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Abstract—We investigate a privacy-signaling game problem
in which a sender with privacy concerns observes a pair of
correlated random vectors which are modeled as jointly Gaus-
sian. The sender aims to hide one of these random vectors and
convey the other one whereas the objective of the receiver is
to accurately estimate both of the random vectors. We analyze
these conflicting objectives in a game theoretic framework with
quadratic costs where depending on the commitment conditions
(of the sender), we consider Nash or Stackelberg (Bayesian
persuasion) equilibria. We show that a payoff dominant Nash
equilibrium among all admissible policies is attained by a set
of explicitly characterized linear policies. We also show that a
payoff dominant Nash equilibrium coincides with a Stackelberg
equilibrium. We formulate the information bottleneck problem
within our Stackelberg framework under the mean squared error
distortion criterion where the information bottleneck setup has
a further restriction that only one of the random variables is
observed at the sender. We show that this MMSE Gaussian
Information Bottleneck Problem admits a linear solution which
is explicitly characterized in the paper. We provide explicit
conditions on when the optimal solutions, or equilibrium solutions
in the Nash setup, are informative or noninformative.

Index Terms—Signaling games, Nash equilibrium, Stackelberg
equilibrium, privacy, estimation, information bottleneck.

I. INTRODUCTION AND SYSTEM MODEL

Various applications such as social networks, networked
control, smart grid and crowd sensing benefit from data col-
lected from decision makers. In these applications, users share
information with a service provider which wishes to improve
the quality of service by utilizing information gathered from
the users. The users as well are interested in enhanced service
quality as they benefit from the service while at the same
time they wish to retain a certain level of privacy. The privacy
objective arises from the fact that the information they wish to
convey to the service provider may be correlated with certain
private information they want to protect. For instance, in
smart grid applications, power usage information shared by the
users with the service provider may disclose some information
related to users such as their habits and behaviors [2], [3].
For that reason, privacy is a major challenge in smart grid
applications and this is a current research topic in numerous
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(a) Privacy-signaling game.
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(b) Information bottleneck.

Fig. 1: Information flow under the quadratic privacy-signaling
game and the information bottleneck problems.

studies (see [3]–[6] and references therein). In addition, the
problem of preserving privacy while maintaining reasonable
system performance appears in various contexts [7]–[22].

In this paper, we consider the following communication
scenario between a sender and a receiver motivated by the
aforementioned applications. There is a pair of sources at the
sender and the perspective of the sender is such that one
source needs to be protected and the other source needs to
be conveyed. As opposed to the sender, the receiver desires to
accurately estimate both sources with the aim of acquiring
as much information as possible. Under this setting, we
investigate the interactions between the sender and the receiver
whose objectives are different from each other due to the
privacy concerns of the sender.

Consider an information transmission scenario in which a
sender encodes a pair of correlated random vectors X and Y
into Z using an encoding function denoted by z = γe(x,y)
and a receiver wants to decode both of the random vectors
based on its observation Z = z. We denote the size of the
random vectors X and Y by nX and nY , respectively. In
this communication scenario, the sender wishes to convey
information contained in Y whereas it views X as a private
random variable that needs to be hidden from the receiver. The
aim of the receiver is to accurately estimate both of the random
variables given its observation Z = z. Let the decoders for
estimating X and Y at the receiver be denoted by γdX (z)
and γdY (z), respectively. Fig. 1a illustrates the considered
information transmission scenario.

We model the random variables X and Y as jointly

Gaussian random vectors. Let
[
X
Y

]
be a zero mean Gaussian
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random vector with a positive definite covariance matrix

Σ ≜

[
ΣX ΣXY

ΣY X ΣY

]
. The random variables X and Y are

not independent of each other, i.e., ΣXY ̸= 0. It is assumed
that the joint distribution of X and Y is common knowledge,
i.e., both players know ΣX , ΣY and ΣXY . Since X and Y
are correlated, transmitting Y directly discloses information
related to the private random variable X . In other words,
the objectives of hiding X and conveying Y are conflicting.
These conflicting objectives at the sender are modeled via the
following objective function:

Je(γe, γdX , γdY )

= E[∥Y − γdY (Z)∥2]− δ E[∥X − γdX (Z)∥2], (1)

which is to be minimized, where δ is a positive design
parameter that determines the level of desired privacy in terms
of hiding X . On the other hand, the receiver aims to extract
both of the random variables. Thus, the receiver wishes to
minimize the following objective function:

Jd(γe, γdX , γdY )

= E[∥Y − γdY (Z)∥2] + E[∥X − γdX (Z)∥2]. (2)

In (2), the mean squared errors corresponding to random
variables X and Y are incorporated into the objective function
with equal weights since taking different weights does not alter
the problem. In this work, we investigate the Nash equilibrium
and the Stackelberg equilibrium for the described strategic
information transmission scenario in which the objectives of
the sender and the receiver are as defined above.

The game dynamics for the Nash equilibrium are as follows:
The players choose their strategies simultaneously. These
chosen strategies are referred to as a Nash equilibrium if no
player gains by unilaterally deviating from its strategy. In other
words, neither the sender nor the receiver have any incentive
to unilaterally change their strategies when they operate at a
Nash equilibrium. Suppose that the set of possible strategies
for the encoder is denoted by Γe, i.e., γe ∈ Γe, and those for
the decoders of each random variable are denoted by ΓdX and
ΓdY , i.e., γdX ∈ ΓdX and γdY ∈ ΓdY . A set of policies γe,∗,
γdX ,∗ and γdY ,∗ forms a Nash equilibrium if [23]

Je(γe,∗, γdX ,∗, γdY ,∗) ≤ Je(γe, γdX ,∗, γdY ,∗) (3)

for all γe ∈ Γe and

Jd(γe,∗, γdX ,∗, γdY ,∗) ≤ Jd(γe,∗, γdX , γdY ) (4)

for all γdX ∈ ΓdX and γdY ∈ ΓdY .
Remark 1: Under the Nash equilibrium concept, there is

no commitment assumption for the players. This may be
appropriate for scenarios where the players do not trust the
announcements of each other or do not have access to policy
announcements. For instance, a user (sender) making sensor
measurements in a crowd sensing application may encounter
a tradeoff between utility of providing useful information
to a data aggregator (receiver) and protecting its privacy.
We may consider a setting where the sender has the ability
to reconfigure its policy. In this case, the sender wishes to
deviate from a certain announced policy if it knows that

such deviation leads to a better privacy protection given the
receiver’s announcement. Thus, the receiver does not trust the
policy announcement of the sender. On the other hand, the
sender may also think that the receiver’s announcement is
not trustworthy. This happens for instance when the receiver
discloses collected information from individuals to third par-
ties which do not comply with the receiver’s commitment.
In addition, the sender may wish to guard itself against data
breaches at the legitimate receiver. In order to model such
scenarios where both the sender and the receiver do not have
any commitment regarding their policies, a Nash theoretic
game model can be used. Although they do not commit to
a certain policy, if they are in equilibrium, then they do not
wish to deviate unilaterally.

On the other hand, the Stackelberg equilibrium involves a
sequential game play in the sense that first the sender and
then the receiver act (this setup is commonly referred to as
the Bayesian persuasion problem in the economics literature
[24]). The sender chooses and announces its strategy and then
the receiver acts upon learning the strategy of the sender.
Here, the sender commits to employ this announced strategy.
The receiver employs an optimal response to the announced
strategy of the sender. A set of policies γe,∗, γdX ,∗ and γdY ,∗

forms a Stackelberg equilibrium if [23]

Je(γe,∗, γdX ,∗(γe,∗),γdY ,∗(γe,∗))

≤ Je(γe, γdX ,∗(γe), γdY ,∗(γe)) (5)

for all γe ∈ Γe, where γdX ,∗(γe) and γdY ,∗(γe) are such that

Jd(γe, γdX ,∗(γe),γdY ,∗(γe))

≤ Jd(γe, γdX (γe), γdY (γe)) (6)

for all γdX ∈ ΓdX and γdY ∈ ΓdY .
Remark 2: It is important to emphasize that under the Stack-

elberg equilibrium concept, there is a commitment assumption
for the sender and the sender cannot backtrack its commit-
ment. This setup can be appropriate for scenarios where an
information provider publicly shares information given its
observations. For instance, consider a medical research setting.
Researchers wish to publicly reveal data they obtained as
a result of medical research so that other researchers can
benefit from this data. However, as this data may contain
sensitive information related to participants of the study, the
researchers need to take privacy into account while publishing
their research data. In this case, the researchers employ a
privacy-preserving data revelation scheme so that the privacy
of the participants is protected. On the other hand, in order for
other researchers to make sense of this revealed research data,
they need to know what type of privacy-preserving mecha-
nism is employed in the design. Therefore, the researchers
performing the study publicly reveal the specification of such
mechanism they used. This corresponds to a scenario with
sender commitment, as in the Stackelberg setup considered in
this paper.

