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Quadratic Signaling with Prior Mismatch at an
Encoder and Decoder: Equilibria, Continuity and

Robustness Properties
Ertan Kazıklı, Serkan Sarıtaş, Sinan Gezici, and Serdar Yüksel

Abstract—We consider communications through a Gaussian
noise channel between an encoder and a decoder which have sub-
jective probabilistic models on the source distribution. Although
they consider the same cost function, the induced expected costs
are misaligned due to their prior mismatch, which requires a
game theoretic approach. We consider two approaches: a Nash
setup, with no prior commitment, and a Stackelberg solution
concept, where the encoder is committed to a given announced
policy apriori. We show that the Stackelberg equilibrium cost
of the encoder is upper semi continuous, under the Wasserstein
metric, as encoder’s prior approaches the decoder’s prior, and
it is also lower semi continuous with Gaussian priors. For the
Stackelberg setup, the optimality of affine policies for Gaussian
signaling no longer holds under prior mismatch, and thus team-
theoretic optimality of linear/affine policies are not robust to
perturbations. We provide conditions under which there exist
informative Nash and Stackelberg equilibria with affine policies.
Finally, we show existence of fully informative Nash and Stack-
elberg equilibria for the cheap talk problem under an absolute
continuity condition.

Index Terms—Signaling games, Nash equilibrium, Stackelberg
equilibrium, subjective priors.

I. INTRODUCTION

The team theoretic formulation in systems theory (e.g., as
studied by Witsenhausen [1]) requires that all decision makers
have the same probabilistic system model, even though they
may have different local information. While this also has been
the norm for nearly all information theoretic applications,
in some applications, an encoder and a decoder may have
subjective probabilistic models, especially when an encoder
may realize that the model as seen by a remote decoder is
inaccurate. Even though the decision makers employ the same
cost function, induced expected costs, given encoding and
decoding functions, are different from the perspective of the
encoder and decoder due to their subjective probabilistic be-
liefs, which turns the team problem into a game theoretic one.
For cooperative setups, the encoder needs to account for this
inconsistency, which leads to a leader-follower (Stackelberg)
game formulation. In some further applications, the encoder
and the decoder may be engaged in a signaling game where
their models may not be available to each other apriori or
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they may belong to separate organizations, leading to a Nash
game theoretic setup. Accordingly, in this paper, we study
communications between an encoder and a decoder, viewed
as two decision makers, which have subjective beliefs on
the probabilistic model of the source distribution. Depending
on the cooperation or commitment nature of the encoder
to its policies, we study Stackelberg and Nash equilibria
for signaling problems and establish equilibrium solutions
and their properties. These equilibria can be used to model
different practical communication scenarios.

In scenarios modeled by the Stackelberg equilibrium con-
cept, there is a hierarchy in the decision making procedure [2].
In particular, the encoder first makes a decision and announces
its decision and then the decoder acts after observing the
encoder’s decision. In this setting, the encoder commits to
employ this announced strategy, and the decoder trusts the
encoder and employs its best response. In this scenario, the
encoder knows its own prior as well as the prior of the
decoder whereas the decoder only knows its own prior. This
happens especially when the encoder realizes that the decoder
employs an inaccurate prior. In this setting, the encoder
decides on what information to reveal to the decoder in
order to optimize its objective function. This scenario can
be viewed as a cooperative communication scenario since we
know that the encoder’s announcement is observed by the
decoder and the decoder acts by using this information. We
note that the classical communication setup with no strategic
decision makers corresponds to the Stackelberg equilibrium
concept since the decision makers trust each other in such
a setting. Different from the classical communication setup,
we incorporate prior mismatch into the problem. This type
of cooperative communication setup with mismatched priors
can be used to model scenarios where it is not feasible for
the encoder to share its prior probability distribution with
the decoder, the encoder conveys only the message, and the
encoding function used for generating this message (which is
designed off-line).

On the other hand, for a Nash equilibrium, there is no
hierarchy in the decision making procedure and there is no
commitment assumption [2]. This happens for instance when
decision makers do not trust announcements of each other,
and thus keep in mind that the other decision maker may
backtrack its commitment. This type of interaction is covered
by the Nash equilibrium concept where each decision maker
announces their policies at the same time. In this scenario, the
decision makers do not need to know the prior distribution seen
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Fig. 1: Signaling game models.

by the other decision maker. This scenario is also referred to
as non-cooperative scenario since none of the decision makers
take the other decision maker’s announcement for granted.

