

in the space of vector-valued functions with multiple inputs,
hence it is difficult to solve in general. In the following
sections, two special cases of the generic form of the encoding
function given in (1) are considered as practical solution
approaches.

Remark 1: Note that the closed-form expression forΣerr

can be derived in the following way (similarly to the derivation
for the scalar case in [17]). The LMMSE estimatorβ̂(Z) is
expressed aŝβ(Z) = AZ + b, whereA andb are chosen to

minimizeE
(

∣

∣

∣

∣β̂(Z)− β
∣

∣

∣

∣

2
)

, as the eavesdropper is unaware
of the encoding, and are given by

A = Σβ,Z

(

HeΣβH
T
e +Σe

)−1

, (8)

and

b = (I−AHe)E(β), (9)

with

Σβ,Z = E

(

(

β − E(β)
)(

Z − E(Z)T
)

)

. (10)

Based on (8)–(10),Σerr can be obtained as

Σerr = ΣβRΣT
β −ΣβRΣβ,θ −ΣT

β,θRΣT
β +Σθ

+
(

(

E(β)− E(θ)
)(

E(β)− E(θ)
)T
)

, (11)

where

Σβ = E
(

ββ
T
)

− E(β)E(β)T ,

Σβ,θ = E
(

βθT
)

− E(β)E(θ)T ,

Σθ = E
(

θθT
)

− E(θ)E(θ)T ,

R = HT
e

(

HeΣβH
T
e +Σe

)−1

He. (12)

III. N ONLINEAR INDIVIDUAL ENCODING

In this section, the proposed problem in Section II is in-
vestigated for an encoding approach such that each parameter
θi is encodedindividually by a nonlinear scalar function such
that

β , f(θ) =











f1(θ1)
f2(θ2)

...
fN (θN )











. (13)

Furthermore, as motivated in [17], the parameter space and
the intrinsic constraints on each encoding functionfi(θi) are
specified as follows:

• θi ∈ [ai, bi] for i = 1, 2, . . . , N .
• βi = fi(θi) ∈ [ai, bi] for i = 1, 2, . . . , N .
• fi is a continuous and one-to-one function.
Under these assumptions, the optimal encoding problem in

(7) can be written as

fopt =arg min
f1(θ1),...,fN (θN)

∫

Λ

w(θ) tr{I(θ)−1}dθ

s.t. Σerr(i) ≥ ηi , i = 1, 2, . . . , N. (14)

In the remainder of this section, the solution of the problem
in (14) is investigated. To that end,tr{I(θ)−1} for parameter
θ is derived for the system model specified by (2) and the error
covariance matrix in (11) is employed. Note that for a fixedf

and channel matrixHr, Y is a Gaussian random vector with
meanµ(θ) expressed as

µ(θ) = Hrβ =











hr,1 f1(θ1)
hr,2 f2(θ2)

...
hr,N fN(θN )











(15)

and covariance matrixΣr. Accordingly, each element ofI(θ)
can explicitly be written as [27]

[I(θ)]i,j = [Σ−1
r ]i,j

(

hr,i
dfi(θi)

dθi

) (

hr,j
dfj(θj)

dθj

)

, (16)

where [Σ−1
r ]i,j denotes the(i, j)th element ofΣ−1

r . Note
that if αi , hr,i

dfi(θi)
dθi

, then [I(θ)]i,j = αiαj [Σ
−1
r ]i,j ;

thus, the FIM can simply be expressed asI(θ) =
diag{α1, α2, . . . , αN}Σ−1

r diag{α1, α2, . . . , αN}. Therefore,
the following expression is obtained:

tr{I(θ)−1} =

N
∑

i=1

σ2
r,i

α2
i

=

N
∑

i=1

σ2
r,i

hr,i
2f ′

i(θi)
2

(17)

wheref ′
i(θi) denotes the derivative offi(θi). Note that (17)

implies that even though the effective noise is not necessarily
white, tr{I(θ)−1} can still be written as the sum of individual
scalar inverse Fisher information corresponding to different
parameters. Then, the cost function in (14) becomes
∫ b1

a1

∫ b2

a2

· · ·

∫ bN

aN

w(θ)

N
∑

i=1

σ2
r,i

hr,i
2f

′

i (θi)
2
dθ1dθ2 . . . dθN

=

N
∑

i=1

∫ b1

a1

∫ b2

a2

· · ·

∫ bN

aN

w(θ)
σ2
r,i

hr,i
2f

′

i (θi)
2
dθ1dθ2 . . . dθN

=
N
∑

i=1

σ2
r,i

hr,i
2

∫ bi

ai

wi(θi)
1

f
′

i (θi)
2
dθi. (18)

It is observed that the overall cost function is actually the
sum of individual ECRB values for any genericw(θ). Based
on (11) and (18), one can calculate the cost function and the
constraints in (14) for any givenw(θ), β and channel statistics.
In the following, two specific scenarios are investigated in
more detail.

A. Independent Parameters & White Gaussian Noise for
Eavesdropper

We first consider the scenario in which the channel noise
is zero-mean white Gaussian for the eavesdropper2, that is,
Σe = diag{σ2

e,1, σ
2
e,2, . . . , σ

2
e,N} and the parameters,θi’s, are

independent of each other with marginal distributions denoted
by wi(θi) for i = 1, 2, . . . , N . (Note thatw(θ) =

∏N
i=1 wi(θi)

in this scenario.) Under this setting, the following proposition

2Note that there is no further assumption on the noise statistics for the
intended receiver, as it does not effect the constraint and the cost function
according to (11) and (17).
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reveals that the optimization problem be decoupled into inde-
pendent scalar problems.