We will also consider an instance of the problem above
as the MMSE Gaussian Information Bottleneck Problem. The
difference with the setup above is that the sender only has
access to X , which is the message it intends to hide while
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revealing as much information on Y as possible. This is
depicted in Fig. 1b. The classical information bottleneck
problem [25] considers the mutual information as the cost
criterion where the aim is to compress an observed random
variable while preserving information related to an unobserved
correlated random variable. Note that both the privacy and
the compression objectives aim at removing the corresponding
information from the revealed message. Motivated by this
resemblance, we consider the information bottleneck problem
in our game theoretic context. Details are provided in Section
IV.

A. Literature Review

For signaling games under the Nash equilibrium concept,
Crawford and Sobel in their foundational paper [26] inves-
tigate a communication scenario between a sender and a
receiver where sender’s cost contains a bias term leading
to misaligned objectives. They obtain the interesting result
that under some technical conditions the sender needs to
quantize the information it sends at a Nash equilibrium. To
put it differently, the misalignment in the objectives results
in information hiding through quantization of the transmitted
message. In contrast to Crawford and Sobel, the Bayesian
persuasion problem [24] investigates signaling scenarios under
the Stackelberg equilibrium concept rather than the Nash
equilibrium concept.

In the context of the Bayesian persuasion problem, an
important related work [27] considers a multidimensional
signaling scenario under a Stackelberg game setup where
the sender employs a general quadratic cost structure. An
upper bound on the performance of the sender is obtained
via formulating a semidefinite program. For jointly Gaussian
sources, a linear policy that achieves this upper bound is
characterized which shows the optimality of linear policies
for such a Stackelberg game. We use this characterization in
some of our results rather prominently.

Recently, the strategic information transmission (SIT) prob-
lem has attracted attention also in the communication and
control theory literature [28]–[38]. For instance, the work in
[29] considers quadratic costs with a bias term appearing in
sender’s cost and investigates both scalar and multidimensional
source settings. An interesting observation from [29] is the
existence of a linear Nash equilibrium which is in contrast
to the quantized nature of the equilibrium in Crawford and
Sobel. In [30], the misalignment in the objectives is due to a
bias term which is modeled as a random variable. The authors
consider the Stackelberg equilibrium concept and focus on
affine policies. In [31], a communication scenario between
prospect theoretic agents whose cost functions are distorted
by subjective biases is investigated using the Stackelberg
equilibrium concept.

In the literature, several studies consider the SIT problem
in which the sender takes privacy of certain information into
account by employing a suitable privacy measure, under either
the Nash or Stackelberg criteria [39]–[42]. In these studies, a
common theme is to model private and nonprivate random
variables as jointly Gaussian random variables. In [39], a

communication scenario between a sender and a receiver
is investigated using the Stackelberg equilibrium concept in
which an additional side information is assumed to be available
at the receiver. The estimation errors are measured using
quadratic costs and a family of Stackelberg equilibria is
characterized under an a priori affine policy assumption. In
contrast, here, we do not restrict the policies to be affine a
priori and we consider a setting with no side information.
We investigate Nash equilibria as well and show that a payoff
dominant equilibrium is attained by linear policies. We also
show that these linear policies at the payoff dominant Nash
equilibrium lead to a Stackelberg equilibrium even when the
encoding policy is not restricted to be linear. The work in
[40] also investigates a Stackelberg game where the utility
measure for the nonprivate random variable is quadratic and
the privacy measure is entropy based. Both noiseless and
noisy communication scenarios are considered and essentially
unique linear encoding and decoding policies that form a
Stackelberg equilibrium are characterized. In [41], a Nash
game is studied where the privacy measure is based on
mutual information and the utility measure for the nonprivate
random variable is quadratic. In [41], apart from the previously
described Gaussian scenario, another scenario in which private
and nonprivate data are treated as discrete random variables is
considered.

The tradeoff between utility and privacy appears also in
various other contexts [9]–[22], [43]–[47]. One line of related
work is the differential privacy literature where the main
problem of interest is to protect private information on publicly
available databases [43], [44]. The notion of differential pri-
vacy ensures that private information provided by an individual
to a database is not compromised by a third party, e.g., a data
analyst, who retrieves information from this database. In this
context, an interesting result from [19] is the application of the
Laplacian or Gaussian perturbations to guarantee differential
privacy. For a comprehensive treatment of differential privacy
on such problems as filtering and estimation, please see [48].
Another line of work is the privacy funnel problem [45]
where it is desired to convey as much information as possible
related to an observed random variable while trying to leak as
low information as possible related to an unobserved private
random variable. It should be noted that in the privacy funnel
problem, only the nonprivate random variable is observed at
the sender whereas in our framework, we assume that both
the nonprivate and private random variables are observed at
the sender. Another related work is [10] where the tradeoff
between utility and privacy is investigated through formulating
constrained optimization problems that consider settings with
a discrete random variable and a continuous random variable.
The continuous random variable case focuses on Gaussian
perturbations applied to the nonprivate random variable to
protect private information.

As noted, a further related problem is the information
bottleneck problem [25], [49]–[57] which also has connections
with the privacy funnel problem [46]. In the information
bottleneck technique [25], the aim is to compress an ob-
served random variable while trying to preserve information
related to another correlated random variable which is not
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observed. It is important to note that the information bottleneck
technique is closely related to an earlier seminal work [58]
which considers a similar constrained optimization problem
by employing conditional entropy to asses the performance.
The information bottleneck problem specializing to Gaussian
sources is investigated in [59] where the random variables of
interest are jointly Gaussian random vectors. The compression
objective in the information bottleneck problem can also be
viewed as a privacy objective as in our framework in the sense
that the corresponding information is desired to be removed
from the revealed message. In the information bottleneck
problem, the costs involve mutual information and only one
of the random variables is received at the sender whereas in
our framework the costs include mean squared error terms
and both of the random variables are observed at the sender.
In order to provide an estimation theoretic perspective on
the information bottleneck problem, we formulate a similar
problem where we use mean squared error terms for the costs
as in our original setting and we show that there are operational
and consequential differences when the encoder is allowed to
use both of the hidden variables.

B. Contributions of the Manuscript

The main aim of this paper is to provide both Nash and
Stackelberg equilibria analyses for the considered privacy-
signaling game problem. In game theory, since the solution
concept involves an equilibrium (Nash, Stackelberg, and re-
finements), one cannot talk about an optimal equilibrium in
general. Nonetheless, as a main contribution of our work,
we establish and compute an equilibrium, which is desirable
among all, for both of the players. The main contributions of
this paper can be summarized as follows:

• In the literature, a Nash equilibrium analysis of the
privacy game problem, in which both the privacy and the
utility (for the nonprivate random variable) are measured
via the mean squared error cost, has not been available.
In this paper, we consider this problem for the first time
in the literature to our knowledge. More importantly, we
show that a payoff dominant Nash equilibrium is attained
by linear policies in Theorem 1. These equilibria are the
most desirable equilibria for both of the players among
any set of policies. We show that the characterized linear
payoff dominant Nash equilibria coincide with the Stack-
elberg equilibria in Theorem 2. It should be emphasized
that these (Stackelberg) equilibria are obtained without an
a priori affine policy restriction for the players. In other
words, if we consider the optimization problem that the
encoder needs to solve while obtaining the Stackelberg
equilibria, these linear policies are the optimal solution
among any sets of policies.

• We introduce an MMSE Gaussian information bottle-
neck problem, which is a modification of the classical
information bottleneck problem that has been considered
under mutual information criteria. By viewing this as
an instance of the privacy-signaling game under the
Stackelberg formulation, we show that the solution to
the MMSE Gaussian information bottleneck problem

is attained by a set of explicitly characterized linear
policies in Theorem 3. Namely, even when the policies
are allowed to be nonlinear, a set of linear policies arises
as the optimal solution.

• We extend our results for scalar sources to the additive
Gaussian noise channel setting. Under this setting, it is
shown that a payoff dominant Nash equilibrium is at-
tained by linear policies in Theorem 5. This theorem also
establishes that the characterized linear Nash equilibrium
is unique among the affine class. We also show that
the payoff dominant Nash equilibrium coincides with
the Stackelberg equilibrium in Theorem 6. In addition,
the characterized linear Stackelberg equilibrium is unique
among any set of policies. We also establish the existence
of nonlinear Nash and Stackelberg equilibria considering
a discrete channel setting in which the encoding function
is restricted to take discrete values in Theorem 7 and
Theorem 8, respectively.

C. Organization of the Manuscript

The remainder of the paper is organized as follows. Sec-
tion II and Section III provide, respectively, the Nash and
Stackelberg equilibria analyses for the considered privacy-
signaling game. Section IV investigates the information bot-
tleneck problem as an instance of our proposed framework.
Section V-A and Section V-B extend the results for scalar
sources to the Gaussian noise channel and discrete channel,
respectively. Section VI provides numerical examples, and
Section VII concludes the paper with some final remarks.