A. Preliminaries

A signaling game problem, which is depicted in Fig. 1-
(a), can be formulated as follows: Suppose that there is an
encoder and a decoder. The encoder wishes to transmit a
random variable M taking values in M. The encoder encodes
M into an X-valued random variable X via an encoding policy
denoted by γe ∈ Γe where Γe denotes the set of possible
encoding strategies. We take Γe to be the set of all stochastic
kernels from M to X.1 There exists an additive Gaussian noise
channel between the encoder and decoder where the additive
noise is independent of the source. In this setup, the encoder
designs its policy by incorporating either a soft or a hard power
constraint into its objective function, as explained below. The
decoder observes a noise corrupted version of the message
denoted by Y = X+W which is a Y-valued random variable.
The decoder generates its optimal decision U , which is also
an M-valued random variable, given its observation Y via a
decoding policy γd ∈ Γd. Here, Γd denotes the set of possible
decoding strategies which is the set of all stochastic kernels
from Y to M. We also consider a cheap talk setup where the
encoded message is directly observable by the decoder and
there is no power constraint at the encoder and this setup is
depicted in Fig. 1-(b).

In many applications (in networked systems, recommen-
dation systems, and applications in economics) the objec-
tives of the encoder and the decoder, and the perception
on the probability measure of the common source may not
be aligned. For example, the encoder may aim to minimize
Je(γe, γd) = Ee [c

e(m,u)] whereas the decoder may aim to
minimize Jd(γe, γd) = Ed

[
cd(m,u)

]
where ce(m,u) and

cd(m,u) denote the cost functions of the encoder and the
decoder, respectively, when the action u is taken for the
corresponding message m, and Ee[·] and Ed[·] denote that
the expectation is taken over the probability measure from
the perspective of the encoder and the decoder, respectively.2

1P is a stochastic kernel from M to X if P (·|m) is a probability measure
on B(X) for every m ∈ M, and P (A|·) is a Borel measurable function of
m for every A ∈ B(X). Note that if M and X are finite, then P corresponds
to a transition matrix.

2When we need to emphasize that we are working with a random variable,
we consider upper case letters, otherwise we use small letters both for
realizations and the variables and emphasize their distinction when there is
room for confusion.

Note that each decision maker computes their expected cost
with respect to its own subjective prior since it believes that
its subjective prior is the true prior distribution. Each player
designs its policy by minimizing its expected cost computed
with respect to its subjective prior distribution. Thus, although
the actual true distribution can be a different distribution
than these subjective prior distributions, this true distribution
does not affect policies employed by the decision makers.
Nevertheless, in the following remark, we provide a motivation
for a case that the encoder’s prior is the true prior distribution.

Remark 1.1: Note that the encoder designs its message
by observing the source random variable. Thus, in some
applications, it may be possible for the encoder to correct its
prior before the information transmission stage by observing
a large number of samples. Therefore, in these applications, it
is reasonable to assume that the encoder’s view corresponds
to the true distribution of the source. On the other hand, the
decoder may have an incorrect belief since its observations are
limited to what the encoder reveals.

In this paper, we consider a quadratic cost structure where
either a soft power constraint or a hard power constraint is
employed at the encoder. In the case of soft power constraint,
the encoder employs the following objective function

Je(γe, γd) = Ee [c
e(m,x, u)] , (1)

and the decoder employs the objective function

Jd(γe, γd) = Ed

[
cd(m,u)

]
, (2)

where ce(m,x, u) = (m−u)2+λx2 and cd(m,x) = (m−u)2

and λ represents the appended soft power constraint to en-
coder’s objective. Appending a soft power constraint in this
manner is encountered in stochastic control problems, see
e.g., [3], [4]. Notice that when λ = 0, the case without any
power constraint is recovered. Note also that it is possible
append this additional λx2 term to the cost function of the
decoder and this does not make a difference in the analysis. In
other words, misalignment between the encoder and decoder
essentially arises from subjective probabilistic beliefs of the
players and not from the considered costs. For the case in
which the encoder has a hard power constraint instead of a
soft power constraint, the goal of the encoder is to minimize

Je(γe, γd) = Ee [c
e(m,u)]

s.t. Ee

[
(γe(m))

2
]
≤ P , (3)

whereas the decoder aims to minimize

Jd(γe, γd) = Ed

[
cd(m,u)

]
, (4)

where ce (m,u) = (m− u)
2 and cd (m,u) = (m− u)

2.
In communication theoretic settings, a hard power constraint
for an encoder is commonly imposed, and many results in
information theory with regard to communication through a
Gaussian channel involves a hard power constrained encoder,
see e.g., [5, Ch. 9] and [6, Ch. 11].

Our aim is to analyze the previously described communi-
cation scenarios using two important game theoretic concepts
which make different assumptions on how decision makers
interact: Nash equilibrium and Stackelberg equilibrium [2].
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Under the Nash equilibrium concept, the encoder and the
decoder announce their policies simultaneously without know-
ing the policy of the other player or with no commitment
to the announced plays. A set of policies is said to be a
Nash equilibrium if neither of the players has incentive to
unilaterally deviate from its current strategy. In particular, a
pair of encoding and decoding policies γ∗,e and γ∗,d forms a
Nash equilibrium if [2]

Je(γ∗,e, γ∗,d) ≤ Je(γe, γ∗,d) ∀γe ∈ Γe, (5)

Jd(γ∗,e, γ∗,d) ≤ Jd(γ∗,e, γd) ∀γd ∈ Γd. (6)

We note that in this paper we consider only subjective Gaus-
sian priors for the Nash equilibria analysis.

