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Abstract—In this letter, the problem of noncoherent detection
of a sinusoidal carrier is considered in the presence of Gaussian
noise. The convexity properties of the detection probability are
characterized with respect to the signal-to-noise ratio (SNR). It
is proved that the detection probability is a strictly concave
function of SNR when the false alarm probability α satisfies
α > e

−2, and it is first a strictly convex function and then
a strictly concave function of SNR for α < e

−2. In addition,
optimal power allocation strategies are derived under average
and peak power constraints. It is shown that on-off signaling
can be optimal for α < e

−2 depending on the power constraints
whereas transmission at a constant power level that is equalto
the average power limit is optimal in all other cases.

Index Terms– Detection, Neyman-Pearson, noncoherent, prob-
ability of detection, convexity, power allocation.

I. I NTRODUCTION

Noncoherent detection is employed in various wireless
applications due to its practicality and low complexity [1], [2].
In the noncoherent detection framework, the receiver does not
exploit the phase information of the carrier, which modulates
the message signal. In this letter, the problem of noncoherent
detection of a modulated sinusoidal carrier is considered [2,
pp. 65–72]. In this problem, the detection probability can
explicitly be obtained in terms of the false alarm probability
and signal-to-noise ratio (SNR). The aim in this letter is to
investigate the convexity properties of the detection probability
with respect to SNR and consequently to develop optimal
power allocation strategies for noncoherent detection of a
modulated sinusoidal carrier.

Convexity properties of error probability and detection prob-
ability are analyzed in various studies in the literature, such as
[3]–[5]. The work in [3] investigates the convexity properties
of the error probability corresponding to the maximum likeli-
hood (ML) detector for a binary hypothesis-testing problem.
The theoretical analysis reveals that the error probability of the
ML detector is convex with respect to the signal power when
the noise has a unimodal distribution [3]. The results in [3]are
extended to the multi-dimensional case in [4] by employing
the ML detector for additive white Gaussian noise (AWGN)
channels with flat and non-flat fading. It is shown that when
the dimension of the constellation is less than or equal to two,
the symbol error rate is always convex in SNR. On the other
hand, when the dimension is larger than two, the symbol error
rate is concave at low SNRs and convex at high SNRs [4].
In [5], the convexity properties of the detection probability
are investigated in the Neyman-Pearson (NP) framework. It
is proved that the detection probability is strictly concave in
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SNR when the false alarm probabilityα satisfiesα ≥ Q(2)
and has two inflection points whenα < Q(2), whereQ(·)
denotes theQ−function [5]. Based on this result, the optimal
power allocation strategy is proposed forα < Q(2), which can
significantly improve the detection probability in some cases
via time sharing between different power levels.

In this letter, we consider the noncoherent detection problem
for a modulated sinusoidal carrier within the NP framework
[2, pp. 65–72]. The main contribution of this letter is to char-
acterize the convexity properties of the detection probability
with respect to SNR for all levels of false alarm probability,
which is not available in the literature. We prove that the
detection probability is strictly concave in SNR when the false
alarm probability satisfiesα > e−2, and starts as a strictly
convex function and continues as a strictly concave function
of SNR for α < e−2. Due to the existence of the convex
region for α < e−2, the detection probability performance
can be improved via time sharing between different power
levels, which is analyzed by characterizing the optimal power
allocation under average and peak power constraints. It is
shown that, forα < e−2, on-off signaling can facilitate
significant improvements in the detection performance when
the average power constraint is less than a fixed value.

II. SYSTEM MODEL

Consider the problem of noncoherent detection of a sinu-
soidal carrier in the presence of Gaussian noise. Namely, the
aim is to decide between two hypothesesH0 versusH1 based
on a vector-valued observationY = [Y1, . . . , Yn]

T , which is
described as follows:

H0 : Yk = Nk, H1 : Yk =
√
Psk(θ) +Nk, for k = 1, . . . , n

(1)
where the noise componentsNk are zero-mean independent
and identically distributed (i.i.d.) Gaussian random variables
with variance σ2 for k = 1, . . . , n, parameterP deter-
mines the power of the transmitted signal, ands(θ) =
[s1(θ), . . . , sn(θ)]

T is a vector-valued function ofθ, with
sk(θ)’s being samples from a modulated sinusoidal carrier as
follows [2, p. 65]:

sk(θ) = ak sin ((k − 1)ωcTs + θ) for k = 1, . . . , n (2)

In (2),wc is the carrier (angular) frequency,Ts is the sampling
interval, a1, . . . , an are samples of bandlimited waveform
a(t) which modulates the sinusoidal carrier, andθ is the
unknown phase of the carrier, which is modeled by a uniform
random variable over[0, 2π) that is independent of the noise
components. It is assumed thatnωcTs = 2πm for some integer
m, andn/m (i.e., the number of samples taken per cycle of
the sinusoid) is an integer larger than one [2].