II. NASH EQUILIBRIA

In this section, we characterize linear Nash equilibria of
the considered privacy-signaling game. More importantly, we
show that special cases of these equilibria lead to payoff
dominant Nash equilibria. These payoff dominant Nash equi-
libria are the most desirable equilibria for both of the players
(among all coding/decoding policies, including those that are
nonlinear) in a sense that is made explicit in the following
definition.

Definition 1: A Nash equilibrium that is not Pareto domi-
nated1 by any other Nash equilibrium of the game is said to
be a payoff dominant Nash equilibrium [60] .

In order to characterize linear Nash equilibria, we propose
an equivalent formulation by applying an invertible linear
transformation of variables from Tamura [27]. We note that
[27] considers a general multidimensional signaling setup
under quadratic costs and characterizes a set of linear policies
that forms a Stackelberg equilibrium for jointly Gaussian
sources. We use this characterization for our special case of
privacy-signaling game scenario to formulate an equivalent
problem and this approach facilitates our Nash equilibrium
analysis.

Theorem 1:

1A set of policies γe(·, ·), γdX (·) and γdY (·) Pareto dominates another
set of policies γ̃e(·, ·), γ̃dX (·) and γ̃dY (·) if Je(γe, γdX , γdY ) ≤
Je(γ̃e, γ̃dX , γ̃dY ), Jd(γe, γdX , γdY ) ≤ Jd(γ̃e, γ̃dX , γ̃dY ) and at least
one of these inequalities is strict.
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(i) There exist informative2 linear Nash equilibria with an
encoding policy

z =
[
α1q1 · · · αnY

qnY

]T
Σ−1/2

[
x
y

]
(7)

for scalars {αi}nY
i=1 with at least one of these scalars be-

ing nonzero3 where {qi}ni=1 are normalized eigenvectors
of W = Σ1/2diag(−δI, I)Σ1/2 with n ≜ nX +nY and
these eigenvectors are arranged in such a way that the
corresponding eigenvalues {λi}ni=1 satisfy λi > 0 for
i = 1, . . . , nY and λi < 0 for i = nY + 1, . . . , n. The
corresponding decoding policy is given by[

γdX (z)
γdY (z)

]
= Σ1/2

[
β1q1 · · · βnY

qnY

]
z (8)

where βi = 1/αi if αi ̸= 0 and βi = 0 otherwise
for i = 1, . . . , nY .These Nash equilibria exist for any
set of scalars {αi}nY

i=1. When the indices with αi ̸= 0
are the same for two sets of scalars, they lead to the
same performance values, i.e., the resulting equilibria
with these sets of scalars are informationally equivalent.

(ii) These informative equilibria are payoff dominant Nash
equilibria if αi ̸= 0 for all i = 1, . . . , nY .

(iii) In addition to informative equilibria, there always
exist noninformative Nash equilibria with the trans-
mitted message being independent of the sources,
e.g.,γe(x,y) = C for some constant C, and with the
decoding policies γdX (z) = 0 and γdY (z) = 0.

Proof: We apply a linear transformation of variables that
gives an orthonormal coordinate system and then show that
in this transformed coordinate system the sender wishes to
convey some of the coordinates and to hide the remaining
coordinates. The advantage of this transformation is that as
these coordinates are orthogonal to each other, conveying
one coordinate does not give information related to other
coordinates.

Since W = Σ1/2diag(−δI, I)Σ1/2 is symmetric, we can
decompose it as W = QΛQT for orthonormal Q and
diagonal Λ. We denote the columns of Q by {qi}ni=1 and
the diagonal elements of Λ by {λi}ni=1. By Sylvester’s law
of inertia, W and diag(−δI, I) have the same number of
positive and negative eigenvalues [61, p. 282]. Therefore, W
has nY positive and nX negative eigenvalues. We sort these
eigenvalues {λi}ni=1 in such a way that the first nY of them are
positive and the remaining ones are negative. For notational
convenience, we define

S ≜

[
X
Y

]
, γdS (z) ≜

[
γdX (z)
γdY (z)

]
. (9)

Now, we make the following transformation of variables:

T ≜ QTΣ−1/2S, (10)

2We refer to an equilibrium as noninformative if the sender does not
convey information related to both of the random variables at this equilibrium
and this is equivalent to what is known as a babbling equilibrium in the
signaling games literature. In the converse case, the equilibrium is referred to
as informative.

3The case when αi = 0 for all i = 1, . . . , nY leads to a noninformative
Nash equilibrium.

(x,y) T γ̃e(t)
t

γdT (z)
z

T −1
t̃

(x̂, ŷ)

Fig. 2: Equivalent formulation where T denotes the linear
transformation specified in (10).

where Σ−1/2 is well-defined since Σ is assumed to be positive
definite. We note that

E[TT T ] = E[QTΣ−1/2SSTΣ−1/2Q]

= QTΣ−1/2E[SST ]Σ−1/2Q

= QTΣ−1/2ΣΣ−1/2Q = I.

Thus, each components of T are independent and identically
distributed zero-mean Gaussian random variables each with a
unit variance.

Next, we propose an equivalent problem under this linear
transformation of variables. The encoder consists of two
consecutive mappings, one of which is fixed as above and
the other one can arbitrarily be chosen by the sender. In other
words, there is a linear mapping from (x,y) to t fixed as
(10) and then an encoding function z = γ̃e(t). At the receiver
side, we also consider a similar setting. The observation at the
receiver is mapped into t̃ via γdT (z), which can arbitrarily be
selected by the receiver. Then, these auxiliary variables are
mapped into estimates of x and y as follows:

γdS (z) = Σ1/2QγdT (z). (11)

Fig. 2 provides an illustration for the equivalent formulation.
The aim is to characterize γ̃e(t) as well as γdT (z) at a Nash
equilibrium. Since the proposed transformation is invertible,
the problem in the transform domain is equivalent to the
original problem.

Next, we express the objective function of each player in
terms of the random variables in the transformed coordinate
system. The objective function of the sender can be written as

Je(γ̃e, γdT ) = E[(S − γdS (Z))Tdiag(−δI, I)

(S − γdS (Z))]

= E[(T − γdT (Z))TQTΣ1/2diag(−δI, I)

Σ1/2Q(T − γdT (Z))]

= E[(T − γdT (Z))TΛ(T − γdT (Z))]

=

n∑
i=1

λiE[(Ti − γdTi (Z))2], (12)

where the first equation is obtained from (1) and (9), the
second equation is based on (10) and (11), and {λi}ni=1 are
the eigenvalues of W which satisfy λi > 0 for i = 1, . . . , nY

and λi < 0 for i = nY + 1, . . . , n. Similarly, if we express
the objective function of the receiver in terms of the random
variables in the introduced coordinate system, we get

Jd(γ̃e, γdT ) = E[(S − γdS (Z))T (S − γdS (Z))]

= E[(T − γdT (Z))TK(T − γdT (Z))] (13)

where K ≜ QTΣQ is a positive definite matrix since Σ
is positive definite. In the proposed equivalent problem, the
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optimal γdT (z) for a given encoding policy γ̃e(t) is the
minimum mean squared error estimator of the corresponding
random variable. The proof of this statement is standard but
we present it in Lemma 1 of Appendix A for completeness.

In the equivalent formulation, the objective function of the
sender is expressed as a weighted sum of mean squared error
terms corresponding to independent random variables where
there are both positive and negative weights. We partition the
transformed random vector as

T ≜

[
U
V

]
(14)

where U ∈ RnY and V ∈ RnX such that the positive and neg-
ative coefficients in (12) correspond to U and V , respectively.
The receiver still employs the minimum mean squared error
estimators for the corresponding random variables for a given
encoding policy. Next, we use the equivalent formulation to
characterize the Nash equilibria. Due to structure of sender’s
cost in (12) considering the equivalent formulation, it follows
that the sender does not convey any information related to V ,
which is specified in (14), at a Nash equilibrium. We present
this auxiliary result in Lemma 2 of Appendix A. Hence, the
transmitter is restricted to send information related to U at a
Nash equilibrium. This implies that the objective function of
the sender at a Nash equilibrium reduces to

Je(γ̃e, γdT ) =

nY∑
i=1

λiE[(Ti − γdTi (Z))2] (15)

where {1, . . . , nY } are the only indices with λi > 0 in
{λi}ni=1. Since the receiver wishes to extract all the random
variables in this transformed coordinate system including the
ones with these indices, the receiver also shares the objective
of minimizing these mean squared error terms. As a result,
conveying all or a subset of the random variables in U
yields a Nash equilibrium and this gives the linear policies
stated in (7). In addition, conveying all of these random
variables yields the minimum attainable performance at a Nash
equilibrium for both of the players. Thus, if αi ̸= 0 for all
i = 1, . . . , nY in (7), the corresponding linear Nash equilibria
are payoff dominant Nash equilibria. Namely, there does not
exist any other Nash equilibrium which Pareto dominates these
characterized equilibria.