On the other hand, under the Stackelberg equilibrium con-
cept, the game is played in a sequential manner where first
the encoder chooses and announces its policy and then the
decoder determines its policy given the announcement of the
encoder. In this scenario, the encoder commits to employ its
announced strategy and the encoder cannot change its strategy
once the decoder learns the strategy of the encoder. Since
the decoder knows the strategy of the encoder, it takes its
optimal response given the announced strategy of the encoder.
A pair of encoding and decoding policies γ∗,e and γ∗,d forms
a Stackelberg equilibrium if [2]

Je(γ∗,e, γ∗,d(γ∗,e)) ≤ Je(γe, γ∗,d(γe)) ∀γe ∈ Γe, (7)

where γ∗,d(γe) satisfies

Jd(γe, γ∗,d(γe)) ≤ Jd(γe, γd(γe)) ∀γd ∈ Γd, (8)

where for the policy of the decoder we use the notation
γd(γe) to indicate that the decoder decides on its policy after
observing the encoder’s policy. In contrast to Nash equilibria,
we present general results concerning arbitrary distributions
for Stackelberg equilibria analysis with more specific results
regarding the Gaussian case.

Remark 1.2: Note that, under the Stackelberg assumption,
the encoder must know decoder’s subjective prior so that it,
as a leader, can anticipate decoder’s optimal actions. On the
other hand, for the Nash case, the agents do not need to know
their subjective priors; they know only their policies as they
(simultaneously) announce to each other.

In a signaling game problem, it is of interest to investigate
existence of equilibrium in which the encoder conveys infor-
mation related to its observation, i.e., the encoded random
variable X is not statistically independent of the source
random variable M . Such kind of equilibria are referred to
as informative equilibrium. On the other hand, if the encoded
random variable does not depend on the source M , this type
of equilibrium is referred to as non-informative equilibrium or
babbling equilibrium.

For the Stackelberg setup, an important quantity is the
induced cost for the encoder as the encoder performs an opti-
mization of its objective given that the decoder best responds.
In that respect, we investigate the continuity properties of
the encoder’s cost with respect to perturbations of the priors
around the team setup. We say that a Stackelberg equilibrium
is robust with respect to perturbations around the team setup
if the encoder’s expected cost continuously changes as the

prior of the encoder (decoder) approaches the prior of the
decoder (encoder). We also have results where one can only
guarantee upper semi continuity or lower semi continuity of
the encoder’s cost. Moreover, we also investigate continuity
properties for the affine Nash equilibria.

For the Stackelberg setup, in the case when the cost is
upper semi continuous, there cannot be a drastic degradation
in encoder’s performance with prior mismatch around the
point of identical priors. In that respect, upper semi continuity
ensures that the worst case performance under prior mismatch
behaves continuously. On the other hand, in the case when the
cost is only lower semi continuous, a small prior perturbation
in principle may lead to a large performance degradation of
the game theoretic cost in comparison with the team theoretic
cost.

B. Literature Review

Crawford and Sobel in their seminal work [7] investigate
a communication scenario between an encoder and a decoder
which do not share a common objective function due to a bias
term appearing in the objective function of the encoder. They
establish that under certain technical conditions the encoder is
required to apply a quantization policy at a Nash equilibrium.
In particular, due to the misalignment in the objective functions
of the encoder and the decoder, the encoder hides information
by reporting the quantization bin that its observation lies in,
rather than revealing its observation completely. This is in
contrast with the classical team theoretic communication setup
where revealing more information is always beneficial for the
system. In contrast with the Nash setup, it is also possible to
consider a Stackelberg game setup and an important line of
work in this context in the economics literature is the Bayesian
persuasion problem where signaling scenarios are investigated
under the Stackelberg equilibrium concept [8].

Signaling game problems find applications in various con-
texts including communication and control theory literature
[9]–[20]. For instance, the work in [9] considers a quadratic
cost structure for transmitting a scalar Gaussian source from
an encoder to a decoder where encoder’s cost includes a
bias term which is modeled as jointly Gaussian with the
source message. The authors analyze such communication sce-
narios under the Stackelberg equilibrium concept and derive
equilibrium solutions, which turn out to be linear. In [12],
signaling scenarios under a general quadratic cost structure
are investigated under the Stackelberg equilibrium concept and
for multidimensional Gaussian sources, the optimality of linear
policies is established for the considered cost structure. The
work in [10] investigates communication scenarios between
an encoder and a decoder under quadratic costs using either
Nash or Stackelberg equilibria concepts where the encoder’s
objective contains a deterministic bias term. An important
observation from [10] is the existence of linear Nash equilibria
for Gaussian sources. We note that various studies consider
also more general cost functions [15], [16], [19]–[21], rather
than focusing on the quadratic case. For instance, [21] analyzes
the Bayesian persuasion problem with general cost functions
where the encoder and decoder have subjective probabilistic
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beliefs. In addition, the works [15], [16] analyze information
theoretic limits of the Bayesian persuasion problem with
general cost functions. Another related work [22] investigates
optimal stochastic signaling in a binary communication setup
with aligned cost structure for an encoder and a decoder (i.e.,
team theoretic setup) and provides sufficient conditions under
which stochastic signaling improves the performance or not.