Averaging over the uniform distribution of the phaseθ and
assuming thata21, . . . , a

2
n vary slowly compared to twice the

carrier frequency, the likelihood ratio for the problem specified
by (1) and (2) can be expressed as

L(y) = e−
na2P
4σ2 I0(rP/σ

2), (3)

where a2 = 1
n

∑n
k=1 a

2
k, I0(·) is the zeroth or-

der modified Bessel function of the first kind, i.e.
I0(x) = (1/2π)

∫ 2π

0 ex cos θ dθ and r =
√

y2c + y2s ,
with yc =

∑n
k=1 akyk cos ((k − 1)ωcTs) and ys =

∑n
k=1 akyk sin ((k − 1)ωcTs). From (3) and the monotonicity

of I0(·), the optimum likelihood ratio test can be implemented
by comparingr against a threshold. Then, the optimum size-α
NP decision rule can be specified as [2, p. 70]

r
H1

R
H0

(

nσ2a2 log(1/α)
)1/2

(4)

Let γ , na2P/(2σ2) represent the SNR. The decision rule in
(4) achieves the following probability of detection:

Pd(γ, α) = Q1

[√
γ,

√

−2 logα
]

, (5)

whereα is the false alarm probability andQ1[y, b] is Mar-
cum’s Q-function of order1, which is given byQ1[y, b] =
∫∞
b te−(t2+y2)/2I0(ty) dt [2].

III. C ONVEXITY PROPERTIES INSIGNAL POWER AND

OPTIMAL POWER ALLOCATION

In this section, the aim is to analyze the convexity prop-
erties of the detection probability in (5) with respect to SNR
(or, equivalently signal power), and subsequently to develop
optimal power allocation strategies that achieve the maximum
average detection probability under average and peak power
constraints.

A. Convexity/Concavity Results

We start with analyzing the convexity of
Q1

[√
γ,

√−2 logα
]

in (5) with respect to γ. To
simplify the notation, the following definition is
employed: f(α) ,

√
−2 logα. Then, (5) becomes

Pd(γ, α) = Q1[
√
γ, f(α)].

Before analyzing the convexity ofPd(γ, α), it is recalled
from [6, Thm. 1] thatPd(γ, α) is monotone increasing with
respect toγ. Then, the following proposition characterizes the
behavior ofPd(γ, α) for α > e−2.

Proposition 1: If the false alarm probability satisfiesα >
e−2, then Pd(γ, α) is a strictly concave and monotonically
increasing function ofγ for all γ ∈ [0,∞).

Proof: From [7, Eq. 16], the second derivative of
Q1[

√
γ, f(α)] with respect toγ can be expressed as

d2

dγ2
Q1[

√
γ, f(α)] = (−2)−2

2
∑

p=0

(−1)p
(

2

p

)

Q1+p[
√
γ, f(α)]

=
1

4
(Q1[

√
γ, f(α)]− 2Q2[

√
γ, f(α)] +Q3[

√
γ, f(α)]) (6)

whereQi[· , ·] denotes Marcum’sQ-function of orderi. Then,
via the recurrence relation of Marcum’sQ-function in [7,
Eq. 2], (6) can be written as:

d2

dγ2
Q1[

√
γ, f(α)] =

1

4

f(α)√
γ
e−

γ+(f(α))2

2

×
(

f(α)√
γ
I2(

√
γf(α))− I1(

√
γf(α))

)

, (7)

whereIi(·) denotes theith order modified Bessel function of
the first kind. To prove the concavity, it is sufficient to consider
the sign of

( f(α)√
γ I2(

√
γf(α)) − I1(

√
γf(α))

)

as the other
terms are positive in (7). From the inequality given in [8,
Eq. 2.21], it is known that

I2(
√
γf(α)) < I1(

√
γf(α))

√
γf(α)

4
· (8)

Therefore, it follows that

f(α)√
γ
I2(

√
γf(α))−I1(

√
γf(α)) <

(

f(α)2

4
−1

)

I1(
√
γf(α))

(9)
From (9), it is noted that iff(α)2 < 4 (equivalently, ifα >
e−2 ),

f(α)√
γ
I2(

√
γf(α))− I1(

√
γf(α)) < 0 (10)

is obtained, which concludes the proof. �
Next, to investigate the convexity properties ofPd(γ, α)

for α < e−2, the following lemmas are presented, which are
proved in the Appendix.

Lemma 1: If α < e−2, there existŝγ > 0 such that the
second derivative ofPd(γ, α) with respect toγ is positive for
γ ∈ [0, γ̂].