Remark 3: It is interesting to contrast the result of Theo-
rem 1 with the signaling game setups in the literature where
the misaligned cost structure arises from biased nature of
the sender as opposed to privacy concerns of the sender.
Notably, Crawford and Sobel [26] introduce a signaling game
setup where the costs are misaligned due to a bias term.
The communication setup is similar to our setting in this
section in the sense that the transmitted message is perfectly
observed by the receiver and the sender does not have a power
constraint. Under this setting, [26] establishes the quantized
nature of Nash equilibria for scalar sources supported on [0, 1]
under certain assumptions regarding the objectives, and [29]
generalizes this result to arbitrary source distributions under
quadratic criteria. In contrast to this setting with a biased
sender, if there is a privacy concerned sender, then a Nash
equilibrium is attained by linear policies regardless of source

dimensions, as shown in Theorem 1. In fact, depending on
whether the source is scalar or vector valued, there may exist
linear informative Nash equilibria for the signaling game setup
with a biased sender. In particular, in [38], we extend Crawford
and Sobel’s formulation to a multidimensional source setting
under quadratic cost criteria with a biased sender and show
that for independent and identically distributed sources and an
arbitrary bias vector, there always exist linear informative Nash
equilibria (only) when the source distribution is Gaussian.

Theorem 1 characterizes linear Nash equilibria in which
there is communication between the transmitter and the re-
ceiver. Hence, the considered game always admits informative
linear Nash equilibria regardless of the system parameters.
More importantly, special cases of these linear equilibria
leads to payoff dominant Nash equilibria, which are the
most desirable equilibria for both of the players among all
coding/decoding policies.

Next, we specialize to the case of scalar sources with the
aim to provide a more explicit characterization of the payoff
dominant Nash equilibria in this case. In particular, X and Y
are assumed to be zero-mean jointly Gaussian with variances
σ2
X and σ2

Y , respectively and a nonzero correlation ρ, i.e.,

Σ =

[
σ2
X ρ
ρ σ2

Y

]
. We present the following as a corollary of

Theorem 1.
Corollary 1: For scalar sources X and Y , there exist

informative linear Nash equilibria with an encoding policy
γe(x, y) = Ax+By which satisfies

B

A
= −δσ2

X + σ2
Y

2δρ
−

√
(δσ2

X + σ2
Y )

2 − 4δρ2

2δρ
(16)

and decoding policies

γdX (z) =

(
Aσ2

X +Bρ

A2σ2
X +B2σ2

Y + 2ABρ

)
z, (17)

γdY (z) =

(
Aρ+Bσ2

Y

A2σ2
X +B2σ2

Y + 2ABρ

)
z. (18)

These equilibria are payoff dominant Nash equilibria. In
addition, these equilibria are unique among linear policies.

Proof: In order to characterize the Nash equilibria, we
need to find the eigenvalues and eigenvectors of W =
Σ1/2diag(−δ, 1)Σ1/2. We note that W has the same eigen-
values as D ≜ Σdiag(−δ, 1) and these can be computed as

λ1 =
−δσ2

X + σ2
Y

2
+

√
(δσ2

X + σ2
Y )

2 − 4δρ2

2
, (19)

λ2 =
−δσ2

X + σ2
Y

2
−

√
(δσ2

X + σ2
Y )

2 − 4δρ2

2
. (20)

where λ1 > 0 and λ2 < 0. Thus, the sender is restricted

to transmit u = qT
1 Σ

−1/2

[
x
y

]
where q1 is the normalized

eigenvector of W associated with the eigenvalue λ1 computed
in (19). It is seen that qT

1 Σ
−1/2 is a left eigenvector of D

associated with its eigenvalue λ1. By expressing this left eigen-
vector, an encoding policy which satisfies (16) is obtained.
Then, the conditional expectation formula for jointly Gaussian
distributions can be employed to obtain (17) and (18) [62, p.
155]. As a result, these characterized policies lead to payoff
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dominant Nash equilibria. Moreover, the only possible linear
equilibria are attained by transmitting a scaled version of u.

Remark 4: Note that when δ → 0+, the encoding policy
satisfies A/B → 0 as can be deduced from (16). Therefore,
δ → 0+ implies that the encoder transmits directly Y at a Nash
equilibrium. When δ = 0, the sender also transmits Y directly
at a Nash equilibrium since it does not have any privacy
concern in this case. Hence, the Nash equilibrium specified in
Corollary 1 as δ → 0+ coincides with the Nash equilibrium
when δ = 0.

Remark 5: It is seen that the ratio of B and A converges
to −σ2

x/ρ as δ → ∞, which can be verified from (16). This
shows that in the high privacy regime, the encoder makes the
revealed information Z and the private random variable X
essentially uncorrelated.

III. STACKELBERG EQUILIBRIA

In this section, we characterize the Stackelberg equilibria
of the considered quadratic privacy-signaling game. Our main
result is that the payoff dominant Nash equilibria characterized
in the previous section are also Stackelberg equilibria. It is
important to note that the set of possible encoding strategies,
i.e., Γe, is not restricted to be linear. If the sender performs
an optimization of its objective function by anticipating the
best response of the receiver, these linear policies become the
optimal solution among any set of policies.

We note that the Stackelberg equilibria can be obtained
from the analysis presented by Tamura [27, Theorem 2]
which characterizes linear policies that form a Stackelberg
equilibrium for a general quadratic multidimensional signaling
setup for jointly Gaussian sources with some generalizations
(in the cost setup considered) but also some restrictions, such
as the a priori restriction of the decoder to an affine class
in the conditional expectation (that limits the applicability for
the noisy channel setup to be considered later in the paper.)
Accordingly, we consider an alternative approach where we
use the equivalent formulation employed in Section II.

Theorem 2:
(i) The encoding policies in (7) with αi ̸= 0 for all

i = 1, . . . , nY and the decoding policies in (8) form
a Stackelberg equilibrium, i.e., a payoff dominant Nash
equilibrium and a Stackelberg equilibrium coincide.

(ii) In contrast to Nash setup for which there exist both
informative and noninformative equilibria, a Stackelberg
equilibrium is always informative, where the sender
uses the private and nonprivate random variables in
constructing its message.

(iii) When the nonprivate random variable is not scalar val-
ued, i.e., nY > 1, there exist informative Nash equilibria
which do not coincide with the Stackelberg equilibria.
These Nash equilibria are attained by an encoding policy
in (7) and a decoding policy in (8) where the scalars
{αi}nY

i=1 can take any value with at least one zero term
and one nonzero term.

Proof: We apply a transformation of variables as in (10).
In this transformed coordinate system, the objective functions

of the sender and the receiver are expressed as in (12) and
(13), respectively. If we partition the random vector T in
this coordinate system as in (14) according to the sign of
coefficients in (12), we can show that the sender can only
convey information related to U . In particular, in Lemma 3
of Appendix A, we prove that the sender does not convey
information related to V at a Stackelberg equilibrium, which
is proven in a similar manner to the proof of Lemma 2 with
the exception that in this case the sender announces its policy
first.

As a result of Lemma 3, the sender is restricted to transmit
U . Since the linear encoding policies in (7) with αi ̸= 0
for all i = 1, . . . , nY reveals U completely, these encoding
policies yield the minimum attainable performance for the
sender among all encoding policies. Therefore, the policies in
the statement of the theorem lead to a Stackelberg equilibrium.

We note that the random variable U , which is desired to be
conveyed at a Stackelberg equilibrium, has a size of nY ≥ 1.
Therefore, there always exists informative Stackelberg equi-
librium where the sender reveals U completely. On the other
hand, it is always possible to construct a noninformative Nash
equilibrium as noted in Theorem 1.

When nY > 1, the random variable U is not scalar
valued. Thus, there exist informative Nash equilibria with an
encoding policy in (7) where the scalars {αi}nY

i=1 take any
value with at least one zero term and one nonzero term. In
these informative Nash equilibria, the sender conveys only a
subset of the random variables in U . Since at these informative
Nash equilibria, the performance of the sender is strictly worse
than that at the payoff dominant Nash equilibria, these policies
do not lead to a Stackelberg equilibrium.

Remark 6: As noted earlier, [39] considers a Stackelberg
game setup where there is also side information at the receiver.
In particular, [39, Theorem 3] makes an a priori affine policy
restriction and provides an implicit characterization for the
equilibrium solution in terms of an optimization problem.
On the other hand, Theorem 2 of our paper does not make
an a priori affine policy restriction and provides an explicit
characterization of the Stackelberg equilibrium solution. In
that sense, our result reveals that linear policies arise as
the equilibrium solution among any set of policies for the
Stackelberg game setup without receiver side information. In
addition, if we consider the optimization problem that specifies
equilibrium policies under the affine policy restriction in [39,
Theorem 3] and ignore the receiver side information, then
the policies in Theorem 2 of our manuscript give the optimal
solution, as expected.