Subjective probabilistic models are encountered in various
contexts. For instance, the setup in decentralized decision
making where the priors of decision makers may be different
has a practical significance. There have been a number of
studies on the presence of a mismatches in the priors of
decision makers [21], [23]–[26]. In such setups, even when
the objective functions to be optimized are identical, the
presence of subjective priors alters the formulation from a team
problem to a game problem involving strategy/policy spaces
(see [6, Section 12.2.3] for a comprehensive literature review
on subjective priors also from a statistical decision making
perspective). For example, [23] investigates equilibrium be-
havior under either Nash or Stackelberg equilibria in a two-
person decision making scenario with quadratic cost where
the decision makers have subjective probabilistic beliefs. An
interesting observation from [23] is that in the special case of
Gaussian priors, the decision makers employ linear policies
under Nash equilibria whereas the policies under Stackelberg
equilibria are in general nonlinear. In addition, in almost all
practical applications, there is some mismatch between the
true and an assumed probabilistic system/data model, which
results in performance degradation. This performance loss due
to the presence of mismatch has been studied extensively in
various setups (see e.g., [27]–[34] and references therein).
Moreover, the subjectivity may appear when there are prospect
theoretic agents in the system where the decision makers
may have different views on the probabilistic models due to
their subjective biases [17], [35], [36]. In prospect theory, the
subjective views of the agents on the prior probabilities are
modeled via a weight function which for instance reflects a
common misconception of overestimating (underestimating)
the probability of less (more) likely events. For instance,
in [17], communication scenarios through an additive noisy
channel with an encoder and a decoder which have different
weight functions is analyzed under the Stackelberg equilibrium
concept where there is an affine policy restriction at the
encoder. It is shown that for Gaussian source and noise case
policies at the equilibrium are not affected by subjective biases
whereas for exponential source and noise case policies at the
equilibrium depend on subjective biases.

C. Contributions

We analyze the signaling game problem described earlier
under the Stackelberg equilibrium or the Nash equilibrium
concepts. Our results concerning the Stackelberg equilibria
involve arbitrary distributions with more specific results for the
Gaussian case. On the other hand, we focus on the Gaussian
case for the Nash equilibria analysis. In addition, we consider
a cheap talk problem under the Stackelberg or Nash equilibria

for which mutually absolutely continuity assumption3 is made
for the subjective prior distributions. Main contributions of this
manuscript can be summarized as follows:

(i) We prove that the Stackelberg equilibrium cost of the
encoder is upper semi continuous (under the Wasserstein
metric) when the prior of encoder is perturbed from the
prior of decoder considering any subjective prior distribu-
tions for the players (Theorem 2.1). For the special case
of Gaussian priors, it is proven that the cost around the
team setup is lower semi continuous, as well. Therefore,
for the Gaussian priors case, the equilibrium is robust
with respect to perturbations around the team setup (in
both the Wasserstein metric and under weak convergence)
where robustness refers to the fact that the Stackelberg
equilibrium cost of the encoder is continuous with respect
to prior perturbation around the team setup. In addition,
we also provide a duality result which states that if the
prior of decoder is perturbed from the prior of encoder,
the Stackelberg equilibrium cost of encoder is lower semi
continuous (under both the Wasserstein metric or the
weak convergence topology).

(ii) We show that the Stackelberg equilibrium solution for
Gaussian signaling with subjective priors is in general
nonlinear by providing specific examples where a non-
linear policy outperforms the best affine policy (Theo-
rem 2.2). Thus, team-theoretic optimality of linear/affine
policies are not robust to prior perturbations.

(iii) For the signaling game problem with Gaussian priors
(under a soft power constraint or a hard power constraint),
we show that the Stackelberg equilibrium under affine
policy restriction is either informative or non-informative
depending on conditions stated explicitly (Theorem 2.3
and Theorem 2.4). Moreover, these game theoretic so-
lutions do not coincide with the corresponding team
theoretic solutions in general. In particular, when there
is a hard power constraint, game theoretic solution may
be non-informative whereas team theoretic solution is
always informative regardless of the parameters. For
the signaling game problem with Gaussian priors un-
der a soft power constraint, we show that there exists
a unique informative affine Nash equilibrium under a
certain condition involving the subjective prior of the
decoder (Theorem 3.1). On the other hand, we prove
that there always exists a unique informative affine Nash
equilibrium when there is a hard power constraint at the
encoder (Theorem 3.5). In addition, we show that the
informative affine Nash equilibrium solution under a soft
power constraint or a hard power constraint is robust to
perturbations around the team setup.

(iv) We show that there exist fully informative Nash and
Stackelberg equilibria for the dynamic cheap talk as
in the team theoretic setup when the encoder and the
decoder have subjective priors on the source distribution
and identical costs, provided that the priors are mutually

3Both subjective probability measures agree on the sets with zero measure,
i.e., the Radon-Nikodym derivative of either measure with respect to the other
exists.