Proposition 1: If the parameters are independent and the
channel noise for the eavesdropper is white Gaussian, the op-
timization problem in(14) can be decoupled into independent
problems as follows:

fi,opt = argmin
fi

∫ bi

ai

wi(θi)
1

f
′

i (θi)
2
dθi

s.t. Σerr(i) ≥ ηi , i = 1, 2, . . . , N. (19)

where

Σerr(i) =
h2
iVi(Vi − 2Ci)

h2
iVi + 1

+ V ar(θi) +
(

E(fi(θi))− E(θi)
)2

(20)

Vi = V ar(fi(θi)), Ci = Cov(fi(θi), θi) and hi = he,i/σe,i.
Proof: First, we focus on the error

covariance matrix Σerr. Note that Σβ =
diag{V1, V2, . . . , VN} with Vi = V ar(fi(θi)),
Σβ,θ = diag{C1, C2, . . . , CN} with Ci = Cov(fi(θi), θi)
and Σθ = diag{V ar(θ1), V ar(θ2), . . . , V ar(θN )}
due to the independence ofθi’s. Also, R =

diag{
he,1

2

he,1
2V1+σ2

e,1

,
he,2

2

he,2
2V2+σ2

e,2

, . . . ,
he,N

2

he,N
2VN+σ2

e,N

} due

to the independence ofθi’s and the white Gaussian
noise assumption for the eavesdropper. Therefore
Σerr = diag{Σerr(1),Σerr(2), . . . ,Σerr(N)}, where

Σerr(i) =
h2
iVi(Vi − 2Ci)

h2
iVi + 1

+ V ar(θi) +
(

E(fi(θi))− E(θi)
)2

(21)

and hi = he,i/σe,i. Based on (18) and (21), the generic
optimization problem in (14) reduces to

f opt = arg min
f1,f2,...,fN

N
∑

i=1

σ2
r,i

hr,i
2

∫ bi

ai

wi(θi)
1

f
′

i (θi)
2
dθi

s.t. Σerr(i) ≥ ηi , i = 1, 2, . . . , N. (22)

Note that the constraints are independent of each other and
each element of the sum in the objective function has no
effect on the others. Therefore, the optimization problem can
be decoupled and eachθi can be optimized individually, where
the decoupled problems can be expressed as in (19). �

Remark 2: The optimization problem in (19) has been
investigated in [17] in detail and the results and the solution
methods proposed in that study can directly be applied to
the vector parameter problem, when the channel noise for
the eavesdropper is white Gaussian and the parameters are
independent of each other. Also, when the parameters are not
independent, the constraints given in (14) include cross terms
even if the eavesdropper has white Gaussian noise; therefore,
the optimization problem needs to be solved based on (14) for
correlated parameters.

B. Independent Parameters & Colored Gaussian Noise Vec-
tors

In this part, we again assume that the parameters are
independent of each other, i.e.,w(θ) =

∏N
i=1 wi(θi); however,

we suppose thatΣe is a symmetric, positive definite matrix
which is not necessarily diagonal. Due to the independence
of parameters,Σβ, Σβ,θ andΣθ take diagonal forms as in
Section III-A. Then, theith diagonal elementΣerr(i) of Σerr

can be written as

Σerr(i) = h2
e,iVi(Vi − 2Ci)γi + V ar(θi)

+
(

E(fi(θi))− E(θi)
)2

(23)

whereVi and Ci are as defined previously. Also,γi is the
ith diagonal element of matrix(D̃ + Σe)

−1, where D̃ =
diag{h2

e,1V1, h
2
e,2V2, . . . , h

2
e,NVN}. Note thatγi depends on

He and the encoding functionf . Due to the cross terms in
the constraints, the optimization problem cannot be decoupled
anymore, hence it should be solved using (14) based on (17)
and (23). However, it is possible to derive some theoretical
results about the form of the solution in the considered
scenario. Lemma 1 generalizes Proposition 3 in [17] for the
multivariable case.

Lemma 1: Suppose that the eavesdropper employs the
linear MMSE estimator andwi(θi) is symmetric around
(ai+bi)/2. Then, for any given encoding functionf(θ) which
consists of continuous and strictly increasing encoding func-
tions fi(θi), there exists a corresponding encoding function
s(θ) consisting of continuous and strictly decreasing encoding
functionssi(θi) that yields the same ECRB at the intended
receiver with a higher MSE for the individual parameters at
the eavesdropper.

Proof: By using the arguments in [17], we consider two
encoding functionsfi(θi) andsi(θi) = fi(ai+bi−θi), where
θi ∈ [ai, bi] and fi(θi) is a continuous and monotonically
increasing function. Sinces′i(θi) = −f ′

i(ai + bi − θi) by
definition and due to the symmetry inwi(θi), both encoding
functions result in the sametr{I(θ)−1}, which is given
in (17). Furthermore, as shown in [17],Cov(fi(θi), θi) >
Cov(si(θi), θi) and two encoders yield the same variance and
expectation for the encoded version of the parameter. Also,
Σe is a positive definite matrix and̃D has positive entries.
Therefore,(D̃+Σe)

−1 is also a positive definite matrix3 and
γi > 0 always holds. Combining these results and via (23), it
is obtained that a larger MSE for parameterθi, i.e.,Σerr(i),
can be achieved by employingsi(θi) instead offi(θi) while
keeping the ECRB the same. �

Lemma 1 has an important practical implication that the
search space for the optimal encoding function for theith
parameter can be restricted to strictly decreasing functions
when the sufficient condition given in the lemma is satisfied.
Note that Lemma 1 can be applied ifθi has a symmetric
distribution on its domain. Some examples of continuous
symmetric distributions on a bounded interval satisfying the
condition include uniform distribution, beta distribution with
both parameters of1/2, and raised cosine distribution.

1) Two-Parameter Case (N = 2): In this part, we in-
vestigate the case ofN = 2; that is, θ = [θ1, θ2]

T .
Therefore, the channel noiseNe for the eavesdropper can

3Since Σe is a positive definite symmetric matrix, it can be expressed
as Σe =

∑N
k=1

λkvkv
T
k

and sinceD̃ is diagonal, (D̃ + Σe)−1 =
∑N

k=1
1

λk+h2

e,k
Vk

vkv
T
k

can be obtained.
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be modeled as zero-mean Gaussian with covariance matrix

Σe =

[

σ2
e,1 ρ
ρ σ2

e,2

]

. For this particular case,γi in (23) can

explicitly be written as

γ1 =
h2
e,2V2 + σ2

e,2

(h2
e,1V1 + σ2

e,1)(h
2
e,2V2 + σ2

e,2)− ρ2
(24)

and γ2 can be obtained by replacing the numerator in (24)
with h2

e,1V1 + σ2
e,1. After some manipulation,Σerr(1) can be

derived as

Σerr(1) =λ E(|β1 − θ1|
2)

+ (1− λ)
(

(E(β1)− E(θ1))
2 + V ar(θ1)

)

(25)

where

λ =
h2
1V1

h2
1V1 + 1− r2(ρ)

with

r2(ρ) =
ρ2/σ2

e,1

h2
e,2V2 + σ2

e,2

andh1 = he,1/σe,1.
It is possible to gain practical intuition about the behavior

of the optimal encoding function as a closed-form expression
for Σerr(1) (and Σerr(2)) is available. There are several
important observations related to (25).

