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Abstract—The problem of simple M —ary hypothesis testing decision ruled. It is sufficient to include only the pairwise

under a generic performance criterion that depends on arbitary  error probabilities inp(8), i.e., Dij with i # j. To see this,

functions of error probabilities is considered. Using resits from . . . . M—1 L
convex analysis, it is proved that an optimal decision rule &n be note that [(P) in conjunction W'chiZO 9i(y) = 1 imply

characterized as a randomization amongat most two determinis- Z?igl pi; = 1, from which we get the probability of correctly
tic decision rules, each of the form reminiscent to Bayes rel, if jdentifying hypothesig{; asp;; = 1 — ZM—l

. N () i pij-
the boundary points corresponding to each rule have zero proa- ) ; : =0,i7] i i}
bility under each hypothesis. Otherwise, a randomization mong For M-ary hypothesis testing, we consider a generic de

at most M (M —1)+1 deterministic decision rules is sufficient. The CISION criterion that can be expressed in terms of the error

form of the deterministic decision rules are explicitly speified. ~Probabilities as follows:
Likelihood ratios are shown to be sufficient statistics. Clasical

performance measures including Bayesian, minimax, Neyman m'g'eng'ze 90(p(9))

Pearson, generalized Neyman-Pearson, restricted Bayesjaand . .

prospect theory based approaches are all covered under the subjectto  g;(p(d)) <0, i=1,2,....,m
proposed formulation. A numerical example is presented for hi(p(8)) =0, j=1,2,....p ()

prospect theory based binary hypothesis testing.
_ Index Terms- Hypothesis testing, optimal tests, convexity, where g; and h; denote arbitrary functions of the pairwise
likelihood ratio, randomization. error probability vector. Classical hypothesis testingecia
such as Bayesian, minimax, Neyman-Pearson (NP) [1], gen-
eralized Neyman-Pearsdn [2], and restricted Bayes$ianrgs] a
all special cases of the formulation [ (3). For examplehia t
restricted Bayesian framework, the Bayes risk with respect

Hi: Y ~ fi(-), with j =0,1,...,M —1, (1) (w.rt) a certain prior is minimized subject to a consttain

the maximum conditional risk [3]:

where the random observatidn takes values from an obser- o
vation sef” with I' ¢ R". Depending on whether the observed minimize r5(9)
random vecto” € I is continuous-valued or discrete-valued, max R;(8) <a 4)
fi(y) denotes either the probability density function (pdf) or 0<j<M-1 "7 -
the probability mass function (pmf) under hypothesis For (.. <omeq > a,,, wherea,, is the maximum conditional

compactness of notation, the terdensityis used for both risk of the minimax proceduré&|[1]. The conditional risk when

pdf and pmf. In order to decide among the hypotheses, T ‘ L (8 —
consider the set of pointwise randomized decision funstiow%g?egﬂ] 's true, denoted byt; (9), is given byf?; (d)

denoted byD, i.e., § := (do,01,...,0m—1) € D such that 2<iz0 “Pi and the Bayes risk is expressed 76’5(6)_ "

2%81&@) — 1andé;(y) € [0,1] for0 < i< M —1 and >_j—0 m;R;(0), wherer; denotes thea priori probability

Y €. More explicitly, given the observatiog, the detector of hypothesis?; and c;; is the cost incurred by choosing

decides in favor of hypothes#4; with probability; (y). Then, _hypothes!SJI-Li When[||n3fact hypothesi#(; is true. Hence [{4)

the probability of choosing hypothests; when hypothesi® IS a special case o (3). . .

is true, denoted by, with 0 < i,j < M — 1, is given by In th_|s Iettgr, we consider a generi/ —ary simple hy- 3
’ J - 0= ' pothesis testing framework and do not make any specific