5

absolutely continuous (Theorem 4.1).

II. THE COOPERATIVE/COMMITMENT SETUP
(STACKELBERG EQUILIBRIA)

In this section, we analyze the Stackelberg equilibria when
there is either a soft power constraint or a hard power
constraint at the encoder. Before presenting our results, we
make the following remark.

Remark 2.1: We note that if both players share the same
probabilistic belief on the source distribution, then the problem
reduces to the classical team theoretic setup with a power con-
strained encoder. Although obtaining optimal coding/decoding
policies for general source distributions is in general difficult,
for the special case of scalar Gaussian source, the optimal
solution involves linear policies at the encoder and decoder,
see e.g., [6, p. 376]. This optimality result for linear policies is
obtained by using channel capacity and rate distortion bounds.

A. Continuity and Robustness to Perturbations around the
Team Setup

In this subsection, we investigate continuity and robustness
of the Stackelberg equilibria around the team setup for general
subjective source priors with more specific results for the
Gaussian priors case. In the literature, analytical properties
such as continuity of mean squared error for estimation under
additive noise are investigated in [37] when there is no
prior mismatch, i.e., a team theoretic setup. In addition, [38]
investigates robustness and continuity with respect to prior
probability measures for partially observed stochastic control
problems where the priors can be incomplete or incorrect.
Here, [38] shows that indeed under total variation, strong
continuity results with a rate of continuity/convergence hold,
but in our work, the presence of an encoder adds further
challenges. We leave this problem for future work.

In our work, the subjective probabilistic belief of the one
of the players deviates from that of the other player, i.e.,
a deviation from the team theoretic setup. In this case, we
analyze if the cost function of the encoder behaves con-
tinuously with respect to such a difference on the priors.
To be more precise, a robust Stackelberg equilibrium means
that J∗,e(ϕe, ϕd) → J∗,e(ϕd, ϕd) as ϕe → ϕd, where
J∗,e(ϕe, ϕd) denotes the Stackelberg equilibrium cost of the
encoder when the priors of the encoder and decoder are ϕe(·)
and ϕd(·), respectively. Such a continuity result is equivalent
to J∗,e(ϕe, ϕd) → J∗,e(ϕe, ϕe) as ϕd → ϕe. We also have
semi continuity results where depending on whether ϕe → ϕd

or ϕd → ϕe is considered, upper or lower semi continuity can
be guaranteed.

While performing a continuity analysis with respect to
subjective priors, one applies a perturbation to these subjective
priors around the point of identical priors. This perturbation is
quantified via a convergence notion for probability measures
as defined in the following. We also emphasize that these
continuity results hold only at the point of identical priors.

In order to investigate continuity properties of the encoder’s
cost, we need to define a probability space and a convergence
notion for probability measures in this space. Towards that

goal, let X = R and let P(X) denote the family of all
probability measures on (X,B(X)) where B(X) denotes the
Borel σ-algebra on X. Let {µn, n ∈ N} be a sequence in
P(X). A sequence {µn} is said to converge to µ ∈ P(X) as
n tends to infinity weakly if the following convergence relation
holds as n tends to infinity:∫

R
c(x)µn(dx) →

∫
R
c(x)µ(dx)

for every continuous and bounded c : X → R.
The Prohorov metric can be used to metrize this space. As

a more practical metric, the Wasserstein metric can also be
used (for compact X).

Definition 2.1 (Wasserstein metric): The Wasserstein met-
ric of order p ≥ 1 for two distributions µ, ν ∈ P(X) with
finite pth order moments is defined as

Wp(µ, ν) = inf
η∈H(µ,ν)

(∫
X×X

η(dx, dy)∥x− y∥p
) 1

p

,

where H(µ, ν) denotes the set of probability measures on X×
X with first marginal µ and second marginal ν and ∥ · ∥ is a
norm (such as the Euclidean norm).

As noted, for compact X, the Wasserstein distance of order p
metrizes the weak topology on the set of probability measures
on X (see [39, Theorem 6.9]). For non-compact X, weak
convergence combined with convergence of moments (that is
of

∫
µn(dx)∥x∥q →

∫
µ(dx)∥x∥q for all orders q ≤ p) is

equivalent to convergence in Wp (see [39, Definition 6.8] and
[39, Theorem 6.9]).

In the following theorem, we investigate continuity and
robustness properties of the encoder’s cost around the point of
identical priors. We analyze the cost of the encoder since in
the Stackelberg setup the encoder performs an optimization of
its objective, and thus, encoder’s objective determines whether
the equilibrium is robust or not.

Theorem 2.1: Suppose that the prior of the source is
ϕe(·) and ϕd(·) from the perspective of the encoder and
the decoder, respectively, where these prior distributions are
arbitrary. Suppose further that variance of the source under
ϕd(·) is finite. Then, the following are true where there is a
either a soft power constraint or a hard power constraint at the
encoder.