Lemma 2: If α < e−2, there exists̃γ such that the second
derivative ofPd(γ, α) with respect toγ is negative for all
γ ≥ γ̃.

Lemma 3: For α < e−2, there exists a unique inflection
point γ∗ such thatP ′′

d (γ
∗, α) = 0, whereP ′′

d (γ
∗, α) denotes

the second derivative ofPd(γ, α) with respect toγ evaluated
at γ∗.

Based on Lemma 1, Lemma 2, and Lemma 3, the convexity
properties ofPd(γ, α) are characterized in the following
proposition when the false alarm probability satisfiesα < e−2.

Proposition 2 : For α < e−2, there existsγα > 0
such thatPd(γ, α) is a strictly convex and monotonically
increasing function ofγ in [0, γα) and a strictly concave and
monotonically increasing function ofγ in [γα,∞).

Proof : The proof follows from [9, Thm. 1], Lemma 1,
Lemma 2, Lemma 3, and the Intermediate Value Theorem.�

Proposition 1 together with Proposition 2 characterize the
convexity properties of the detection probability for all possi-
ble values of the false alarm probabilityα.1

B. Optimal Power Allocation

In this section, enhancement of detection performance via
time sharing among different power levels is investigated.
Consider a general time sharing strategy with time sharing

1It is worth mentioning that inflection pointγα can easily be computed via a
bisection search [5] since it is a root of the following equation: v1(γαf(α)) =
(f(α))2 , as shown in the proof of Lemma 3.



factors{λi}Mi=1 and corresponding SNR values{γi}Mi=1, where
M denotes the number of SNR levels that can be employed
during the time sharing operation, andλi’s are nonnegative and
sum to one. Then, the aim is to obtain the optimal strategy that
maximizes the average detection probability under averageand
peak SNR (equivalently, power) constraints. Mathematically
stated,

max
{λi,γi}M

i=1

M
∑

i=1

λiPd(γi, α) (11a)

subject to

M
∑

i=1

λiγi ≤ Γavg ,

M
∑

i=1

λi = 1 (11b)

0 ≤ γi ≤ Γpeak , λi ≥ 0 i = 1, . . . ,M (11c)

whereΓavg ≤ Γpeak is assumed.
Since the detection probability is a monotonically increasing

function of γ, the solution of (11) always operates at the
average SNR limitΓavg. In addition, forα > e−2, based on
the strict concavity of the detection probability with respect
to SNR (Proposition 1), it can be deduced that the solution of
(11) is given byλ∗

k = 1, λ∗
i = 0 for i ∈ {1, . . . ,M} \ {k}

and γ∗
k = Γavg for any k ∈ {1, . . . ,M}. In other words,

whenα > e−2, time sharing is not employed, and a constant
transmission power that corresponds to the average SNR limit,
Γavg, is used all the time.

On the other hand, forα < e−2, there exists an interval
over which the detection probability is convex (Proposition 2).
Hence, improvements in detection probability can be achieved
via time sharing under certain scenarios. To characterize the
optimal time sharing strategy (i.e., the solution of (11)) for
α < e−2, the following lemma is presented first, which is
proved in the Appendix.

Lemma 4: Let γα be the unique inflection point ofPd(γ, α)
for α < e−2. Then, there existsγt > γα such that the
line passing through points(0, Pd(0, α)) and (γt, Pd(γt, α))
is tangent toPd(γ, α) at γt, and lies abovePd(γ, α) for all
γ > 0.

Based on Lemma 4, the optimal time sharing strategy for
α < e−2 can be described as follows:

Proposition 3: Let α < e−2 and γt be the tangent point
defined as in Lemma 4.
(i) If γt ≤ Γavg, the optimal strategy is to employΓavg all

the time.
(ii) If Γpeak ≥ γt > Γavg, the optimal strategy is to time

share between SNRs of0 andγt, with fraction of timeΓavg/γt
allocated to the SNR ofγt.2

(iii) If γt > Γpeak, the optimal strategy is to time share be-
tween SNRs of0 andΓpeak, with fraction of timeΓavg/Γpeak

allocated to the SNR ofΓpeak.
Proof: Let the average SNR in (11b) and the average

detection probability (objective function) in (11a) be denoted
by

∑M
i=1 λiγi , γ̄ and

∑M
i=1 λiPd(γi, α) , P d(γ̄, α),

respectively. Consider(i) and (ii), whereγt ≤ Γpeak. Let γ̄
be an average SNR. Then, according to the proposed strategy,

2In practice, time sharing between different SNR values can be implemented
by time sharing between different transmitter powers, controlled by the
parameterP in (1).

the following average detection probability is achieved:

P
∗
d (γ̄, α) =

{

Pd(γ̄, α) , if γ̄ ∈ (γt,Γpeak]

Pd(0, α) + λ γ̄ , if γ̄ ∈ [0, γt]
(12)

whereλ = (Pd(γt, α) − Pd(0, α))/γt. Since the aim in (11) is
to maximize the average detection probability via time sharing,
it can be shown that the optimal solution resides on the upper
boundary of the convex hull of theγ versusPd(γ, α) curve for
γ ∈ [0,Γpeak] (see, e.g., [10] for a similar scenario). Therefore,
the proposition can be proved by showing thatP

∗
d (γ, α)

in (12) is the smallest concave function which is greater
than or equal toPd(γ, α); i.e., P

∗
d (γ, α) forms the upper

boundary of the convex hull. First, it is clear thatP
∗
d (γ, α)

is a concave function ofγ. Hence, forγ > γt, P
∗
d (γ, α)

in (12) becomes the upper boundary of the convex hull by
definition. Forγ ∈ [0, γt], suppose, towards a contradiction,
that P

∗
d (γ, α) is not the smallest concave function greater

than or equal toPd(γ, α). This implies that there exists
another functiong1(γ, α) which is concave and greater than
or equal toPd(γ, α), and that there existsx ∈ [0, γt] such that
g1(x, α) < P

∗
d (x, α). As x ∈ [0, γt], there exists0 < β < 1

such thatx = βγt. Then, by the concavity ofg1, it is
clear thatg1(x, α) ≥ βg1(γt, α) + (1 − β)g1(0, α). Since
g1 is greater than or equal toPd(γ, α), it is concluded that
g1(x, α) ≥ βg1(γt, α) + (1− β)g1(0, α) ≥ βPd(γt, α) + (1−
β)Pd(0, α) = P

∗
d (x, α), which contradicts the assumption of

g1(x, α) < P
∗
d (x, α). Hence, it is proved thatP

∗
d (γ, α) is the

smallest concave function greater than or equal toPd(γ, α). In
addition, sinceP

∗
d (γ, α) is monotone increasing (due to the

monotone increasing nature ofPd(γ, α)), the optimal value
of (11a) is equal toP

∗
d (Γavg, α), which can be achieved by

the strategies specified by(i) or (ii) depending on the value
of Γavg. The proof for case(iii), i.e., Γpeak < γt, can be
obtained in a similar fashion. �

Proposition 3 states that whenα < e−2, time sharing
becomes beneficial if the average power limit (equivalently,
the average SNR limit) is lower than a certain threshold. In
that case, on-off signaling is the optimal strategy, and the
duration of the silent period and the transmitted power level
are determined according to the average and peak power limits.

Remark: The power allocation strategy can be implemented
in practice as follows: Suppose that the statistical model in
(1) is valid for Ns consecutive transmissions (observations).
First, γt defined in Lemma 4 is calculated. Then, if the
condition in Proposition 3-(i) is satisfied, the same power
level (corresponding to SNRΓavg) is used for all (Ns)
transmissions. If the condition in Proposition 3-(ii) is satisfied,
round(NsΓavg/γt) out of Ns transmissions occur with a
constant power level corresponding to SNRγt, and nothing
is transmitted during the remaining slots (corresponding to
zero power). A similar approach is adopted if the condition in
Proposition 3-(iii) holds .

IV. N UMERICAL EXAMPLES AND SIMULATIONS

In this section, we provide numerical examples and simula-
tions to illustrate the theoretical results of the previoussection.
Fig. 1 shows the probability of detection in (5) versus SNR,
γ, for various values of the false alarm probabilityα. The



cross (×) signs in the figure indicate the results of the Monte-
Carlo simulations, which match perfectly with the theoretical
results (dashed and straight lines), as expected. As statedin
Propositions 1 and 2, the probability of detection is a concave
function of SNR forα > e−2 ≈ 0.135, and initially a convex
and then a concave function of SNR forα < e−2. The optimal
power allocation strategies can also be deduced from Fig. 1 as
follows: Suppose thatΓpeak = 50. Then, the optimal strategy
is to operate at the average power limit forα = 0.5 and
α = e−2 due to the concavity of the probability of detection.
On the other hand, forα = 10−2, α = 10−4, andα = 10−6,
the optimal strategy is to time share between SNRs of0 and
γt, with fraction of timeΓavg/γt allocated to the SNR ofγt
(see Proposition 3), whereγt is equal to9.685, 23.76, and
36.6 for α = 10−2, α = 10−4, andα = 10−6, respectively.
For example, forα = 10−4 and Γavg = 10, the probability
of detection can be improved from0.161 to 0.318 via time
sharing between SNRs of0 and 23.76. The dashed lines in
Fig. 1 indicate the probability of detection values that canbe
achieved via time sharing (on-off signaling) in the considered
scenario. It is noted that time sharing becomes more crucial
for low levels of false alarm probability, which is the case in
many practical scenarios.
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Fig. 1. Probability of detection versusγ for various values of the false alarm
probability α. The dashed lines correspond to the upper boundaries of the
convex hulls ofPd(γ, α) curves, which are attained via on-off signaling, as
stated in Proposition 3. The cross signs indicate the results of the Monte-Carlo
simulations.