• For a fixedr2(ρ), if we let h2
1 → ∞, thenΣerr(1) ≈

E(|β1−θ1|
2); hence, it is maximized whenE(|β1−θ1|

2)
is maximized. This mode can be called as thevariance
maximizing modeas in [17]. If we let h2

1 → 0, then
Σerr(1) ≈ (E(β1)−E(θ1))

2 + V ar(θ1); therefore, it is
maximized if β1 → a1 or β1 → b1. This mode can be
called as thevariance minimizing mode[17].

• For a fixedh1 (and relevant parameters forθ2), as ρ2

increases,r2(ρ) andλ also increase. According to (25),
if λ is small enough, the encoder is in the variance
minimizing mode; however, asλ increases and becomes
large enough, maximizingE(|β1 − θ1|

2) becomes the
priority. As ρ increases, after a certain threshold, which
can be denoted asρ0, the mode of operation can change
and the encoder can get into the variance maximizing
mode whenρ > ρ0.

Note that in the analysis aboveh2
1 can be viewed as

the signal-to-noise ratio (SNR) for the channel ofθ1 to the
eavesdropper. As the SNR of this channel increases, the
distortion due to encoding is transmitted to the eavesdropper
more effectively and the main factor to create a large MSE at
the eavesdropper is the distortion to the parameter via encoding
in the variance maximizing mode. Also, whenh1 → 0, this
means that the channel is very noisy; hence, the only informa-
tion available to the eavesdropper through its observationis the
mean of the encoded version of the parameter. Therefore, the
encoder tries to ensure that the mean of the encoded version
is away from the true mean. Note that in practice, even if the
SNR values are not necessarily in absolute limits, we can still
observe the aforementioned behavior in the encoding functions
(see Figs. 3 and 5). Hence, it can be concluded that the form
of encoding function depends on the parameters of the channel

and the correlation between eavesdropper’s noise components.
Finally, we note that a similar derivation and analysis can be
performed forΣerr(2) based onγ2 and (23).

IV. A FFINE JOINT ENCODING STRATEGY

In this section, the encoding operation is assumed to be an
affine function. Namely, the vector parameterθ is encoded by
using anN ×N precoding matrixP and anN -dimensional
constant vectorr prior to transmission such thatβ = Pθ+r.
Under this assumption, the optimal parameter encoding prob-
lem can be expressed as follows:

[P opt, ropt] = argmin
P ,r

∫

Λ

w(θ) tr{I(θ)−1}dθ

s.t. Σerr(i) ≥ ηi , i = 1, 2, . . . , N. (26)

As in the previous section, the parameter space is specified
as θi ∈ [ai, bi], for i = 1, 2, . . . , N for this strategy. If we
definea , min{a1, a2, . . . aN} and b , max{b1, b2, . . . bN},
then θi ∈ [a, b], for i = 1, 2, . . . , N . In this section, it is
assumed that the generalized domain of the parameters, i.e.,
[a, b], needs to be preserved after the encoding operation;
hence, it is assumed thatβi ∈ [a, b], for i = 1, 2, . . . , N .
This condition can be guaranteed if the sum of the absolute
values of the elements in each row ofP is less than or
equal to1. This can formally be expressed as‖P Tej‖1 ≤ 1
for j = 1, 2, . . . , N , whereej ’s are standard basis vectors.4

Finally, the precoding matrixP is taken to be full rank
(invertible).

In the remainder of this section, the solution of the problem
in (26) is investigated. First,tr{I(θ)−1} for parameterθ is
derived for the given system model and encoding strategy.
Note thatY is a Gaussian random vector with meanµ(θ) =
Hrβ = HrPθ + Hrr and covariance matrixΣr for fixed
P , r and channel matrixHr. Therefore, each element ofI(θ)
can explicitly be written as

[I(θ)]i,j =

(

dµ(θ)

dθi

)T

Σ−1
r

(

dµ(θ)

dθi

)

= pT
i HrΣ

−1
r Hrpj (27)

where pi denotes theith column of precoding matrixP .
Accordingly, the FIM can be expressed as

I(θ) = P THrΣ
−1
r HrP

= P TDP (28)

whereD , HrΣ
−1
r Hr. Note thatD and I(θ) are positive

definite, invertible and symmetric matrices. Also,I(θ) is not
a function of θ. Therefore, the objective function in (26)
simplifies to

∫

Λ

w(θ) tr{I(θ)−1}dθ = tr
{

(

P TDP
)−1
}

. (29)

Note that the objective function depends only onP and the
constant factorr in the encoding operation does not effect its
value. Furthermore, if the zero-mean Gaussian random noise
Nr in the received signal has independent components, then

4‖x‖1 ,
∑N

i=1 |xi| is called thel1 norm of vectorx.
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D becomes a diagonal matrix with itsith diagonal element
being given byh2

r,i/σ
2
r,i, whereσ2

r,i is the variance of theith
noise component inNr.

The following proposition provides an optimal solution
to the affine joint encoding problem without any secrecy
constraints for a diagonalD.

Proposition 2: AssumeD is a diagonal matrix. In the
absence of secrecy constraints on the eavesdropper, any signed
permutation matrix5 is an optimal solution. Furthermore, any
other precoding matrix with a different form is not optimal.

Proof: In the absence of secrecy constraints, the opti-
mization problem can be formulated as

P opt =argmin
P

tr
{

(

P TDP
)−1
}

s.t. ‖P Tej‖1 ≤ 1 , j = 1, 2, . . .N. (30)

Then, a lower bound for any given feasibleP can be obtained
as follows:

tr
{

(

P TDP
)−1
}

= tr
{

(

P−1D−1P−T
)

}

=
∥

∥

∥
P−1D−1/2

∥

∥

∥

2

F

=
N
∑

j=1

1

λj
‖mj‖

2
2 (31)

whereM , P−1, mj is the jth column ofM and D =

diag{λ1, λ2, . . . , λN}. Note thatPM = I, thusp(r)
j mj = 1

for j = 1, 2, . . .N , and p
(r)
j = eTj P is the jth row of

P . As the sum of the absolute values of the elements in
each row cannot be greater than1, ‖p(r)

j ‖2 ≤ ‖p
(r)
j ‖1 ≤ 1.