(i) The Stackelberg equilibrium cost of the encoder is upper
semi continuous (under the Wasserstein metric) as sub-
jective prior of the encoder approaches subjective prior
of the decoder, i.e., ϕe(·) → ϕd(·).

(ii) If the prior distributions ϕe(·) and ϕd(·) are Gaussian, the
Stackelberg equilibrium cost of the encoder is lower semi
continuous as subjective prior of the encoder approaches
subjective prior of the decoder, i.e., ϕe(·) → ϕd(·).

(iii) If the prior distributions ϕe(·) and ϕd(·) are Gaussian,
the Stackelberg equilibria are robust with respect to
perturbations around the team setup (under both the
Wasserstein metric or the weak convergence topology),
i.e., the Stackelberg equilibrium cost of the encoder is
continuous.

(iv) The Stackelberg equilibria cost of the encoder is lower
semi continuous (under both the Wasserstein metric or
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Fig. 2: Suboptimal scheme used in proving upper semi con-
tinuity result where the coupling channel f(·) is such that
marginal distribution of its output is ϕd(·).

the weak convergence topology) as subjective prior of
the decoder approaches subjective prior of the encoder,
i.e., ϕd(·) → ϕe(·).

Remark 2.2: For a communication setup, it is reasonable
to assume that the source to be conveyed has a finite average
power, which holds when the variance of the source is finite.
Please also note that if the variance is unbounded, infinite
Shannon capacity would be implied, which would reduce
the problem to a cheap talk problem, as the noise can be
suppressed with arbitrarily large encoder gain. Therefore, the
assumption of having a finite variance from the perspective
of the decoder in Theorem 2.1 is not unnatural, and this
assumption is commonly imposed in practice.

Proof: In the following, we focus on the case with a soft
power constraint. We note that all the derived identities in the
following proof identically hold when the soft power constraint
is replaced with a hard power constraint. Therefore, the proof
in the case of a hard power constraint follows the same steps
as in the proof for the case with a soft power constraint.

(i) Let Me and Md denote random variables distributed
according to the priors ϕe(·) and ϕd(·), respectively. The
Stackelberg equilibrium cost is given by

min
γe(·)

E[(me − u)2] + λE[γe(me)
2] (9)

where there is an implicit constraint that the decoder
employs its best response with respect to its own prior. In
particular, the decoder’s action is a deterministic function
of its observation given by u = Ed[m|γe(m) +w]. Now
consider a suboptimal scheme in which the encoder maps
its observation into an auxiliary variable via f(·) which is
then mapped into the transmitted message through γ̃e(·)
under constraint that the marginal distribution of this
auxiliary random variable is fixed to ϕd(·). This scheme
is depicted in Fig. 2. By introducing such an auxiliary
random variable which has a fixed marginal distribution,
the proposed scheme is in general a suboptimal scheme.
Here, the encoder is given by γe(me) = γ̃e(f(me))
where f(me) ≜ md has a fixed marginal distribution
ϕd(·). Observe that

min
γe(·)

E[(me − u)2] + λE[γe(me)
2]

≤ min
γ̃e(·),f(·)

E[(me − u)2] + λE[γ̃e(md)
2]

= min
γ̃e(·),f(·)

E[(me −md +md − u)2] + λE[γ̃e(md)
2]

= min
γ̃e(·),f(·)

E[(me −md)
2] + E[(md − u)2]

+ 2E[(me −md)(md − u)] + λE[γ̃e(md)
2]

≤ min
γ̃e(·),f(·)

E[(me −md)
2] + E[(md − u)2]

+ 2
√

E[(me −md)2]
√
E[(md − u)2]

+ λE[γ̃e(md)
2] (10)

where the first inequality is due to suboptimality of the
scheme with f(·) and γ̃e(·) and the second inequality
follows from Cauchy-Schwarz inequality. The final opti-
mization problem in (10) can be first solved with respect
to f(·) which leads to

min
γ̃e(·),f(·)

E[(me −md)
2] + E[(md − u)2] + λE[γ̃e(md)

2]

+ 2
√
E[(me −md)2]

√
E[(md − u)2]

= min
γ̃e(·)

W2(ϕe, ϕd)
2 + E[(md − u)2] + λE[γ̃e(md)

2]

+ 2W2(ϕe, ϕd)
√
E[(md − u)2] (11)

where W2(ϕe, ϕd) denotes quadratic Wasserstein dis-
tance between the distributions ϕe(·) and ϕd(·). Note
that the optimal value for the solution to (11) is finite
when W2(ϕe, ϕd) is finite. To see this, observe that if
γ̃e(md) = 0 for all md, then the optimal decoder action
becomes u = µd where µd denotes the mean of the source
message from decoder’s perspective. Then, the objective
function in (11) takes the value of (W2(ϕe, ϕd)+E[(md−
µd)