= E,[5i(y)] = / 5:(9)f; (9)u(dy). @) assumptions on the employed optimization criterion expect
r

|. PROBLEM STATEMENT
Consider a detection problem withl simple hypotheses:

subject to

that it can be specified using functions of error probabditi
Not only does this allow us to account for several classical
performance criteria that are mentioned above but also to
generalize prospect theory based approaches developddl in [
for behavioral (e.g., human) decision makers who may have a
distorted view of probabilities and costs. Our approacthis t
problem is to characterize the set of all achievable pagwis
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whereE, -] denotes expected value under hypothésjsand
u(dy) is used in[(R) to denote th&¥ —fold integral and sum for
continuous and discrete cases, respectively.p(@t) denote
the (column) vector containing all pairwise error probiieis
pi; for 0 < 4,5 < M —1 andi # j corresponding to the



if the solution of the specific optimization problem undeB. The set of achievable pairwise error probability vectors

consideration occurs at an interior point or a boundary (bUtLet P denote the set of all pairwise error probability vectors

not an e>.<”eme? point of the feagible set.._ln this way, .for tl}ﬁat can be achieved by randomized decision functdbasD
first time in the literature, we provide a unified charactatian ie., P := {p(d) : 6 c D). In this part, we present so,me

of optimal decision rules for simple hypothesis testing emd

N . vy roperties ofP.
a general criterion involving error probabilities. prop

Property 1: P is a convex set.
Il PRELIMINARIES Proof: Let p!'(6") andp?(8*) be two pairwise error prob-

ability vectors obtained by employing randomized decision
Let v be a real (column) vector of length (M — 1) whose funct)i/ons 5" and 62, respyectivgly.yTgen, for any with

elements are denoted as; for 0 < i,j < M —1 and <0 <1, p, = 0p'(6Y) + (1 0)p*(6%) € P sincep,

ih#t]' NQXtJ we tp;]resen_t ﬁ? ngmaI c;e’tern_llr:nstg_tdeusmnl ru% the pairwise error probability vector corresponding he t
a Lrlmmﬁzes € weighted sum pj;'s with arbitrary réal 5 hgomized decision rules® + (1-— 0)6” as seen froni{2).

weightsv Property 2: Let p, be a point on the boundary &. There

exists a hyperplanép : vI'p = vT'p,} that is tangent toP

: . e at p, andv’p > v'p, for all p € P.

The corresponding weighted sum of pairwise error proba-proof: Follows immediately from the supporting hyperplane

A. Optimal decision rule that minimizas p(5)

bilities can be written as theorem[[5, Sec. 2.5.2].
M—-1 M-1
T
S) = iDii
v p(©) ; j_oz;‘#vjpj [1l. CHARACTERIZATION OF OPTIMAL DECISION RULE
M—1 M-1 In order to characterize the solution &f (3), we first present
= / Z di(y) Z vi; fj(y) | p(dy), (5) the following lemma.
I'i=o j=0,j#i Lemma: Let p, be a point on the boundary &f and {p :
T T . .
where [2) is substituted fop;; in (8). Defining V;(y) := ; P = v p,} be a supporting hyperplane  at the point
M—1 0°
2 =05 Vis fi(y), we get Case 1: Any deterministic decision rule of the form give@n
M-1 corresponding to the weights specifieddyieldsp, if B(v),
vT'p(5) :/ Z 8:(y)Vi(y) u(dy) defined in(]Q_), has zero probability und_er all hypotheses.
| — Case 2:p, is achieved by a randomization among at most
. M (M —1) deterministic decision rules of the form given(i),
> /FO<{I<11]{}_1{V1'(3/)} n(dy) (6) all corresponding to the same weights specifiecsbif B(v),
. . . defined in(@), has nonzero probability under some hypotheses.
The lower bound in[{6) is achieved if, for all € T', we set Proof: See AppendifA.
de(y) =1 for £ = argmin V;(y) @) It should be noted that the condition in case 1 of the lemma,
O=isM—1 i.e., B(v) has zero probability under all hypotheses, is not

(and henceg;(y) = 0 for all i # ¢), i.e., each observed vectordifficult to satisfy. A simple example is when the observatio

y is assigned to the corresponding hypothesis that minimizégder hypothesi#{; is Gaussian distributed with mean and
Vi(y) overall0 < i < M—1. In case where there are multiplevariances? for all 0 < i < M — 1. Furthermore, the lemma
hypotheses that achieve the same minimum valué @f) for implies that any extreme point of the convex &eti.e., any

a given observatiog, the ties can be broken by arbitrarily sepoint on the boundary of the convex $ethat is not a convex
lecting one of them since the boundary decision does nattafféombination of any other points in the set, can be achieved
the decision criteriom” p(d). However, pairwise probabilities by a deterministic decision rule of the forfl (7) without any
for erroneously selecting hypothests and #; will change randomization. The points that are on the boundary but not

if the set of boundary points extreme points can be obtained via randomization as stated i
case 2.
Bij(w):={yel: Vily) =V;(y) < Vi(y) Next, we present a unified characterization of the optimal

foral0<k<M-—1,k+#i,k+#j} (8) decision rule for problems that are in the form bf (3). We
ppose that the problem ifil (3) is feasible anddétand
(6*) denote an optimal decision rule and the corresponding
pairwise error probabilities, respectively.