Also, via Cauchy-Schwarz inequality, it can be obtained that
1 = |p

(r)
j mj |

2 ≤ ‖p
(r)
j ‖22‖mj‖

2
2; hence, as‖p(r)

j ‖2 ≤ 1,
‖mj‖2 ≥ 1 for j = 1, 2, . . . , N . Therefore,

tr
{

(

P TDP
)−1
}

=
N
∑

j=1

1

λj
‖mj‖

2
2 ≥

N
∑

j=1

1

λj
(32)

for any given feasibleP . Note that this lower bound can ex-
actly be attained when‖mj‖2 = 1, which implies‖p(r)

j ‖2 = 1
for an optimal solution. Also, due to the relation1 =

‖p
(r)
j ‖2 ≤ ‖p

(r)
j ‖1 ≤ 1 for j = 1, 2, . . . , N , ‖p

(r)
j ‖2 =

‖p
(r)
j ‖1 = 1. This is satisfied if and only ifp(r)

j contains an
element with a value of+1 or −1 and the rest of its elements
are zero. Due to the rank constraint, eachp

(r)
j should have the

non-zero element at a different location and this is satisfied
if and only if the precoding matrix is a signed permutation
matrix. �

Proposition 2 reveals that if there is no secrecy constraint
for a given diagonalD, then a signed permutation matrix can
be used as the optimal precoding matrix.

Next, the optimal affine joint encoding problem is consid-
ered in the presence of secrecy constraints. The error covari-
ance matrixΣerr in the constraint of (26) can be calculated
based on the procedure in Remark 1. Specifically, it can be
obtained by using the equations given in (11) and (12) and

5A signed permutation matrix is defined as a matrix whose everyrow and
column has exactly one non-zero entry, which can be either 1 or -1.

insertingΣβ = PΣθP
T andΣβ,θ = PΣθ. Note that only

the last term in (11) depends onr. As only the diagonal
terms are taken into consideration for the secrecy targets,they
can explicitly be calculated. The following lemma is provided
regarding the relationship betweenΣerr andr for any given
P andw(θ).

Lemma 2: When the eavesdropper employs the linear
MMSE estimator, thenΣerr(i), (i.e., theith diagonal element
of Σerr) for the encoding operationβ = Pθ+ r is a convex
function ofri, i.e., theith element ofr for a fixedP .

Proof: Consider the expression forΣerr in Remark 1
(see (11) and (12)). It is noted that only the last term in (11)
depends onr, which can be written as

(

(

E(β)− E(θ)
)(

E(β)− E(θ)
)T
)

=

(P − I)E(θ)E(θ)T (P − I)
T
+ rE(θ)T (P − I)

T

+ (P − I)E(θ)rT + rrT . (33)

For a givenP , the contribution of (33) (i.e., the last term of
Σerr) to Σerr(i), denoted asg(i), can be calculated as

g(i) =
(

ri + p
(r)
i E(θ)− E(θi)

)2

, (34)

wherep(r)
i is the ith row of P . As the other terms ofΣerr

does not depend onr (see (11)) andd
2g(i)
dr2

i

= 2 > 0, the
convexity claim in the lemma holds. �

As a result of Lemma 2,Σerr(i) is maximized either at
rmin
i or rmax

i , where rmin
i and rmax

i are, respectively, the
lowest and highest possible values ofri for a givenP , while
ensuring that theith element ofPθ + r, i.e., βi, is in [a, b].

For example, ifθ1, θ2 ∈ [0, 1] andP =

[

0.1 0.5
0 −0.8

]

, then

0 ≤ r1 ≤ 0.4 and 0.8 ≤ r2 ≤ 1 to ensureβ1, β2 ∈ [0, 1].
Therefore,rmin

1 = 0, rmax
1 = 1, rmin

2 = 0.8 and rmax
2 = 1

for this particular example. Amongrmin
i or rmax

i , the one
that yields a higherΣerr(i) can be selected. As the objective
function in (26) does not depend onr, it can freely be selected
to maximizeΣerr(i) for a givenP ; therefore, it is sufficient
to search over precoding matrices for the optimal strategy.

Corollary 1 : Suppose that eavesdropper’s noise has inde-
pendent components, andβi = wiθj + ri for somei 6= j. If
either ofE(θi) or E(θj) is equal toa+b

2 , then, the sign ofwi

does not effectΣerr(i).

Proof: We prove the statement for the case ofE(θi) =
(a+b)/2, as it can be shown forE(θj) = (a+b)/2 in a similar
fashion. First, we note thatΣerr = Σ(1)

err+Σ(2)
err such thatΣ(1)

err

represents the first four terms of the sum in (11) andΣ(2)
err

denotes the last term. Under the condition in the corollary,
wi’s appear in the form ofw2

i ’s in the diagonals ofΣ(1)
err.

Therefore, the sign ofwi does not have any effect onΣ(1)
err.

For Σ(2)
err, if βi = wiθj + ri, then we know thatΣ(2)

err(i) =

(ri + wiE(θj)− E(θi))
2. As Σ(2)

err(i) is maximized either at
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rmin
i or rmax

i due to Lemma 2, we have

Σ(2)
err(i) = max

{

(b− a

2
+ α(E(θj)− b)

)2

,

(a− b

2
+ α(E(θj)− a)

)2
}

for wi = α > 0 and

Σ(2)
err(i) = max

{

(b − a

2
− α(E(θj)− a)

)2

,

(a− b

2
− α(E(θj)− b)

)2
}

for wi = −α < 0. Note that theΣ(2)
err(i) expressions are

exactly the same for both sign options forwi as long as|wi|
does not change. Therefore,Σerr(i) does not depend on the
sign ofwi. �

Lemma 3: Suppose the encoding matrixP has the form
of P = W 1W 2, where W 1 = diag{w1, w2, . . . wN} is
a diagonal matrix andW 2 is a permutation matrix. Then,

tr{
(

P TDP
)−1

} does not depend on the signs of the ele-
ments inP .

Proof: Note that ifP = W 1W 2, then

tr
{

(

P TDP
)−1
}

= tr
{

(

W T
2 W 1DW 1W 2

)−1
}

= tr{W T
2 Ŵ 1D

−1Ŵ 1W 2}

= tr{W 2W
T
2 Ŵ 1D

−1Ŵ 1}

= tr{Ŵ 1D
−1Ŵ 1}

=

N
∑

j=1

d̂j
w2

j

(35)

whereŴ 1 = W−1
1 = diag{1/w1, 1/w2, . . . , 1/wN} and d̂j

is the jth diagonal element ofD−1. As tr{(P TDP )−1} is
the sum of squares, the signs ofwi’s do not effect its value.�

Corollary 1 and Lemma 3 imply that if the encoder applies
the method of simple shuffle and scale, then the sign of the
scaling factor does not matter in terms of the cost and objective
of the optimization. Therefore, optimal scaling factors can
be assumed to be positive without loss of generality, which
reduces the search space.