2]1/2)2, which is finite as the variance of the source is
finite from the perspective of decoder. Thus, an optimal
solution to (11) must yield a finite objective value. From
this observation, it follows that as ϕe → ϕd, the optimal
solution of (11) leads to a finite value for the term
E[(md − u)2] since W2(ϕe, ϕd) → 0 in this case. As
a result, we get

lim sup
ϕe→ϕd

min
γe(·)

E[(me − u)2] + λE[γe(me)
2]

≤ lim sup
ϕe→ϕd

min
γ̃e(·)

W2(ϕe, ϕd)
2 + E[(md − u)2]

+ 2W2(ϕe, ϕd)
√

E[(md − u)2] + λE[γ̃e(md)
2]

= E[(md − E[md|γ∗,e(md) + w])2] + λE[γ∗,e(md)
2]

where the inequality is due to (10) and (11), γ∗,e(·)
denotes the optimal encoding policy under team theo-
retic setup with common prior distribution ϕd(·) and
the equality follows from the facts that E[(md − u)2]
is finite and W2(ϕe, ϕd) → 0 as ϕe → ϕd. Since the
last term corresponds to the cost for team theoretic setup
with prior ϕd(·), this analysis shows that the Stackelberg
equilibrium cost is upper semi continuous around the
team setup.

(ii) We note that if the decoder employs the encoder’s prior
rather than its own prior, the objective function of the
encoder is improved. Therefore, the following inequality
holds:

min
γe(·)

Ee[(m− Ed[m|γe(m) + w])2] + λEe[x
2]

≥ min
γe(·)

Ee[(m− Ee[m|γe(m) + w])2] + λEe[x
2] (12)
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For the latter optimization problem, it is well-known that
the optimal encoding and decoding policies are affine. By
using this observation, we get

lim inf
ϕe→ϕd

min
γe(·)

Ee[(m− Ed[m|γe(m) + w])2] + λEe[x
2]

≥ lim inf
ϕe→ϕd

min
γe(·)

Ee[(m− Ee[m|γe(m) + w])2] + λEe[x
2]

= lim inf
ϕe→ϕd

Ee[(m− β∗,d
1 (α∗,e

1 m+ α∗,e
2 + w)− β∗,d

2 )2]

+ λEe[(α
∗,e
1 m+ α∗,e

2 )2]

= Ed[(m− β∗,d
1 (α∗,d

1 m+ α∗,d
2 + w)− β∗,d

2 )2]

+ λEd[(α
∗,d
1 m+ α∗,d

2 )2] (13)

where α∗,e
1 , α∗,e

2 , β∗,e
1 and β∗,e

2 (resp. α∗,d
1 , α∗,d

2 , β∗,d
1 and

β∗,d
2 ) are the optimal coefficients at the affine encoder and

decoder for the problem of transmitting a Gaussian source
Me (resp. Md) over an independent additive Gaussian
channel under quadratic criterion with soft power con-
straint. This establishes the lower semi continuity of the
Stackelberg equilibrium cost around the point of identical
priors.

(iii) The result follows from (i) and (ii).
(iv) The lower semi continuity result in this case can be estab-

lished easily. In particular, we note that the inequality in
(12) holds for general subjective priors. In other words, if
the decoder employs encoder’s prior rather than its own
prior while computing its estimate, the cost of the encoder
improves. From this inequality, we get

lim inf
ϕd→ϕe

min
γe(·)

Ee[(m− Ed[m|γe(m) + w])2] + λEe[x
2]

≥ lim inf
ϕd→ϕe

min
γe(·)

Ee[(m− Ee[m|γe(m) + w])2] + λEe[x
2]

= min
γe(·)

Ee[(m− Ee[m|γe(m) + w])2] + λEe[x
2],

where the equality follows from the fact that the opti-
mization problem does not depend on ϕd(·). This proves
the lower semi continuity of encoder’s cost.

Theorem 2.1 reveals an interesting duality property of
encoder’s cost in the sense that if ϕe → ϕd, then upper
semi continuity holds whereas if ϕd → ϕe, then lower semi
continuity holds. On the other hand, for mismatched Gaussian
priors, both upper semi continuity and lower semi continuity
hold, which proves the robustness of the Stackelberg equilibria
around the point of identical priors.

Remark 2.3: We note that the property of upper semi
continuity also holds when the source is multidimensional. On
the other hand, when the source is multidimensional Gaus-
sian from the perspective of both players, then the analysis
regarding lower semi continuity in Theorem 2.1 does not
apply since the optimal encoding policy may not be linear
for the team theoretic setup with a multidimensional Gaussian
source. Nonetheless, if there is an affine policy restriction for
the encoder, a similar analysis to that in (13) can be carried
out to obtain lower semi continuity result for a setup with
multidimensional Gaussian priors.

We note that in a related work [37] in this context, continuity
property of minimum mean squared error is investigated in a

team theoretic setup. In particular, it is shown that minimum
mean squared error is continuous for the case with a linear
encoder and an additive channel where the noise density is
continuous and bounded [37, Theorem 4] and the Gaussian
density satisfies these properties. In other words, there is
essentially no encoding in [37] other than a scaling factor
and the analysis takes only decoding into account from an
information transmission perspective. As opposed to [37], our
work analyzes the scenario with prior mismatch and there is
an encoder which may also be nonlinear.