Remark 7: It is interesting to contrast our results in the case
of a privacy concerned sender with the results in the strategic
information transmission literature involving a biased sender.
If one considers the classical setup of Crawford and Sobel [26]
with a biased sender under the Stackelberg equilibrium concept
(rather than the Nash equilibrium concept as investigated in
[26]), then there exist linear equilibria [29]. In addition, [28]
considers a Gaussian signaling game setup with a biased
sender where the bias is modeled as a random variable and
shows the optimality of linear policies for the scalar case.
Hence, similar to our setup with a privacy concerned sender,
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in the setups with a biased sender, the Stackelberg equilibrium
solutions are given by linear policies in the case of Gaussian
sources.

Remark 8: In fact, employing any invertible function h(u)
at the sender also yields a Stackelberg equilibrium. Since the
receiver knows the commitment of the sender, it can simply
employ h−1(u) to perfectly recover u.

IV. THE MMSE GAUSSIAN INFORMATION BOTTLENECK
PROBLEM

We now visit and re-formulate the information bottleneck
problem [25] as depicted in Figure 1b. This problem has
gained a significant attention in the recent literature [46],
[49]–[57]. We will interpret this problem as an instance of
our formulation under the Stackelberg equilibrium concept in
the following sense: in contrast to the privacy game setup,
only the random variable X is observed at the sender in
the information bottleneck setup. In particular, we provide an
estimation theoretic perspective on the information bottleneck
problem by using quadratic distortion criteria as in our privacy
game setup.

The information bottleneck problem considers a similar
objective to that employed in this paper where the performance
metrics involve mutual information rather than the mean
squared error. In the information bottleneck problem, the aim
is to compress an observed random variable while trying to
preserve information related to a correlated random variable.
These conflicting objectives are analyzed by formulating an
optimization problem involving the mutual information be-
tween the considered random variables. Although the prob-
lem can be cast as a constrained optimization problem of
maximizing the released (useful) information related to the
unobserved random variable under a compression constraint,
the Lagrangian dual of this constrained problem is commonly
considered (see Remark 11 for a constrained version in our
setting). The aim is to find the optimal solution to the
following optimization problem:

min
Z=γe(X)

I(X;Z)− βI(Y ;Z), (21)

where β ≥ 0 is a tradeoff parameter. Here, the goal is
to compress an observation X while at the same time to
maximize the released information related to Y .

The information bottleneck problem considering jointly
Gaussian multidimensional sources is studied in [59] where
the structure of the optimal solution, which is jointly Gaussian
with X [63], is identified. The objective function in (21)
resembles the objective function considered in this paper in
the sense that in both problems the random variable Y is
desired to be conveyed while information related to the random
variable X is desired to be removed from the displayed
message.

The information bottleneck problem can in fact be viewed
as a Stackelberg game between a sender and a receiver. In
this game, the sender wants to compress the observed random
variable and to convey the unobserved random variable. The
use of mutual information as a performance metric effectively
means that the receiver uses all the available information

related to both of the random variables, i.e., it always employs
its best response as in the Stackelberg equilibrium. Thus, the
receiver is concerned with extracting information related to
both of the random variables, which is also the case in our
framework.

In the following, we consider a setting which is similar
to the information bottleneck technique by employing mean
squared error terms as our metric. As in the information bot-
tleneck framework, the sender observes only the random vari-
able X , rather than observing both of the random variables.
Namely, the encoder has access to only partial information
and is of the form z = γe(x). The objective functions of the
sender and receiver are as defined in (1) and (2), respectively.
Since the receiver is concerned with estimating both of the
random variables, it employs the minimum mean squared error
estimators of each random variable. Since the equilibrium
concept is the Stackelberg equilibrium, the objective function
of the sender can be written as

Je(γe) = −δ E[∥X − E[X|Z]∥2] + E[∥Y − E[Y |Z]∥2].
(22)

We now present the MMSE Gaussian information bottleneck
solution.

Theorem 3:

(i) When ΣXY ΣY X − δΣ2
X is not negative definite, the

MMSE Gaussian information bottleneck solution is at-
tained by an encoding policy

z =
[
α1q1 . . . αkqk

]T
Σ

−1/2
X x (23)

for nonzero scalars {αi}ki=1 where k denotes
the number of nonnegative eigenvalues of
W = Σ

−1/2
X ΣXY ΣY XΣ

−1/2
X − δΣX and {qi}ki=1 are

the normalized eigenvectors of W associated with its
nonnegative eigenvalues. The corresponding decoding
policy is given by[

γdX (z)
γdY (z)

]
=diag(Σ

1/2
X ,ΣY XΣ

−1/2
X )

×
[
β1q1 · · · βkqk

]
z (24)

where βi = 1/αi for i = 1, . . . , k.
(ii) In the particular case when ΣXY ΣY X−δΣ2

X is positive
definite, the MMSE Gaussian information bottleneck
solution is attained by a fully informative encoding
policy, where the sender reveals the random variable X
completely.

(iii) When ΣXY ΣY X−δΣ2
X is negative definite, the MMSE

Gaussian information bottleneck solution is noninfor-
mative, i.e., the sender does not reveal any information
related to its observation.

Before we present the proof, we contrast our estimation
theoretic solution of information bottleneck problem in Theo-
rem 3 with the information theoretic solution in [59]. Towards
that goal, we restate [59, Theorem 3.1] which gives the
solution to the optimization problem in (21).
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Theorem 4 ( [59, Theorem 3.1]): For the Gaussian infor-
mation bottleneck problem under (21), the optimal solution is
given by

z = A(β)x+ n (25)

where n is a realization of a zero-mean Gaussian random
vector with identity covariance matrix and

A(β) =


[0 · · · 0]T if 0 ≤ β < βc

1

[α1p1 0 · · · 0]T if βc
1 ≤ β < βc

2

[α1p1 α2p2 0 · · · 0]T if βc
2 ≤ β < βc

3

...

where {pT
i }nX

i=1 are left eigenvectors of

ΣX|Y Σ−1
X ≜ (ΣX − ΣXY Σ−1

Y ΣY X)Σ−1
X

with the corresponding eigenvalues {λi}nX
i=1, which are sorted

in ascending order, βc
i = 1/(1− λi) and αi =

√
β(1−λi)−1

λi(pT
i ΣXpi)

for i = 1, . . . , nX .
Remark 9: We note that for the information bottleneck prob-

lem under (21), the optimal solution is jointly Gaussian with
X which is also the case for our estimation theoretic solution
in Theorem 3. However, in the information theoretic formula-
tion, the solution involves applying an independent Gaussian
perturbation to a linear function of X as given in (25) whereas
in our estimation theoretic solution the encoder reveals a linear
function of X without applying any perturbation. We note
that if one considers the original unconstrained version of the
information bottleneck problem, then randomization will be
needed to ensure that the constraint condition holds with an
equality in some constraint regime. See Remark 11 for further
details.

Next, we present the proof of Theorem 3.
Proof: We have that (Y − E[Y |X]) is orthogonal to X

since

E[Y X] = E[E[Y X|X]] = E[E[Y |X]X].

Since the sender observes only the random variable X and
determines its message based on X , it follows that Y →
X → Z is a Markov chain in that order. This Markov property
implies that (Y − E[Y |X]) is orthogonal to Z as well. To
see this, observe that

E[ZE[Y |X]] = E[ZE[Y |X,Z]] = E[E[ZY |X,Z]] = E[ZY ]

where the first equality is due to the Markov property and the
last equality is due to iterated expectations. By using these
orthogonality properties, we can express the second term in
(22) as

E[∥Y − E[Y |Z]∥2]
= E[∥Y − E[Y |X] + E[Y |X]− E[Y |Z]∥2]
= E[∥Y − E[Y |X]∥2] + E[∥E[Y |X]− E[Y |Z]∥2]
= E[∥Y − E[Y |X]∥2] + E[∥E[Y |X]− E[E[Y |X]|Z]∥2]

where the second equality follows from the fact that (Y −
E[Y |X]) is orthogonal to X and Z and the third equality is
due to iterated expectations. Observing that

E[Y |X = x] = ΣY XΣ−1
X x,

the objective function can be written as

Je(γe) = E[∥Y − E[Y |X]∥2]− δ E[∥X − E[X|Z]∥2]
+ E[(X − E[X|Z])T (Σ−1

X ΣXY ΣY XΣ−1
X )(X − E[X|Z])],

where the first term is independent of the encoder. Thus, we
obtain an optimization problem of the form

min
Z=γe(X)

E
[
(X − E[X|Z])TM(X − E[X|Z])

]
, (26)

where
M ≜ (Σ−1

X ΣXY ΣY XΣ−1
X − δI).

The optimization problem in (26) can be viewed as a quadratic
multidimensional signaling game problem considered earlier
in the paper and the solution can be obtained by using the
analysis in Section III. In particular, we can rewrite the
problem in (26) as a Stackelberg game between a sender and
a receiver with objective functions

Je(γe, γdX ) = E[(X − γdX (Z))TM(X − γdX (Z))], (27)

Jd(γe, γdX ) = E[(X − γdX (Z))T (X − γdX (Z))]. (28)

Notice that for a given encoding policy, the best response of
the receiver under (28) is given by the minimum mean squared
estimator of X given Z, which is consistent with (26).