Remark 3: By Proposition 2, we know that whenD is
a diagonal matrix, permutation matrices (with+1 or −1 as
nonzero elements) are optimal precoding matrices. Also, the
optimal precoder belongs to this family of matrices up to a
certain secrecy target levelη† for each parameter. In other
words, if the secrecy target for a given parameter is larger
than η†, then the objective will be larger and the optimal
precoder will not be a permutation matrix anymore. The exact
value ofη† can be found by solving the following optimization
problem:

η† =max
P∈P

min
i

Σerr(i) (36)

where P denotes the set of permutation matrices with+1
or −1 as non-zero elements andΣerr is as given in (11).
Note that there are2NN ! elements inP ; therefore, asN gets
larger, it gets challenging to solve the optimization problem in
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Fig. 2: Total and individual ECRB values versusρ for he,1 = 1 and
he,1 = 1.2.

(36). However, for smallN ’s, it can be solved and provides a
practical limit for the secrecy level that can be satisfied without
increasing the ECRB values of the case without any secrecy
concerns.

V. NUMERICAL RESULTS

In this section, numerical results are provided for both
strategies proposed in Section III and Section IV.

A. Nonlinear Individual Encoding

In all the numerical examples for the individual encoding
strategy,θ is modeled asθ = [θ1 θ2]

T , where bothθ1 and
θ2 are uniformly distributed in[0, 1] and are independent of
each other. The channel parameters for the intended receiver
are taken to behr,1 = hr,2 = 2 and σ2

r,1 = σ2
r,2 = 1.

As the conditions in Lemma 1 are satisfied, the optimal
encoding functions are searched among decreasing functions.
For the first example, the eavesdropper fading coefficients
are taken ashe,2 = 1.5 and he,1 ∈ {1, 1.2}. The channel
noise for the eavesdropper is modeled as zero-mean multi-
variate Gaussian random variable with the covariance matrix

Σe =

[

σ2
e,1 ρ
ρ σ2

e,2

]

, where σ2
e,1 = σ2

e,2 = 1. The target

secrecy levels areη1 = η2 = 0.15. In order to solve the
optimization problem in (14), the approximation methods
described in [17] can be used. In this study, the piecewise
linear approximation method is employed. Namely, for each
fi(θi), ∆x

(i)
k , fi(ai + k∆θi) − fi(ai + (k − 1)∆θi) is

defined, and the optimization is performed overMN vari-
ables; that is, the increments/decrements for each parameter
(∆x(i) = [∆x

(i)
1 ,∆x

(i)
2 , . . . ,∆x

(i)
M ] for i = 1, 2, . . . , N ) are

obtained. For the numerical results,M is taken to be50 and
Global Optimization Toolbox of MATLAB is used.
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he,1 = 1, he,2 = 1.5 η1 η2 he,1 = 1.2, he,2 = 1.5 η1 η2
ρ = 0 0.0769 0.0702 ρ = 0 0.0744 0.0702
ρ = 0.3 0.0764 0.0692 ρ = 0.3 0.0738 0.0692
ρ = 0.5 0.0754 0.0670 ρ = 0.5 0.0723 0.0671
ρ = 0.7 0.0730 0.0621 ρ = 0.7 0.0692 0.0625
ρ = 0.9 0.0660 0.0478 ρ = 0.9 0.0605 0.0497

TABLE I: Maximum secrecy target level values forθ1 andθ2, whenfi(θi) = θi for i = 1, 2.
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i=1, =0
i=2, =0
i=1, =0.2
i=2, =0.2
i=1, =0.5
i=2, =0.5
i=1,2, =0.9

Fig. 3: The optimal encoding functions forθ1 and θ2 for ρ =
{0, 0.2, 0.5, 0.9} whenhe,1 = 1.2.

In Fig. 2, the total and individual ECRB values forθ1 and
θ2 are plotted for variousρ values. It is observed that asρ in-
creases, the total and individual ECRB values decrease, which
implies that the correlation between the noise components of
the eavesdropper for each parameter is useful for our design
purposes. Also, the ECRB forθ1 decreases very slightly until
a certain value ofρ0 (i.e.,ρ0 ≈ 0.2 and0.6 for he,1 = 1.2 and
1, respectively), and then a sharper decrease in the ECRB is
observed. This is due to the fact that the encoding mode for
θ1 changes as explained in Section III-B1. Another interesting
observation is that forhe,1 = 1.2, the total and individual
ECRB for θ1 is lower than that in the case ofhe,1 = 1
and the ECRB forθ2 stays almost the same. The reason for
having a lower total ECRB for a largerhe,1 is the fact that
the eavesdropper is unaware of encoding; hence, the distortion
due to the encoding function is transmitted more effectively
to the eavesdropper. Also, for larger values ofρ, the ECRB
values for both parameters converge to each other.

In Fig. 3, the optimal encoding functions forθ1 andθ2 are
presented forρ ∈ {0, 0.2, 0.5, 0.9} when he,1 = 1.2. This
figure explains some of the behaviors observed in Fig. 2. For
example, whenρ = 0, f1(θ1) is in the variance minimizing
mode andf2(θ2) is in the variance maximizing mode.6 As ρ
increases, the changes inf2(θ2) are not significant and there

6Practically, in the variance minimizing mode, the encoder effectively
decreases the transmitted signal power to hide the parameter; and in the
variance maximizing mode, it has a two-levelquantizer-likebehavior to ensure
secrecy.

is no mode change. On the other hand, the characteristics of
f1(θ1) change whenρ increases, and it gets into the variance
maximizing mode forρ ∈ {0.2, 0.5, 0.9}. Also, both encoding
functions are linear,fi(θi) = 1− θi, for ρ = 0.9, yielding the
same ECRB.

For the second example,he,1 = 1.2, he,2 = 1.5, σ2
e,1 =

σ2
e,2 = 1 andρ = 0.3. The target secrecy level forθ2 is fixed

to beη2 = 0.15, and the target secrecy level forθ1 is increased
starting from0.1. In Fig. 4, the total and individual ECRB
values forθ1 and θ2 are plotted for variousη1 values. Note
that the change in the secrecy target forθ1 does not have any
significant effect on the ECRB performance ofθ2. However,
the ECRB forθ1 and the total ECRB increase exponentially as
η1 increases. The reason of this can be deduced from Fig. 5.
In Fig. 5, the optimal encoding functions forθ1 and θ2 are
given for η1 ∈ {0.1, 0.15, 0.2, 0.25}. It is observed that when
η1 = 0.1, f1(θ1) = 1−θ1. Whenη1 = 0.15, f1(θ1) operates in
the variance maximizing mode, and forη1 = 0.2 and0.25, it
is in the variance minimizing mode. Note that asη1 increases,
f1(θ1) approaches to1. (Note that asf1(θ1) → 1, the ECRB
goes to∞). Also, note that the encoding function forθ2 is
insensitive to changes inη1; that is, f2(θ2) does not change
even thoughη1 increases, and it is the same for all values of
η1 in this example.