occurs with nonzero probability. We also define the set of E
boundary points

B(v) := U B (v) (9) Theorem: An optimal decision rule that solve@) can be
0<i<M—1 obtained as
i<j<M—1 Case 1: a randomization among at most two deterministic
and the complimentary set wheié(y) for some0 < i < decisiop rules of the for_m given {f), each spegi_fied by some
M — 1 is strictly smaller than the rest: real v, if B(v), defined in(@), has zero probability under all

- hypotheses for all read; otherwise
B(v) :=T\B(v)={y €T : Vi(y) < V;(y), forsome Case 2: a randomization among at masf(M — 1) + 1
0<i<M-landall0<;j<M-—1,j+#4} (10) deterministic decision rules of the form given (@), one
specified by some reab and the remainingM (M — 1)
YIn classical Bayesia/ —ary hypothesis testings;; = 7;(ci; —cj;).  correspond to the same weights specified by anotherueal



Proof: If the optimal pointp*(§*) is on the boundary o?, that the output of binary channélis < when bitj is sent is
then the lemma takes care of the proof. Here, we consider denoted bypz(.;?) for 0 <4,j <1 with pg’;) +p§§) = 1. Then,
case wherp*(4”) is an interior point ofP. First, we pick an the pmf ofy under?, is given by '
arbitraryv!’ € RM(-1) and derive the optimal deterministic
decision rule according t§](7). Let denote the pairwise error fiy) = pg;)Péi) if y=1[i,/] (11)
probability vector corresponding to the employed decisi
rule. Then, we move along the ray that originates frpin
and passes throughi (™). SinceP is bounded, this ray will
intersect with the boundary dP at some point, sap?. If the
condition in case 1 is satisfied, then by lemma-case 1, th
exists a deterministic decision rule of the form given[ih (
that yieldsp?. Otherwise, by lemma-case 2 is achieved
by a randomization among at mosf(M — 1) deterministic
decision rules of the form given im](7), all sharing the sa
weight vectorv?. Sincep*(§*) resides on the line segment’
that connectgp' to p?, it can be attained by appropriately 1 1
randomizing among the decision rules that yipldandp?. B  go(p(d)) = Z Zw(P(Hi is selected &H; is true))v(c;;)

When the optimization problem if](3) possesses certain i=0 j=0
structure, the maximum number of deterministic decisidasu (12)
required to achieve optimal performance may be reduceédierew(-) is a weight function and(-) is a value function,
below those given in the theorem. For example, suppose tMdtich characterize how a behavioral decision maker dsstort
the objective is a concave function pfand there are a total of probabilities and costs, respectively [4], afd-) denotes the
n constraints in[{B) which are all linear i (i.e., the feasible probability of its argument. In the numerical examples,ftile
set, denoted b, is the intersection of with halfspaces and lowing weight function is employedn(p) = 7=
hyperplanes). It is well known that the minimum of a concavid], [7]-[9]. In addition, the other parameters are set as
function over a closed bounded convex set is achieved atw@agy) = 3, v(co1) = 10, v(ci0) = 20, andv(c11) = 7.
extreme point[[5]. Hence, in this case, the optimal pgihis Furthermore, the prior probabilities of bit and bit 1 are
an extreme point oP’. By Dubin’s theorem[[6], any extreme assumed to be equal.
point of P’ can be written as a convex combinationof 1 or The aim of the decision maker is to obtain a decision
fewer extreme points dP. Since any extreme point &f can rule that minimizes[(12). In the first example, is set to
be achieved by a deterministic decision rule of the fdrn (73, and the parameters of the binary channels are selected as
the optimal decision rule is obtained as a randomizationamop|)) = p?) = 0.4 andp{}) = p{>’ = 0.1. In this case, it can
at mostn + 1 deterministic decision rules of the forfl (7). Ifbe shown vial[(l1) that there exist different deterministic
there are no constraints ial(3), i.e.,= 0, the deterministic decision rules in the form of]7), which achieve the pairwise
decision rule given in[{7) is optimal and no randomization ierror probability vectors marked with blue stars in Fig. 1.