Next, we apply a transformation of variables to express the
objective function of the sender in a simplified form. Towards
that goal, let W = Σ

−1/2
X ΣXY ΣY XΣ

−1/2
X − δΣX = QΛQT

for orthonormal Q and diagonal Λ. Now, consider the follow-
ing invertible transformation of variables

T ≜ QTΣ
−1/2
X X. (29)

Under this transformation of variables, we introduce an equiv-
alent problem in a similar manner to Section II. The obser-
vation X is mapped into T via a fixed transformation (29).
The encoder chooses an arbitrary policy γ̃e(·) which maps
the transformed random vector T into the message Z. The
receiver applies an arbitrary policy γdT (·) to its observation
Z and then the estimate of X is obtained via a fixed relation

γdX (z) = Σ
1/2
X QγdT (z). (30)

In this transformed coordinate system, for a given encoding
policy the receiver still employs the minimum mean squared
estimator of the random variable T , which can be established
via a similar analysis to that in Lemma 1. The objective
function of the sender in this transformed coordinate system
can be written

Je(γ̃e, γdT ) =

nX∑
i=1

λiE[(Ti − γdTi (Z))2], (31)

where {λi}nX
i=1 are eigenvalues of W .

If all of these eigenvalues {λi}nX
i=1 are positive, which

is equivalent to ΣXY ΣY X − δΣ2
X being positive definite,

then the minimum can be attained by revealing T , which
corresponds to the fully informative scenario. In case all of
these eigenvalues are negative, i.e., ΣXY ΣY X − δΣ2

X is
negative definite, then revealing information related to any
component of T is not desirable for the sender, and thus, this
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scenario leads to a noninformative Stackelberg equilibrium. In
the remaining case, i.e., ΣXY ΣY X − δΣ2

X is neither positive
definite nor negative definite, we partition the transformed
vector according to the sign of the coefficients {λi}nX

i=1 in
(31) as follows:

T ≜

[
U
V

]
(32)

where U ∈ Rk and V ∈ RnX−k correspond to nonnegative
and negative coefficients in (31), respectively, with k denoting
the number of nonnegative eigenvalues of W . Next, we can
apply Lemma 3 for this particular Stackelberg game setup to
establish that the sender cannot convey information related to
V and is restricted to send information related to U . As the
encoding policy in (23) reveals U completely, this encoding
policy achieves the minimum attainable for the sender among
any set of policies. Thus, the pair of policies (23) and (24)
yield a Stackelberg equilibrium, which gives the solution to
the MMSE Gaussian information bottleneck problem.

Remark 10: As indicated in Theorem 3, in the information
bottleneck setup, the solution may be informative or nonin-
formative depending on the tradeoff parameter δ. In contrast,
in the privacy-signaling setup investigated in Section III, the
equilibrium solution is always informative regardless of δ as
shown in Theorem 2. We can have the following interpretation
regarding these results: In the privacy-signaling setup, the
sender can perform perfect removal of information in the
revealed message according to its objective as it has access
to both of the random variables. It turns out that this is
attained via a linear encoding policy for the case of Gaussian
sources. On the other hand, in the information bottleneck
setup, the sender having access to partial information cannot
apply perfect information removal. Instead, the sender does
what is best given the partial information that it has. This
happens to be a full disclosure, a partial disclosure, or a no
disclosure policy depending on δ.

In the special case of scalar sources, Theorem 3 simplifies.
In particular, depending on the value of δ, the equilibrium is
either fully informative or noninformative and we summarize
this result in the following corollary.

Corollary 2: The Stackelberg equilibrium of the information
bottleneck problem for scalar sources is given by one of the
following cases:

(i) If (ρ2/σ4
X) > δ, then the sender completely reveals X .

(ii) If (ρ2/σ4
X) < δ, then the sender does not reveal

information related to X .
(iii) If (ρ2/σ4

X) = δ, then both informative and noninforma-
tive scenarios lead to a Stackelberg equilibrium.

Remark 11: [Constrained MMSE Information Bottleneck
Problem.] It is also possible to apply the ideas used in the
proof of Theorem 3 to a constrained version of the MMSE
Gaussian information bottleneck problem where the aim is
to minimize the mean squared error for estimating Y under
constraint that the mean squared error for estimating X is
above a certain threshold α. In this case, the problem is defined

with

min
Z=γe(X)

Tr
(
ΥE[(X − E[X|Z])(X − E[X|Z])T ]

)
subject toTr

(
E[(X − E[X|Z])(X − E[X|Z])T ]

)
≥ α

(33)

where Υ ≜ Σ−1
X ΣXY ΣY XΣ−1

X , which is always positive
semidefinite. Since any positive semidefinite

Φ ≜ E[(X − E[X|Z])(X − E[X|Z])T ]

is attainable via a linear encoding policy with a Gaussian
perturbation, the problem reduces to

min
Φ⪰0

Tr(ΥΦ)

subject toTr(Φ) ≥ α. (34)

Let the minimum eigenvalue of Υ be denoted by λmin. Observe
that

Tr(ΥΦ) = Tr(ΥΦ− λminΦ+ λminΦ)

= Tr((Υ− λminI)Φ) + λminTr(Φ)

≥ αλmin

where the inequality uses the constraint along with the obser-
vation that (Υ − λminI) and Φ are positive semidefinite. As
a result, by using a linear encoding policy possibly with a
Gaussian perturbation, one can attain Tr(Φ) = α where the
solution satisfies the orthogonality condition under the trace
inner-product defining a Hilbert space on square matrices:

Tr((Υ− λminI)Φ) = 0.

Since such an encoding policy achieves the characterized lower
bound, it becomes the optimal solution to the constrained
MMSE Gaussian information bottleneck problem. That the
constrained problem with inequality is equivalent to a problem
with an equality constraint applies more broadly to information
bottleneck problems, see e.g. [58].

Remark 12: We emphasize that the solution presented in
Theorem 3 is obtained without making an a priori linear policy
restriction. These policies are the optimal solution among any
set of policies for the optimization problem constructed at the
sender by anticipating the best response of the receiver.

Remark 13: In the information bottleneck problem, the
sender uses partial information since only random variable
X is available at the sender whereas in our privacy-signaling
game formulation the sender has access to both of the random
variables. Due to this further restriction that only partial infor-
mation is available at the sender, our information bottleneck
analysis provides a lower bound on the performance of our
original Stackelberg game setting.

Remark 14: It should be emphasized that the information
bottleneck problem involving mutual information corresponds
to the Stackelberg equilibrium concept since employing mutual
information effectively means that the receiver uses all the
available information, i.e., it employs its best response. On
the other hand, the Nash problem would require an explicit
dependence of the functions (considered in the optimization)
on the receiver policy.
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V. A CHANNEL BETWEEN THE SENDER AND THE
RECEIVER

In this section, we generalize our results on the considered
privacy-signaling game problem to scenarios when there is
a channel between the sender and the receiver. In fact, the
proposed equivalent formulation employed in the proof of
Theorem 1 is also applicable when there is a channel between
the sender and the receiver. Namely, Lemma 2 and Lemma 3
generalize to scenarios with a channel between the players
represented by a conditional distribution p(r|z) where R = r
denotes the observation of the receiver. These generalizations
imply that the sender cannot transmit information related to
V and is restricted to send information related to U at a Nash
equilibrium or at a Stackelberg equilibrium, where U and V
are partitions of the transformed coordinate system specified
in (14). Thus, for a given channel, the aim is to find an
encoder/decoder pair that is optimal in conveying a sequence
of independent zero-mean Gaussian distributed sources over
that particular channel in a mean squared error sense and
such an optimal encoding/decoding policy pair leads to a
payoff dominant Nash equilibrium as well as a Stackelberg
equilibrium.

In the following, we focus on the particular case of scalar
sources and investigate the Nash and the Stackelberg equilibria
for two important channel settings.

A. Gaussian Noise Channel between the Sender and the
Receiver

In this subsection, we consider the same problem as before
for scalar sources except that there is an additive Gaussian
noise (e.g., measurement noise) between the transmitter and
the receiver. More specifically, the sender encodes X and Y
into Z which is subject to additive noise W and the receiver
uses the observation R = Z +W while decoding both of the
random variables. The additive noise term is independent of X
and Y and it is modeled as zero-mean Gaussian with variance
σ2
W . In addition, we assume that there is an average power

constraint at the sender, i.e., E[Z2] ≤ P .
1) Nash Equilibria:
Theorem 5:
(i) There exist informative linear Nash equilibria with an

encoding policy γe(x, y) = Ax+By that satisfies

B

A
= − (δσ2

X + σ2
Y ) +

√
(δσ2

X + σ2
Y )

2 − 4δρ2

2δρ
, (35)

A2σ2
X +B2σ2

Y + 2ABρ = P (36)

and with decoding policies

γdX (r) =

(
Aσ2

X +Bρ

P + σ2
W

)
r, (37)

γdY (r) =

(
Aρ+Bσ2

Y

P + σ2
W

)
r. (38)

(ii) These informative equilibria are payoff dominant Nash
equilibria and they are the only possible payoff dominant
Nash equilibria. Moreover, these equilibria are unique
among the affine class of policies.