In order to demonstrate the advantages of the proposed
encoding scheme, the solution based on [17] is selected as
a benchmark scheme, and a direct performance comparison
between the optimal solution based on NIE and the solution
based on [17] is provided in Fig. 6. Note that the individ-
ual encoding functions are obtained independently for each
element of the vector parameter in the benchmark scheme
as [17] provides a solution method for scalar problems. In
this scenario, the ECRB is plotted versusη2 for the solution
based on [17] and NIE whenρ = 0.4 and ρ = 0.8 and the
parameters are set tohe,1 = 1, he,2 = 1.5, and η1 = 0.15.
Note that the solution based on [17] is the same for both
ρ values, as it does not takeρ into account. It is observed
that NIE has better performance than the solution based on
[17], and the performance gap dramatically increases when the
noise components have high correlation in this scenario. This
is intuitive as optimizing the encoders in a joint manner makes
sense in a correlated environment. However, if the correlation
is decreased, the performance of NIE will converge to that of
the solution based on [17] as proven in Proposition 1. Note that
this can be observed in Fig. 2 as well. The performance of NIE
and the solution based on [17] would be same forρ = 0, and as
ρ increases, ECRB of NIE starts to decrease in Fig. 2, however
the solution based on [17] would stay constant, yielding a non-
negligible performance difference especially in scenarios with
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Fig. 4: Total and individual ECRB values versusη1.
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Fig. 5: The optimal encoding functions forθ1 and θ2 for η1 ∈
{0.1, 0.15, 0.2, 0.25} andη2 = 0.15.

medium and high correlation in the noise components.

Finally, the maximum estimation error values at the the
eavesdropper are given in Table I when the parameters are
directly sent to the channel without any encoding, i.e.,fi(θi) =
θi for i = 1, 2, to further emphasize the importance of
the encoding operation. If there exists no eavesdroppers, not
applying any encoding is a logical option, as the encoding
operation can cause a loss in receiver’s estimation accuracy.
However, under secrecy constraints, lack of encoding can
compromise the security, and a limited error can be caused
at the eavesdropper. It is observed from Table I that the
achievable target error levels are around0.07 or lower for
the simulation parameters considered in this study; however,
larger error values are possible if NIE is applied as illustrated
in the examples.

η
2
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Sol. based on [17] (ρ = 0.4, 0.8)

Fig. 6: Total ECRB values versusη2 for different approaches.

B. Affine Joint Encoding

In this part, we investigate the affine joint encoding strat-
egy and obtain the optimal precoding matrixP to satisfy
certain secrecy constraints. In all the numerical examples, θ
is modeled asθ = [θ1 θ2]

T , and θ1 and θ2 are assumed
to be independent of each other withθ1, θ2 ∈ [0, 1]. Also,
the channel parameters for the intended receiver are taken
to be hr,1 = hr,2 = 2. The precoding matrix is expressed

as P =

[

p11 p12
p21 p22

]

. Note that |p11| + |p12| ≤ 1 and

|p21|+ |p22| ≤ 1 should be satisfied to ensureβ1, β2 ∈ [0, 1].
The strategies considered in the numerical results are given as
follows:

• Affine Joint Encoding (AJE): This approach refers to
the solution of the optimization problem in (26).

• Nonlinear Individual Encoding (NIE): This approach
refers to the solution of the optimization problem in (14).

• Affine Individual Encoding (AIE): This is a simplified
version of the AJE approach. In particular, precoding
matrix P has the form ofP = W 1W 2, whereW 1 =
diag{w1, w2, . . . , wN} is a diagonal matrix andW 2 is
a permutation matrix. The AIE approach can further be
grouped as follows:

1) AIE without permutation: This refers to special
case withW 2 = I. For N = 2, we assumep12 =
p21 = 0.

2) AIE with permutation: This refers to the scenario
with W 2 6= I. ForN = 2, we assumep11 = p22 =
0.

We provide five different examples to investigate the affine
joint encoding strategy numerically. In the examples, different
values for eavesdropper’s fading coefficients and prior distri-
butions forθ1 andθ2 are used in order to show the advantages
and disadvantages of certain encoding strategies over each
other in terms of their performance and to corroborate the
theoretical results provided in the manuscript. For the first
four examples, the channel noise for the eavesdropper and the
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intended receiver is taken to be zero-mean Gaussian random
variables with independent components of unit variance, i.e.,
Σe = Σr = I. In the first example,θ1 andθ2 are assumed to
be uniformly distributed and the secrecy target for the second
parameter,η2, is set to be0.15. Also, the eavesdropper fading
coefficients are taken ashe,1 = 1.2 andhe,2 = 1.5. In Fig. 7,
the total optimal ECRB values forθ1 and θ2 are plotted for
variousη1 values. It is observed that NIE provides improved
performance compared to the affine encoding options for this
scenario. Also, the optimal AJE solution is the same as the
optimal AIE without permutations and they perform slightly
better than AIE with permutations.

For the second example, we investigate affine encoding
strategies in more detail. The simulation parameters are the
same as the first example except that the distribution ofθ2 is
taken to bew(θ2) = 2θ2 andw(θ2) = 7θ62. The secrecy target
for the second parameter,η2, is set to0.15. In Fig. 8, the total
optimal ECRB values forθ1 andθ2 versusη1 are plotted for
various affine encoding strategies. For AIE with and without
encoding strategies, we also study the case in which the
coefficients of the matrix are restricted to be positive and this
is illustrated in the legend of Fig. 8 with (+) next to the name
of the corresponding strategy, e.g., AIE w/o perm. (+). When
w(θ2) = 7θ62, the solutions for the optimal AJE, AIE with per-
mutation and AIE with permutation with positive coefficients
are the same and yield the best performance, whereas AIE
without permutation with positive coefficients gives the worst
performance. AIE without permutation provides a moderate
performance except forη1 < 0.11, where it also provides
the optimal performance. Whenw(θ2) = 2θ2, AIE with per-
mutation and AIE with permutation with positive coefficients
have the same performance, and they perform better than AIE
without permutation whenη1 > 0.111; however, AIE without
permutation is better whenη1 < 0.111. The optimal AJE
solution achieves the minimum of these three strategies at all
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η1 values. AIE without permutation with positive coefficients
yields the worst performance in this case, as well. Note that
Corollary 1 and Lemma 3 can be applied in this example
for AIE with permutation strategy. AsE(θ1) = 1/2, and
eavesdropper’s noise is white, Corollary 1 and Lemma 3
imply together that for the AIE with permutation strategy,
the matrix elements can be restricted to be positive without
loss of generality. Therefore, it is not a coincidence that AIE
with permutation and AIE with permutation with positive
coefficients yield the same performance in this example.