Yer i,0 € {0,1} andj € {0,1}. As in the previous sections,
the pairwise error probability vector of the decision maker
for a given decision rulé is represented by(d), which is
expressed ap(d) = [pio,po1]|” in this case. It is assumed

at the decision maker knows the conditional pdfdid (11).

In this section, a special case bf (3) is considered based on
prospect theory by focusing on a behavioral decision maker
m[gﬂ, [7]-[9]. In particular, there exist no constraintse(i.m =
=0 in @) and the objective function ifl(3) is expressed as

required with a concave objective function. The convex hull of these pairwise error probability vectisrs
An immediate and important corollary of the theorem ialso illustrated in the figure. Over these deterministidsien
given below. rules (i.e., in the absence of randomization), the minimum

Corollary: Likelihood ratios are sufficient statistics forachievable value of (12) becom&s901, which corresponds
simpleM —ary hypothesis testing under any decision criterioto the pairwise error probability vector shown with the gree
that is expressed in terms of arbitrary functions of errosquare in Fig[1l. If randomization between two determiaisti
probabilities as specified i(G). decision rules in the form of{7) is considered, the resgltin

Proof: It is stated in the theorem that a solution of theninimum objective value becomes0422, and the corre-
generic optimization problem if](3) can be expressed in sermmponding pairwise error probability vector is indicatedhwi
of decision rules of the form given ir]l(7). These decisiothe red triangle in the figure. On the other hand, in compkanc
rules only involve comparisons amonig(y)’s, which are with the theorem (case 2), the minimum value Bf](12) is
linear w.r.t. the density termg;(y)’s. Normalizing f;(y)’s achieved via randomization of (at most) three determmisti
with fo(y) and definingl;(y) := fi(y)/fo(y), we see that an decision rules in the form of{7) (sinck/ (M — 1) + 1 = 3).
optimal decision rule that solves the problem[ih (3) depentis this case, the optimal decision rule randomizes aming
on the observatioy only through the likelihood ratios. B 02, andds, with randomization coefficients @f.41, 0.51, and

0.08, respectively, as given below:

IV. NUMERICAL EXAMPLES 51(y) =0 forall y
In this section, numerical examples are presented by con- 0, if y € {[0,1],]1,0],[1,1]}
sidering a binary hypothesis testing problem (i/&,= 2 in 2(y) = 1, if y = [0,0] (13)
(@) in order to illustrate the theoretical results. Sugptisat a Y ’
1,1]

bit (0 or 1) is sent over two independent binary channels to a 0,ify=11,
decision maker, which aims to make an optimal decision based 3(y) = 1, if y e {[0,0],]0,1],[1,0]}
on the binary channel outputs. The output of binary chaknel ’ b

is denoted byy;, € {0,1}, £ = 1,2, and the decision maker This optimal decision rule achieves the lowest objectiMeea
declares its decision based @n= [y, y2]. The probability of 0.0400, and the corresponding pairwise error probability
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Fig. 1: Convex hull of pairwise error probability vectorsri@sponding to Fig. 2: Convex hull of pairwise error probability vectorsr@sponding to
deterministic decision rules irJ(7), and pairwise error batuility vectors deterministic decision rules if](7), and pairwise error bataility vectors
corresponding to decision rules which yield the minimumeabyes attained corresponding to decision rules which yield the minimumegcbyes attained
via no randomization (marked with square), randomizatibiwe (marked via no randomization (marked with square), randomizatibiw@ (marked
with triangle) and three deterministic decision rules (kedr with circle), with triangle) and three deterministic decision rules (kedr with circle),

wherep!t) = p{2) = 0.4, p}) = p2 = 0.1, andk = 5. whereplt) = 0.3, p{2) = 0.2, p{}) = 0.4, andp{? = 0.25, andx = 1.5.