Proof: Lemma 2 implies that the sender is restricted
to convey U which corresponds to information conveyed by
the sender at the equilibria specified in Corollary 1. Then,
it is easy to verify that sending U after scaling up to the
maximum available power level yields a Nash equilibrium. The
decoding policies at this equilibrium are given by the minimum
mean squared error estimators corresponding to each random
variable. Since the observation R is jointly Gaussian with
X and Y , the conditional expectation formula for Gaussian
distributions can be employed to obtain (37) and (38) [62, p.
155].

The proof for the payoff dominance property of the equilib-
ria uses the observation that the performance of both players is
determined by E[(U−γdU (R))2] at a Nash equilibrium. Since
the source is scalar and the Gaussian noise is additive, we can
employ the well-known result that the problem of transmitting
a scalar Gaussian source over a scalar Gaussian channel under
an average power constraint admits a unique solution with
linear encoding scaled to satisfy the power constraint with
equality (see e.g. [64, p. 376]). Hence, the result immediately
follows.

As it can be shown that an encoding policy γ̃e(u) = Au+C
with E[(AU)2] < P cannot be a Nash equilibrium, it follows
that the only possible informative affine Nash equilibria are
attained by an encoding policy that satisfies (35) and (36).

2) Stackelberg Equilibria:
Theorem 6: The Stackelberg equilibria coincide with the

payoff dominant Nash equilibria characterized in Theorem 5.
These equilibria are unique among any set of policies.

Proof: Lemma 3 implies that the encoder cannot convey
V and it can only use U in constructing its message. As the
objectives of each player then becomes the minimization of the
mean squared error for estimating U , the optimal strategy of
the sender is to employ an encoding policy which is linear in
U with an average power equal to P . Moreover, this encoding
strategy is unique due to the fact that it is the unique solution
to the problem of transmitting a scalar Gaussian source over
a scalar Gaussian channel under an average power constraint
[64].

It is important to emphasize that the encoder is not restricted
to be affine. Since the problem reduces to transmitting a scalar
Gaussian source over a scalar Gaussian channel under an
average power constraint, we obtain these linear policies as
the optimal unique solution to this reduced problem.

B. Discrete Noiseless Channel between the Sender and the
Receiver

In this subsection, we consider scalar sources and investigate
the discrete channel setting where the sender is restricted to
transmit a discrete value, i.e., Z ∈ {0, . . . ,M − 1} for some
M ≥ 2. We assume that the channel is noiseless, i.e., R = Z.

While investigating the discrete channel setting, we again
employ the equivalent formulation which facilitates the anal-
ysis. Lemma 2 and Lemma 3 imply that both players share
the common objective of minimizing E[(U − γdU (R))2] un-
der both of the equilibrium concepts. Since the sender is
restricted to transmit discrete values, it is required to quantize



12

U at the sender. Since this would correspond to classical
quantization, the existence of an optimal quantizer follows
from the classical results in the literature, e.g., [65]. Namely,
there exist quantization bins and reconstruction points which
minimize the corresponding mean squared error. Thus, by
assigning each bin to a discrete value of Z and then using
the corresponding optimal reconstruction points at the receiver
yield a Nash equilibrium. We summarize this result in the
following theorem.

Theorem 7: Consider the quantization of U into M bins
where each bin is assigned to a discrete value of Z at the
encoder and the corresponding reconstruction points at the
receiver such that E[(U − γdU (R))2] is minimized. This pair
of encoding and decoding policies, which always exists, forms
an informative Nash equilibrium. In addition, this equilibrium
is a payoff dominant Nash equilibrium.

It is worth pointing out that for any number of bins lower
than M , there exists a Nash equilibrium. In other words,
even if Z can take M discrete values, a quantization policy
using lower than M bins at the sender and the corresponding
reconstruction points at the receiver is also a Nash equilibrium.
In addition, the case of a single bin is also a Nash equilibrium
where no information related to U is conveyed to the receiver.

It is noted that using a large number of bins yields a lower
E[(U−γdU (R))2]. Since the mean squared error for estimating
U is desired to be minimized for both players, using a large
number of bins results in improved objectives for both players.
This monotonicity property with respect to the number of bins
implies that at the Stackelberg equilibrium there must be M
bins.

Theorem 8: The pair of policies in Theorem 7 leads to a
Stackelberg equilibrium.

VI. NUMERICAL EXAMPLES

In this section, we provide numerical examples for the
proposed privacy-signaling game and the MMSE information
bottleneck problems.

A. Scalar Sources

Here, we consider scalar sources and illustrate the perfor-
mances at the characterized equilibria where the variances
of the private and nonprivate random variables are set as
σ2
X = σ2

Y = 1. We consider only the privacy-signaling game
problem since the information bottleneck solution is simply
given by the fully informative or noninformative solution
depending on δ in the case of scalar sources as stated in
Corollary 2. Since the informative Nash equilibrium coincides
with the Stackelberg equilibrium in the case of scalar sources
for the privacy-signaling game setup, we do not make a
distinction between them.

Fig. 3 plots the estimation errors for the private and nonpri-
vate random variables with respect to the privacy ratio where
the correlation between them is given by ρ = 0.75. The
estimation error for the private random variable increases with
the privacy ratio since the transmitter removes information
related to the private random variable due to enhanced privacy
concerns. This removal also distorts the information conveyed
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Fig. 3: Mean squared errors at the informative equilibrium
for privacy-signaling game setup with respect to privacy ratio
where ρ = 0.75.

TABLE I: The ratio of coefficients at the encoder for the
derived informative equilibria when σ2

X = 1 and σ2
Y = 1,

as specified in (16).

Scenario B/A
ρ = 0.3 and δ = 0.1 −36.39
ρ = 0.3 and δ = 1 −6.51
ρ = 0.3 and δ = 10 −3.63
ρ = 0.7 and δ = 0.1 −15.04
ρ = 0.7 and δ = 1 −2.44
ρ = 0.7 and δ = 10 −1.50

related to the nonprivate random variable and hence the
corresponding estimation error also increases.

Next, we illustrate the attained costs with respect to both
the privacy ratio δ and the correlation between the random
variables ρ. We plot the estimation errors at the equilibria in
Fig. 4a for the private random variable and in Fig. 4b for
the nonprivate random variable. In the low privacy scenario,
the estimation error for Y does not change significantly
with respect to the correlation since most of the information
contained in Y is conveyed to the receiver regardless of the
correlation. As a result, more information is leaked related to
the private random variable as the correlation is increased.
In contrast, in the high privacy scenario, regardless of the
correlation, most of the information related to X is removed
from the transmitted message. Thus, the estimation error for
the nonprivate random variable increases with the correlation
whereas no significant changes in the estimation error for the
private random variable are observed.

Table I illustrates the tradeoff between utility in terms of
conveying Y and privacy in terms of hiding X by providing
the structure of the encoder at the equilibrium for various
values of the privacy ratio and correlation. It can be inferred
that if the privacy ratio is increased while the correlation is
kept the same, the information leakage related to the private
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(a) Private random variable.
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(b) Nonprivate random variable.

Fig. 4: Mean squared errors at the informative equilibrium for
privacy-signaling game setup with respect to privacy ratio and
correlation between the random variables.

random variable reduces, as expected.

B. Multidimensional Sources

Here, we consider vector valued sources where both the pri-
vate and the nonprivate random variables are two-dimensional
with the following covariance matrix:

Σ =

[
ΣX ΣXY

ΣY X ΣY

]
=


1 0.7 0.7 0.6
0.7 1 0.2 0.5
0.7 0.2 1 0.6
0.6 0.5 0.6 1

 . (39)

We first illustrate the performance at the equilibria for
the privacy-signaling game setup. Since both sources are
multidimensional, there exist multiple linear Nash equilibria,
which are characterized in Theorem 1. Among these Nash
equilibria, one of them corresponds to the payoff dominant
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(a) Private random variable.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Nonprivate random variable.

Fig. 5: Mean squared errors at the informative equilibria for
privacy-signaling game setup with respect to privacy ratio.
The equilibrium (i) corresponds to the payoff dominant Nash
equilibrium or the Stackelberg equilibrium, and the equilibria
(ii) and (iii) correspond to two different Nash equilibria.