V. EXTENSION TO FADING CHANNELS

Although no fading is considered in the analysis in Sec-
tion III, the results are also valid for frequency-flat block-
fading channels assuming that perfect channel power gain
information is available at the transmitter and peak/average
power constraints are imposed over the duration of block-
fading. In particular, considering the following observation
model

H0 : Yk = Nk, H1 : Yk =
√
Phsk(θ)+Nk, for k = 1, . . . , n

(13)
whereh > 0 is the channel power gain, the only modification
in the formulations would be to scale SNR (γ) with the
known channel power gainh. Under the block-fading channel

model, the proposed optimal power allocation approach can be
employed within each block. If the transmitter does not have
perfect channel power gain information, then the detection
probability achieved by the proposed optimal signaling method
based on perfect information can be regarded as an upper
bound on the detection performance.

If power allocation is applied over different fading blocks,
then the convexity properties of theaverage detection prob-
ability should be considered to determine the optimal power
allocation strategy. It is noted that for a given value ofh in
(13), the size-α NP decision rule in (4) is still optimal since
the detector threshold does not depend onP or h. By defining
γ , na2Ph/(2σ2), it is seen that the detection probability of
the optimum size-α NP detector for fixed channel power gainh
is in the same form as that given in (5). By treating the channel
power gainh as a random variable, the detection probability
can be averaged over the distribution ofh (or, equivalentlyγ).
Since the resulting average detection probability is a function
of the transmit powerP , its convexity properties w.r.t.P can
be identified and the optimal power allocation under peak and
average power constraints can be determined. To this end,
we compute the average detection probability of the proposed
detector under Rayleigh block-fading in the following.

For the Rayleigh fading scenario, the probability density
function (PDF) ofh is given by fh(h) = (1/h)e−h/h for
h ≥ 0. For convenience, defineρ , na2P/(2σ2); thenγ = ρh
and γ = Eh[γ] = ρh, whereEh[·] represents expectation
w.r.t. fading power distribution. Denote the average detection
probability under Rayleigh fading asPd(γ, α). Then, from (5)
and [11, Eq. 30],Pd(γ, α) can be calculated as follows:

Pd(γ, α) =

∫ ∞

0

1

h
e−

h
hQ1

[
√

ρh,
√

−2 logα
]

dh

=

∫ ∞

0

1

h
e−

u2

h Q1

[

u
√
ρ,
√

−2 logα
]

2u du

= α
1

1+ρh̄/2 = α
1

1+γ̄/2 . (14)

The second derivative of the average detection probability
with respect to the average SNR at the receiver, denoted by
Pd

′′
(γ, α), can be computed as

Pd
′′
(γ, α) = α

1
1+γ̄/2

1

2(1 + γ/2)3
ln(α)

(

ln(α)

2(1 + γ/2)
+ 1

)

(15)
Since0 < α < 1, it is noted that

Pd
′′
(γ, α) > 0 ⇐⇒ γ < − ln(α) − 2 (16)

Therefore, it is concluded that ifα > e−2, the average
probability of detection is always concave with respect to
γ. OtherwisePd(γ, α) is a strictly convex function ofγ for
γ < − ln(α) − 2 and a strictly concave function ofγ for
γ > − ln(α) − 2. Due to the similarity of the convexity
properties of the average detection probability to those of
the non-fading scenario in Section III-A, the power allocation
approach in Section III-B can also be employed for Rayleigh
block-fading channels.

VI. CONCLUDING REMARKS

In this letter, for optimal noncoherent detection of a mod-
ulated sinusoidal carrier, the convexity properties of thede-
tection probability have been characterized with respect to



the SNR for all values of the false alarm probability. Since
required levels of false alarm probability are lower thane−2 ≈
0.135 in almost all practical applications, time sharing in the
form of on-off signaling may prove useful for enhancing the
noncoherent detection performance of a modulated sinusoidal
carrier.

An important direction for future work is to characterize
the convexity properties of the detection probability for fast
fading channels.