vector is marked with the black circle in Figl 1. Hence, this APPENDIXA

o S PROOF OFLEMMA
example shows that randomization among three deternanisti _ . - ] ]
decision rules may be required to obtain the solutior{bf (3). Since {p : v'p =v'p,} is a supporting hyperplane to

In the second example, the parameters are taken-ag.5, F at the pointp,, we getv’p > v'p, for all p € P.
p%) - 03, p%) — 02, Péll) =04, andpégl) — 0.25. In this rurthermore, the deterministic decision rule given ),

, ceterministe. Vi
case, there exist different deterministic decision rules in thede€noted here by”, minimizesv™ p among all decision rules

form of (@), which achieve the pairwise error probabilitycve ¢ € D (@nd consequently over ap € P). Sincep, € P
tors marked with blue stars in Figl 2. The minimum value &° well, the determ|n|st|(% decision rule given In) (7) ack@v
([2) among these deterministic decision rule3.4278, which & perfor;nance SC.?gi af” py. An{) ottherEdeus!?hn rule that
corresponds to the pairwise error probability vector showP€S NOt agree witw™ on any subset oB(v) with nonzero
with the green square in the figure. In addition, the pairwisngbab'“ty n;easure will have a _strlc_tly gre*ater performan
error probability vectors corresponding to the solutiorithw score trtl)anv pﬁ (due to 'ghe r(])ptlmalllty of™), and hence,
randomization of two and three deterministic decisiongalee gannotl \(/evon the stjtg)pof_rtlrt\g ytpgrp anet. e, S
marked with the red triangle and the black circle, respebtiv ase € prove the Tirst part by fon_ rapositive. suppose
In this scenario, the minimum objective value§432) can be that the deter_m|n|st|c d.ec's'of‘ rulg” given in 1) ylelq§
achieved via randomization of two deterministic decisioles, P~ 7 Po meaning thap, is achieved by some other decision

0 ; * P T
as well. This is again in compliance with the theorem (case Tle *5_ GTD' hSl?(;:e 4 dn;mlml*zess p ovelr all pd € P,h
which states that an optimal decision rule can be obtained%sP = v Po N0/dS an otfp® and p, are located on the

a randomization amongt mostM (M — 1) + 1 deterministic SuPPOrting hyperplangp - v'p =wv"py}. This implies that
decision rules of the form given ifl(7). 6" and §° must agree on any subset Bfv) with nonzero

probability measure. As a result, the difference between th
pairwise probability vectorp* and p, must stem from the
difference of6* andé” overB(v). Consequently, the s&(v)

This letter presents a unified characterization of optimahnnot have zero probability under all hypotheses.
decision rules for simpleM —ary hypothesis testing underCase 2 Suppose that the set of boundary points specified by
a generic performance criterion that depends on arbitrayv) has nonzero probability under some hypotheses. In this
functions of error probabilities. It is shown that optimarfor- case, each point iB; ;(v) can be assigned arbitrarily (or in
mance with respect to the design criterion can be achieveddyandomized manner) to hypothesés and #;. Since the
randomizing among at most two deterministic decision rulegay the ties are broken does not changép, the resulting
of the form reminiscent (but not necessarily identical) tay8s error probability vectors are all located on the intersecof
rule when points on the decision boundary do not contributethe setP with the M (M — 1) — 1 dimensional supporting
the error probabilities. For the general case, the soldtioan hyperplane{p : vI'p = vTp,}. By Carathéodory’s Theorem
optimal decision rule is reduced to a search over two weig[id], any point (includingp,) in the intersection set, whose
coefficient vectors, each of lenglif (M —1). Likelihood ratios dimension is at mosd/ (M — 1) — 1, can be represented as a
are shown to be sufficient statistics. convex combination of at most/ (M — 1) extreme points of

Finally, we point out that the form of optimal local sensothis set. Since these extreme points can only be obtained via
decision rules for the problem of distributed detection]{10 deterministic decision rules which all agree wih on the set
[13] with conditionally independent observations at thesses B(v), p, can be achieved by a randomization among at most
and anarbitrary fusion rule can be characterized using thé/ (M — 1) deterministic decision rules of the form given in
proposed framework. (@), all corresponding to the weights specified 4oy |

V. CONCLUDING REMARKS
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