For the third example,θ1 is assumed to be uniformly
distributed and the distribution ofθ2 is taken to bew(θ2) =
4θ32. The secrecy targets for both parameters are set to0.15.
In Fig. 9, the total optimal ECRB values forθ1 and θ2
are plotted for varioushe,1 values whenhe,2 = 1.5. It
is observed that the performance of AIE with permutation
and AIE with permutation with positive coefficients are the
same asE(θ1) = 1/2 for this example, as well. Their
performance stays constant ashe,1 increases. The performance
of AIE without permutation is initially worse than that of AIE
with permutation; however, it improves ashe,1 increases and
performs better whenhe,1 > 2.57. AIE without permutation
with positive coefficients yields the worst performance, and its
performance gets even worse ashe,1 increases. The different
responses of the strategies to the increase ofhe,1 are due to the
fact that the structure ofΣerr varies as the encoding strategy
changes. The optimal AJE solution is the same as AIE with
permutation whenhe,1 < 2.57 and it is same as AIE without
permutation whenhe,1 ≥ 2.57.

For the fourth example, the distribution ofθ1 is taken
to be w(θ1) = 2θ1 and the distribution ofθ2 is given by
w(θ2) = 4θ32. The secrecy target for the second parameter,η2,
is set to0.2. In Fig. 10, the total optimal ECRB values for
θ1 and θ2 are plotted for variousη1 values. It is observed
that when η1 < 0.225, the best performance is obtained
by employing NIE; however, afterη1 > 0.225, the optimal
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Parameters η1 η2
he,1 = 1.2, he,2 = 1.5, w(θ1) = 1, w(θ2) = 1 0.0744 0.0702
he,1 = 1.2, he,2 = 1.5, w(θ1) = 1, w(θ2) = 2θ2 0.0744 0.0494
he,1 = 1.2, he,2 = 1.5, w(θ1) = 1, w(θ2) = 7θ62 0.0744 0.0118
he,1 = 1, he,2 = 1.5, w(θ1) = 1, w(θ2) = 4θ32 0.0769 0.0252
he,1 = 3, he,2 = 1.5, w(θ1) = 1, w(θ2) = 4θ32 0.0476 0.0252
he,1 = 5, he,2 = 1.5, w(θ1) = 1, w(θ2) = 4θ32 0.0270 0.0252
he,1 = 10, he,2 = 1.5, w(θ1) = 1, w(θ2) = 4θ32 0.0089 0.0252

he,1 = 1.2, he,2 = 1.5, w(θ1) = 2θ1, w(θ2) = 4θ32 0.0514 0.0252
The parameters of Fig. 11 0.0531 0.0191

TABLE II: Maximum secrecy target level values forθ1 andθ2 whenP = I andr = 0
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AJE solution, which has the same performance as AIE with
permutation, starts to yield the best performance. This shows
that the simple flip and scale approach may be better than
the individual nonlinear encoding function strategy in certain
scenarios. AIE without permutation performs slightly worse
than NIE. AIE with/without permutation with positive coef-
ficients do not achieve a good performance in this scenario.
As the conditions given in Corollary 1 are no longer satisfied,
there is a significant performance gap between the optimal
AIE solutions and the AIE solutions which are restricted to
positive coefficients.

In all the four examples, we have observed that the optimal
AJE solution has the form of one of the AIE solutions.
However, this does not have to be the case in all scenarios and
the fifth example provides such an example. In this example,
eavesdropper’s fading coefficients are taken ashe,1 = 0.8
and he,2 = 1.25. The channel noise for the eavesdrop-
per is modeled as zero-mean multivariate Gaussian random

variable with the covariance matrixΣe =

[

σ2
e,1 ρe
ρe σ2

e,2

]

,

where σ2
e,1 = σ2

e,2 = 1 and ρe = −0.5 and the channel
noise for the eavesdropper is also modeled as zero-mean
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multivariate Gaussian random variable with the covariance

matrix Σr =

[

σ2
r,1 ρr
ρr σ2

r,2

]

, where σ2
r,1 = σ2

r,2 = 1 and

ρr = 0.7. The distribution ofθ1 is taken to bew(θ1) = 2θ1
and the distribution ofθ2 is given by w(θ2) = 5θ42. The
secrecy target for the first parameter,η1, is set to be0.4, and
the total optimal ECRB values forθ1 and θ2 are plotted for
variousη2 values. In Fig. 11, it is observed that the optimal
AJE solution is better than both the optimal AIE with and
without permutation solutions. For example, whenη2 = 0.35,
the optimal precoding matrix for the AIE with permutation

solution is

[

0 −0.4787
−0.7807 0

]

, yielding an objective value

of 1.5012. On the other hand, the optimal precoding matrix

for the AJE strategy is

[

0 −0.48
−0.6578 −0.2439

]

, yielding an

objective value of1.4008.7 Therefore, it is possible that joint
encoding of parameters can outperform individual encoding
depending on the channel and parameter statistics. It is also
observed that NIE and the solution based on [17] have almost
the same performance, and even though they are better than
AIE without permutation, they perform worse than AIE with
permutation and AJE. This implies that, in this particular
scenario, the main source of performance improvement is to
exploit the fact that there are multiple elements in the vector
by shuffling the order of the elements or even jointly encoding
them rather than individual encoding via a nonlinear function.
Therefore, there might be cases in which it is not very critical
to take the correlation in noise components into account in
NIE, as the performance improvement can be negligible.