APPENDIX

A. Proof of Lemma 1

Since the second derivative ofPd(γ, α) is continuous with
respect toγ, the statement in the lemma can be proved by
showing that

lim
z↓0

∂2Pd(γ, α)

∂γ2

∣

∣

∣

γ=z
> 0 (17)

for α ∈ (0, e−2). In other words, the condition in (17)
guarantees that there existŝγ > 0 such thatPd(γ, α) is
convex in[0, γ̂]. Towards the aim of proving (17), the second
derivative ofPd(γ, α) with respect toγ is obtained as follows:

∂2Pd(γ, α)

∂γ2
= e−

γ
2

(

1

4

∫ ∞

f(α)

xe−
x2

2 I0(
√
γx)dx

−
∫ ∞

f(α)

xe−
x2

2 g(x, γ) dx+

∫ ∞

f(α)

xe−
x2

2 h(x, γ) dx

)

, (18)

where g(x, γ) = x2

4π

∫ 2π

0
sin2 θ ex

√
γ cos θ dθ and h(x, γ) =

x4

24π

∫ 2π

0
sin4 θ ex

√
γ cos θ dθ. Then, the following three results

are utilized in the proof.

lim
γ↓0

e−
γ
2

∫ ∞

f(α)

1

4
xe−

x2

2 I0(
√
γx) dx =

∫ ∞

f(α)

1

4
xe−

x2

2 dx,

(19)

lim
γ↓0

e−
γ
2

∫ ∞

f(α)

xe−
x2

2 g(x, γ) dx =

∫ ∞

f(α)

1

4
x3e−

x2

2 dx, (20)

lim
γ↓0

e−
γ
2

∫ ∞

f(α)

xe−
x2

2 h(x, γ) dx =

∫ ∞

f(α)

1

32
x5e−

x2

2 dx.

(21)
Here, the proof for (19) is provided ((20) and (21) can be
shown in a similar fashion). Notice that from the monotonicity
of I0(·) for γ ∈ [0, 1], it follows thate−

γ
2
1
4xe

− x2

2 I0(
√
γx) ≤

xe−
x2

2 I0(x). Sincexe−
x2

2 I0(x) is integrable, by the Domi-
nated Convergence Theorem, the expression on the left-hand-
side (LHS) of (19) can be written as

lim
γ↓0

∫ ∞

f(α)

e−
γ
2

4
xe−

x2

2 I0(
√
γx) dx

=

∫ ∞

f(α)

lim
γ↓0

e−
γ
2

4
xe−

x2

2 I0(
√
γx) dx (22)

Since limγ↓0
e−

γ
2

4 xe−
x2

2 I0(
√
γx) = 1

4xe
− x2

2 , the statement
in (19) is proved. In a similar manner, it can be shown that
limγ↓0 g(x, γ) = x2/4 and limγ↓0 h(x, γ) = x4/32.

By combining the results in (19)–(21) with (18), it is seen
that

lim
z↓0

∂2Pd(γ, α)

∂γ2

∣

∣

∣

γ=z
=

1

4

(
∫ ∞

f(α)

1

8
x5e−

x2

2 dx−
∫ ∞

f(α)

x3e−
x2

2 dx+

∫ ∞

f(α)

xe−
x2

2 dx

)

. (23)

Then, it is obtained that

lim
z↓0

∂2Pd(γ, α)

∂γ2

∣

∣

∣

γ=z
=

1

8
f(α)2e

−f(α)2

2

(

f(α)2

4
− 1

)

. (24)

Thus, the expression on the LHS of (24) is positive if and only
if f(α)2 > 4, which is satisfied if and only ifα < e−2. �

B. Proof of Lemma 2

Similar to the proof of Proposition 1 (see (7)), we consider
the sign of

f(α)√
γ
I2(

√
γf(α))− I1(

√
γf(α)) . (25)

This sign determines the convexity/concavity of the detec-
tion probability. From [12, Cor. 1], it can be seen that
I2(

√
γf(α)) < I1(

√
γf(α))e

−α0
3

2
√

γf(α) for
√
γf(α) ≥ 2,

where α0 = − log(
√
2 − 1). Then, asα0 > 0, it is

clear that I2(
√
γf(α)) < I1(

√
γf(α)) for

√
γf(α) ≥ 2.