Nash equilibrium, which also coincides with the Stackelberg
equilibrium as stated in Theorem 2. We plot the estimation
errors at these informative equilibria with respect to the privacy
ratio in Fig. 5a for the private random variable and in Fig. 5b
for the nonprivate random variable. Similar to the scalar source
setting, we observe that the estimation performance for both
of the random variables degrades as δ increases since the
sender removes more information related to the private random
variable and thereby related to the nonprivate random variable.
Moreover, the information conveyed at the payoff dominant
Nash equilibria contains the information conveyed in other
two Nash equilibria. Namely, the sender conveys both U1

and U2 at the payoff dominant Nash equilibria whereas the
sender transmits U1 or U2 at the other two Nash equilibria
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Fig. 6: Mean squared errors for the MMSE information
bottleneck solution with respect to tradeoff parameter δ.

considering the transformed coordinate system defined by (10)
and (14). It is seen that at the equilibrium (iii) in Fig. 5, the
estimation errors do not change significantly with respect to
δ in contrast to that at the equilibrium (ii). This reveals that
for the considered setting the tradeoff between privacy and
utility is more significant in one direction in the transformed
coordinate system.

C. The MMSE Information Bottleneck Setup

Finally, we illustrate the performance at the MMSE informa-
tion bottleneck solution. Fig. 6 plots the mean squared errors
with respect to tradeoff parameter δ. The fully informative
scenario with the sender revealing the random variable X
completely is obtained for values of δ smaller than a certain
threshold. In contrast, the solution becomes noninformative
for values of δ larger than a certain threshold. When δ is
between these values, the solution becomes informative with
the sender applying a certain compression via a linear policy.
It is interesting to observe jumps when δ is equal to the
thresholds in Fig. 6. In fact, δ is equal to these thresholds when
(31) has a term with a zero coefficient, i.e., λj = 0 for some
j ∈ {1, . . . , nX}. This implies that when δ is exactly equal to
these thresholds, conveying the corresponding random variable
Tj in the transformed coordinate system does not affect the
sender’s cost. As a result, we obtain the optimal solution when
the sender transmits Tj as well as when the sender hides
Tj completely or partially. Moreover, these thresholds for δ
actually correspond to the values after which the dimension
of the encoded message in equilibrium changes.

VII. CONCLUSION

A communication setting between a sender with privacy
concerns and a receiver has been investigated in a game theo-
retic framework. The private and nonprivate random variables
have been modeled as jointly Gaussian random vectors. It

has been proven that a payoff dominant Nash equilibrium
is attained by linear policies. It has been shown that these
linear policies at the payoff dominant Nash equilibria lead to
Stackelberg equilibria as well. These results have been further
generalized to the Gaussian noisy channel setting as well as
a discrete noiseless channel setting for the special case of
scalar sources. We have also provided an estimation theoretic
perspective on the information bottleneck problem under the
Stackelberg equilibrium concept. We have shown that the
Stackelberg equilibria are attained by a set of characterized
linear policies.
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APPENDIX A
SUPPORTING RESULTS

In this appendix, we present supporting results used in the
proofs of Theorem 1 and Theorem 2. In the proof of Theo-
rem 1, we propose an equivalent formulation by introducing
a linear transformation of variables. The following lemma
establishes the optimality of the minimum mean squared
error estimator at the decoder for a given encoding policy
considering the proposed equivalent formulation.

Lemma 1: Consider the equivalent formulation illustrated
in Fig. 2 where T and its inverse are fixed, and the encoder
and the decoder select their corresponding policies γ̃e(·) and
γdT (·) arbitrarily. Then, for a fixed encoding function γ̃e(t),
the optimal γdT (z) that minimizes (13) is given by E[T |Z =
z].

Proof: The result is standard but for completeness we
present a short proof. Suppose that γdT (z) = E[T |Z = z] +
g(z). Inserting this expressions into the objective function of
the receiver in (13), we get

Jd(g) = E[(T − E[T |Z]− g(Z))
T
K

(T − E[T |Z]− g(Z))]

= E[(T − E[T |Z])
T
K (T − E[T |Z])]

+ E[g(Z)TKg(Z)]

≥ E[(T − E[T |Z])
T
K (T − E[T |Z])]

where the inequality follows from K = QTΣQ being positive
definite. This proves the optimality of the minimum mean
squared error estimator in the transformed coordinate system
for a given encoding policy.

In the following lemma, we show that the sender can only
transmit information related to one of the random variables
at a Nash equilibrium considering the proposed equivalent
formulation illustrated in Fig.2.

Lemma 2: Consider the privacy-signaling game problem.
At a Nash equilibrium, the sender does not reveal any infor-
mation related to the linear combinations (of the private and
nonprivate random variables) V specified in (14).

Proof: Consider a set of policies where the sender
employs an encoding policy γ̃e(t) = f(t) which conveys
information related to Tj for some j with λj < 0. In
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response to this encoding policy, it is optimal for the receiver
to employ the minimum mean squared error estimators of
each random variable, as shown in Lemma 1. Denote these
estimators for estimating Ti by gi(z) for i = 1, . . . , n. Since
we assume that the encoding policy f(t) conveys informa-
tion related to Tj , the mean squared error for estimating
Tj with the corresponding optimal estimator gj(z) is lower
than σ2

Tj
, i.e., E[(Tj − gj(Z))2] < σ2

Tj
. In response to the

decoding policies of {gi(·)}ni=1, the sender can switch to
the following policy to improve its objective value. Instead
of sending z = f(t), the sender can transmit z = f(t̄)
while keeping the encoding function f(·) the same where
t̄ ≜ [t1, . . . , tj−1, w, tj+1, . . . , tn]

T and w is a realization of
a random variable that follows the same distribution as Tj

and is independent of T . In that case, the performance for
estimating Ti for i ̸= j remains the same since receiving f(t̄)
or f(t) are equivalent for the decoding policy gi(z). However,
the performance for estimating Tj degrades as shown in the
following:

E[(Tj − gj(Z))2] = E[T 2
j ]− 2E[Tjgj(Z)] + E[gj(Z)2]

= E[T 2
j ]− 2E[Tj ]E[gj(Z)] + E[gj(Z)2]

= E[T 2
j ] + E[gj(Z)2] ≥ σ2

Tj
,

where the second equality is due to the fact that Tj and Z
are independent in case f(T̄ ) is transmitted. Since the random
variable Tj is chosen such that λj < 0 in (12), the sender gains
by employing z = f(t̄) instead of z = f(t). As a result, any
encoding policy which yields E[(Tj − γdTj (Z))2] < σ2

Tj
for

an index j with λj < 0 cannot be a Nash equilibrium since
in that case the sender can change its strategy to improve its
objective value.

In game theory, when a unilateral change by a decision
maker occurs, the perturbed policies may cease to be an
equilibrium. However, a subtle aspect of our proof is that, the
revised sender policy does not alter the policy of the decoder,
therefore the perturbation is still an equilibrium.

Similar to the result of Lemma 2 which applies to a Nash
equilibrium, the sender is restricted to transmit information
related to U at a Stackelberg equilibrium. The following
lemma proves this result.

Lemma 3: Consider the privacy-signaling game problem.
At a Stackelberg equilibrium, the sender does not reveal any
information related to the linear combinations (of the private
and nonprivate random variables) V specified in (14).

Proof: We show that any encoding policy which yields
E[(Tj − γdTj (Z))2] < σ2

Tj
for an index j with λj < 0

cannot be a Stackelberg equilibrium via a similar analysis to
that employed in Lemma 2. Towards that goal, we compare
the performance of two scenarios from the perspective of the
sender. Recall that in a Stackelberg equilibrium the sender
chooses a policy and announces this policy to the receiver and
the receiver acts with the knowledge of sender’s policy. Denote
the encoding policy by γ̃e(t) = f(t) in the first scenario.
The receiver takes an optimal response to this announced
encoding policy. Assume that E[(Tj − γdTj (Z))2] < σ2

Tj

with the corresponding set of policies. In the second sce-
nario, suppose that the encoder chooses the same policy

as before with the exception that the sender replaces the
realization Tj = tj by an independent noise following the
same distribution as Tj . Namely, the sender uses f(t̄) where
t̄ = [t1, . . . , tj−1, w, tj+1, . . . , tn]

T and w is a realization of a
random variable that follows the same distribution as Tj and
is independent of T . As the sender announces its strategy,
the optimal response of the receiver for the random variable
Tj becomes γdTj (z) = E[Tj |Z = z] = E[Tj ] = 0 due to
the independence of Tj and Z in this scenario. Therefore, we
get E[(Tj − γdTj (Z))2] = σ2

Tj
in this case. Notice that the

mean squared error performance in estimating Ti for i ̸= j is
the same for both scenarios. As a result, the second scenario
yields better performance for the sender. Thus, transmitting
information related to Tj with λj < 0 in (12) is not desirable
for the sender.
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[37] M. O. Sayın and T. Başar, “Bayesian persuasion with state-dependent
quadratic cost measures,” IEEE Transactions on Automatic Control,
vol. 67, no. 3, pp. 1241–1252, March 2022.

[38] E. Kazıklı, S. Gezici, and S. Yüksel, “Signaling games in higher
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