The maximum secrecy target levels with no encoding are
provided for this encoding scheme as well; that is,P = I

and r = 0 in Table II for all the considered scenarios. It
is observed that the achievable secrecy levels are much lower
than those of the AJE scheme. It is also interesting to note that
ashe,1 increases, the secrecy levels decrease in Table II. This
is because of the fact that the channel of the eavesdropper gets
better and the error performance improves when the original
parameter is transmitted. Such an issue does not occur if the
optimal AJE is applied, and this can even be turned into
an advantage according to Fig. 9 due to the secret encoder.
Also, for the parameters of Fig. 11, the maximum error levels
for θ1 and θ2 are 0.0531 and 0.0191, respectively; however,
the optimal AJE can reachη1 = 0.4 and η2 = 0.55 (and
possibly more) according to the fifth example. This shows the
clear advantage of the proposed schemes as compared to not
utilizing any encoder in the presence of an eavesdropper.

C. Computational Complexity

One of the main factors determining the computational
complexity of the proposed algorithms is the dimension of
the space in which the search is performed. When we use the
piecewise linear approximation (PWL) method to obtain the
optimal solution for nonlinear individual encoding, the search
is performed overMN variables as described in Section

7The corresponding optimalr values for the AIE with permutation solution
and the AJE solution can be found asrT = [0.4787 0.7807] and r

T =
[0.48 0.9017] respectively.

V-A. As M increases, lower ECRB values can be obtained.
However, it increases the search dimension and the complexity.
For affine joint encoding, the original optimization problem in
(26) requires a search overP andr, yielding a search space
overN2+N variables. However, it is shown in Lemma 2 that
it is enough to calculateP for optimal encoding reducing the
space toN2 variables.

Another important factor related to the computational com-
plexity of encoder optimization is the number of multiplica-
tions at the calculation of the cost and objective functionsfor a
given candidate encoder. For NIE, both the objective and cost
functions require a calculation of anN dimensional integral.
Let X denote the terms in the Riemann sum for a given step
size. Then, the objective function requiresO(NX) multiplica-
tions. To calculateΣerr, each ofΣβ andΣβ,θ needsO(N2X)
and E(β) needsO(NX) calculations. Then, the overall
complexity to calculate (11) becomesO(N2X)+O(N3). For
AJE, the complexity of calculating the cost function and the
objective function are bothO(N3). Therefore, AJE has lower
computational complexity especially ifN is not very large.
However, if N is large, then the optimal matrix calculation
can become more costly than the NIE algorithm. Note that
AJE is a type of a precoding based encoding strategy; hence
it has a comparable complexity to the beamforming strategies
in the literature, which are employed in different problems.

As a special case of AJE, AIE is also considered in the
numerical examples. If AIE without permutation is employed,
the search space reduces toN from N2, and the complexity
of the cost and objective function calculations also decreases
relatively. For AIE with permutation, the search space isN+1,
where the extra variable indicates the permutation order. Note
that whenN increases, the possible values for the permutation
order increases very quickly. However, it is always possible to
prune the size of this set to a practical maximum size, and to
choose the permutation order from it.

D. General Observations

We have investigated the optimal encoding of multiple
parameters for secure communication for the two proposed
practical encoding approaches. For the NIE scheme, it is
observed that as the correlation between eavesdropper’s noise
components increases, the total ECRB cost decreases for a
given target secrecy level implying that such a correlationis
useful for the parameter encoding task. It is also observed that
the encoding function is in either the variance minimizing or
maximizing mode depending on the channel quality and the
correlation values of the parameter. In the second part, the
affine joint and individual encoding schemes are compared
with each other for various parameter distributions. It is
observed that in many scenarios, the solution of the AJE
scheme is in the form of the AIE solution, which can be with or
without permutations. This implies that individually encoding
each parameter can be good enough to solve the optimization
problem in most cases. However, it is important to emphasize
that this is not a theory as it is possible to find counter
examples. Also, when AJE and NIE are compared to each
other, it is observed that one can have better performance than



14

the other depending on the scenario. This means that in certain
scenarios, simple permutation or/and scaling of the parameters
can be the effective security solution and in some cases, using
a nonlinear function without utilizing any permutation brings
more benefits.

We note that the main goal behind the encoding operation
is to achieve the desired secrecy levels by also providing a
certain estimation quality at the receiver. It is observed that
both of the proposed approaches have the ability to achieve
large estimation errors at the eavesdropper, which could not
have been possible if there were no encoding utilized. Another
important contribution of this study is that we provide useful
theoretical simplifications (and sufficient conditions to apply
them) to obtain optimal encoders in practice and they have
been used in all the examples. Proposition 1 is utilized when
ρ = 0 and decoupled optimization problems are solved.
Similarly, Lemma 1 is also applied and even though the
encoding functions are obtained jointly forρ > 0, they are
searched over decreasing functions as it can be observed
in Figs. 3 and 5. For AJE, Lemma 2 is utilized to solve
the optimization problem and the search is restricted to the
optimal precoding matrix as the constant term can be found
theoretically for a given encoder. It is observed that even
though signed permutation matrices are optimal when there
is no secrecy constraint according to Proposition 2, they are
not optimal under secrecy requirements in general and either
joint encoding and/or scaling of the parameters is required.
Finally, Corollary 1 and Lemma 3 are utilized to show that
in certain scenarios, matrix coefficients can be restrictedto be
positive as can be observed in Figs. 8 and 9.

VI. CONCLUSIONS

In this manuscript, optimal encoding of multiple parameters
has been investigated in the presence of an eavesdropper. An
optimization problem has been proposed with an objective to
minimize the ECRB at the intended receiver while satisfying
the MSE targets at the eavesdropper. Two practical encoding
schemes, i.e., NIE and AJE, have been proposed. It has been
observed that both schemes are able to create large estimation
errors at the eavesdropper, which is not possible when no
encoding is applied, and they can be employed as a security
measure. The performance of both schemes has also been com-
pared to each other and it has been observed that one can have
better performance than the other depending on the scenario.
Another observation is that the optimal encoding function for
NIE is in either the variance minimizing or maximizing mode,
and in many scenarios individually encoding the parameters
with an affine function (with or without permutation of the
parameters) has as good performance as that of AJE. Also,
theoretical results derived in the manuscript prove usefulin
simplifying the optimal encoding problem.

Finally, we note that it is entirely possible that two strategies
proposed in this paper can be combined to further optimize
the encoding function. For example, the first encoding block
can perform nonlinear individual encoding and the second
encoding block can perform affine joint encoding to the output
of the first block. In that case, both the nonlinear individual en-
coding functions and the precoding matrix should be optimized

jointly and despite the increase in computational complexity,
the performance can further be improved. As future work, we
aim to investigate scenarios in which the eavesdropper has
full or partial knowledge of the encoder and the transmitter
employs a stochastic encoder to possibly enhance security.
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