Therefore, the statement in the lemma follows directly for
γ ≥ max{(f(α))2, 2/(f(α))2}. Namely, it is sufficient to
choosẽγ = max{(f(α))2, 2/(f(α))2} for a fixedα. �

C. Proof of Lemma 3

From (7), notice that ifP ′′
d (γ

∗, α) = 0 for γ∗ < ∞, then
γ∗ must be a root off(α)√

γ I2(
√
γf(α)) − I1(

√
γf(α)). Now

observe that

f(α)√
γ
I2(

√
γf(α)) − I1(

√
γf(α))

= I1(
√
γf(α))

(

f(α)√
γ

I2(
√
γf(α))

I1(
√
γf(α))

− 1

)

. (26)

Since I1(·) > 0, γ∗ must be a root off(α)√
γ

I2(
√
γf(α))

I1(
√
γf(α)) − 1,

which can be expressed as

f(α)√
γ

I2(
√
γf(α))

I1(
√
γf(α))

− 1 = f(α)2
(

1

v1(
√
γf(α))

− 1

f(α)2

)

,

(27)
wherev1(x) , xI1(x)/I2(x) As stated in [9] and [13],v1(x)
is a strictly increasing function for positivex. Therefore, in our
case, 1

v1(
√
γf(α)) is a strictly decreasing function ofγ, which

implies that there must be at most one root of (27); hence,
there is at most one finite root ofP ′′

d (γ, α). Based on Lemma
1 and 2, there is at least one finite root ofP ′′

d (γ, α) when
α < e−2 by the Intermediate Value Theorem. Therefore, there
exists a unique inflection point. �

D. Proof of Lemma 4

To prove Lemma 4, the following result is obtained first.
Lemma 5: limγ→∞ Pd(γ, α) = 1.



Proof: From [14, Eq. 4], the detection probability can be
lower bounded for

√
γ ≥ f(α) as follows:

Q1[
√
γ, f(α)] ≥ 1− 1

2

(

e−
(
√

γ−f(α))2)

2 −e−
(
√

γ+f(α))2)

2

)

(28)

which can equivalently be written as

Q1[
√
γ, f(α)] ≥ 1− 1

2
e−

γ
2 α

(

e
√
γf(α) − e−

√
γf(α)

)

. (29)

For a fixedα, the right-hand-side (RHS) of (29) converges
to 1 as γ goes to ∞. Therefore, it is concluded that
limγ→∞ Pd(γ, α) ≥ 1. Also, asPd(γ, α) is the probability
of detection, it must be less than or equal to1. Hence, the
statement in Lemma 5 follows. �

Let g̃(γ) denote the straight line passing through points
(0, Pd(0, α)) and (γt, Pd(γt, α)), which has a slope of
P ′
d(γt, α). Then,

g̃(γ) = g̃(0) + P ′
d(γt, α)γ (30)

whereP ′
d(γt, α) is the first derivative ofPd(γ, α) with respect

to γ evaluated atγt. By definition,g̃(0) = Pd(0, α). First, it is

noted thatPd(0, α) =
∫∞
f(α)

xe−
x2

2 I0(0) dx. SinceI0(0) = 1,

Pd(0, α) is calculated asPd(0, α) = e
−f(α)2

2 = α. Therefore,
the existence ofγt such thatPd(γt, α) = α + P ′

d(γt, α)γt
will imply the existence of the straight line. Define a new
function as h̃(γ) , Pd(γ, α) − α − P ′

d(γ, α)γ. If one
can show that there existsγt 6= 0 such thath̃(γt) = 0,
then the claim will be proved. Notice that̃h(0) = 0 and
h̃′(γ) = P ′

d(γ, α) − P ′′
d (γ, α)γ − P ′

d(γ, α) = −P ′′
d (γ, α)γ.

From Proposition 2,̃h′(γ) < 0 if γ ∈ [0, γα] and h̃′(γ) > 0 if
γ ∈ (γα,∞). Therefore,̃h is a decreasing function in[0, γα]
and an increasing function in(γα,∞). Hence, it is sufficient to
show thatlimγ→∞ h̃(γ) > 0 since this dictates the existence
of such aγt due to the Intermediate Value Theorem.

From Lemma 5, the following relation is obtained:

lim
γ→∞

h̃(γ) = lim
γ→∞

Pd(γ, α)− α− P ′
d(γ, α)γ (31)

= 1− α− lim
γ→∞

P ′
d(γ, α)γ (32)

Therefore, if we can show thatlimγ→∞ P ′
d(γ, α)γ < 1 − α,

thenlimγ→∞ h̃(γ) > 0 will be proved. Notice that(Pd(γ, α)−
1) goes to0 and 1

γ goes to0 as γ goes to∞. Then, by
L’Hôpital Rule, the following expressions are derived:

lim
γ→∞

(Pd(γ, α)− 1)γ = lim
γ→∞

Pd(γ, α)− 1

1/γ
(33)

= lim
γ→∞

P ′
d(γ, α)

−1/γ2
= lim

γ→∞
−P ′

d(γ, α)γ
2 (34)

Therefore, it can be deduced thatlimγ→∞(Pd(γ, α)− 1)γ =
0 if and only if limγ→∞ P ′

d(γ, α)γ
2 = 0. Since 0 ≤

|P ′
d(γ, α)γ| ≤

∣

∣P ′
d(γ, α)γ

2
∣

∣ for γ ≥ 1, limγ→∞ P ′
d(γ, α)γ

2 =
0 implies that limγ→∞ P ′

d(γ, α)γ = 0. Hence, proving that
limγ→∞(Pd(γ, α)− 1)γ = 0 would be sufficient to conclude
that limγ→∞ P ′

d(γ, α)γ = 0. For this reason, we next compute
limγ→∞(Pd(γ, α) − 1)γ. As Pd is the detection probability,
Pd(γ, α) − 1 ≤ 0; therefore,limγ→∞(Pd(γ, α) − 1)γ ≤ 0.
For the other direction, from [14, Eq. 4], it is known that for√
γ ≥ f(α), Pd(γ, α) ≥ 1 − 1

2e
− γ

2 α
(

e
√
γf(α) − e−

√
γf(α)

)

.

Then, for
√
γ ≥ f(α)

γ(Pd(γ, α)− 1) ≥ −γ

2
e−

γ
2 α

(

e
√
γf(α) − e−

√
γf(α)

)

. (35)

For a fixedα, the RHS of (35) converges to0. Therefore,
limγ→∞(Pd(γ, α)−1)γ ≥ 0. Hence, the converse direction is
shown. Overall, it is obtained thatlimγ→∞(Pd(γ, α)− 1)γ =
0. This implies thatlimγ→∞ h̃(γ) = 1 − α > 0 asα < e−2,
which concludes the proof. �

REFERENCES

[1] S. M. Elnoubi, “Probability of error analysis of digitalpartial response
continuous phase modulation with noncoherent detection inmobile radio
channels,”IEEE Transactions on Vehicular Technology, vol. 38, no. 1,
pp. 19–30, Feb. 1989.

[2] H. V. Poor,An Introduction to Signal Detection and Estimation, 2nd ed.
New York: Springer-Verlag, 1994.

[3] M. Azizoglu, “Convexity properties in binary detectionproblems,”IEEE
Transactions on Information Theory, vol. 42, no. 4, pp. 1316–1321, July
1996.

[4] S. Loyka, V. Kostina, and F. Gagnon, “Symbol error rates of maximum-
likelihood detector: Convex/concave behavior and applications,” in IEEE
Int. Symposium on Information Theory, June 2007, pp. 2501–2505.

[5] B. Dulek, S. Gezici, and O. Arikan, “Convexity properties of detec-
tion probability under additive Gaussian noise: Optimal signaling and
jamming strategies,”IEEE Transactions on Signal Processing, vol. 61,
no. 13, pp. 3303–3310, July 2013.

[6] Y. Sun, A. Baricz, and S. Zhou, “On the monotonicity, log-
concavity and tight bounds of the generalized Marcum and Nuttall
Q-functions,” CoRR, vol. abs/1003.2760, 2010. [Online]. Available:
http://arxiv.org/abs/1003.2760

[7] Y. A. Brychkov, “On some properties of the Marcum Q function,”
Integral Transforms and Special Functions, vol. 23, no. 3, pp. 177–182,
2012.

[8] E. K. Ifantis and P. D. Siafarikas, “Inequalities involving Bessel and
modified Bessel functions,”Journal of Mathematical Analysis and
Applications, vol. 147, no. 1, pp. 214 – 227, 1990.

[9] A. Baricz, “Tight bounds for the generalized Marcum Q-function,”
Journal of Mathematical Analysis and Applications, vol. 360, no. 1,
pp. 265–277, Dec. 2009.

[10] H. Chen, P. K. Varshney, S. M. Kay, and J. H. Michels, “Theory of the
stochastic resonance effect in signal detection: Part I–Fixed detectors,”
IEEE Transactions on Signal Processing, vol. 55, no. 7, pp. 3172–3184,
July 2007.

[11] A. H. Nuttall, “Some integrals involving theqm-function,” Naval
Underwater Syst. Center (NUSC) Tech. Rep., May 1974.

[12] P. Balachandran, W. Viles, and E. D. Kolaczyk, “Exponential-type
Inequalities Involving Ratios of the Modified Bessel Function of the
First Kind and their Applications,”ArXiv e-prints, Nov. 2013.

[13] H. C. Simpson and S. J. Spector, “Some monotonicity results for ratios
of modified Bessel functions,”Quart. Appl. Math, vol. 42, no. 1, pp.
95–98, Apr. 1984.

[14] M. K. Simon and M. S. Alouini, “Exponential-type boundson the
generalized Marcum Q-function with application to error probability
analysis over fading channels,”IEEE Transactions on Communications,
vol. 48, no. 3, pp. 359–366, Mar. 2000.