B. Affine Policies may no longer be Optimal for Gaussian
Signaling even with Gaussian Subjective Priors

Here, the subjective probabilistic beliefs of the encoder
and the decoder are taken as Gaussian. In particular, the
Gaussian source has different mean and variance from the
perspectives of the encoder and the decoder; i.e., the source is
M ∼ ϕe(m) = N (µe, σ

2
e) and M ∼ ϕd(m) = N (µd, σ

2
d)

from encoder’s and decoder’s perspective, respectively. In
addition, the additive noise, which is independent of the
source, is modeled by a zero-mean Gaussian random variable;
i.e., the noise is W ∼ N (0, σ2

W ).
For Gaussian signaling, affine class of policies is an impor-

tant class of policies due to its desirable optimality property for
the classical team theoretic communication setup with identi-
cal costs and priors. On the other hand, for the Stackelberg
setup, the optimality of affine policies for Gaussian signaling
no longer holds due to the presence of subjective probabilistic
beliefs of the players, and thus team-theoretic optimality of
linear/affine policies are not robust to perturbations. In order
to show this result, the following theorem provides examples
where nonlinear encoding policies yield better performance
for the encoder than the best affine policies.

Theorem 2.2: Consider the quadratic signaling games
problem with subjective Gaussian priors where there is no
affine policy restriction at the encoder. Then, for a soft
power constrained or a hard power constrained encoder, it
is not necessarily true that an affine policy always gives the
Stackelberg equilibrium solution.

Proof: It suffices to provide examples where a nonlinear
policy yields a better cost than the best affine policy. First,
consider the soft power constrained setup. We provide an
example where a quantization policy leads to a cost (for
the encoder) which is better then the optimal cost under
affine policy restriction. Let µe = µd = 0, σ2

e = 6.25,
σ2
d = 0.25, σ2

W = 0.25 and λ = 1.5. The aim of the
encoder is to solve the optimization problem (1) after plug-
ging in the best response of the decoder which is given
by u = Ed[m|γe(m) + w]. Under affine policy restriction
at the encoder, the best response of decoder also becomes
affine. Numerically solving the optimization problem at the
encoder under affine policy restriction leads to the optimal
encoding policy γ∗,e(m) = 0.30m and the corresponding cost
of the encoder is given by J∗,e

affine = 6.12. Now consider an
encoding policy in the form of a quantization policy specified
by γe(m) =

√
P sgn(m) with P = 0.5. Such a quantization

policy is in fact used in the seminal work of Witsenhausen
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while constructing a nonlinear control policy that outperforms
the best linear policy for the considered control system [3].
In our setting, the best response of the decoder to such
a quantization policy at the encoder can be computed as
γd(y) =

√
2/πσd tanh(

√
Py/σ2

W ). With this best response
of the decoder, we compute the expected cost of the encoder
via numerical integration and obtain Je

quantization ≈ 5.90. This
shows that such a quantization policy outperforms the best
affine policy.

Now, consider the hard power constrained case. Let µe =
µd = 0, σ2

e = 1, σ2
d = 3, σ2

W = 0.4 and P = 0.1. In this case,
by numerically solving the optimization problem (3) under
affine policy restriction with decoder’s best response plugged
in yields a non-informative equilibrium. In this case, the cost
of the encoder becomes J∗,e

affine = σ2
e = 1. Now consider an

encoding policy in the form of a quantization policy specified
by γe(m) =

√
P sgn(m). In a similar manner to the soft

power constrained case, by computing the expected cost of
the encoder numerically, we obtain Je

quantization ≈ 0.94. This
shows that such a quantization policy outperforms the best
affine policy.

Theorem 2.2 shows that when the players have different
perception on the prior probability of the message, then the
optimality of linear policies (which holds under identical
priors) may break down. Nonetheless, it is observed through
numerical simulations that such a quantization policy out-
performs the best affine policy when the players have very
different perceptions on the prior probability of the source.

C. Gaussian Signaling under Affine Policy Restriction

In the following theorem, we analyze the Stackelberg equi-
librium under the affine policy restriction where there exists
a soft power constraint at the encoder. In addition to its
simplicity for the Gaussian case, one other motivation for
employing affine policies is as follows:

Remark 2.4: Note that in the classical team theoretic
setup with identical priors, the optimal solution is attained by
affine policies. We also know that the Stackelberg equilibrium
concept is used to model scenarios where the decoder trusts
the encoder and employs its best response. In such a setting,
if the encoder employs a nonlinear policy, then the decoder
will be able to learn that its prior is incorrect (as otherwise
the encoder must employ an affine policy). As a result,
the decoder realizes that the setup is a game setup with
mismatched priors (or the decoder may even think that the
encoder employs a different cost function). Therefore, the
encoder may prefer employing an affine policy rather than
a nonlinear policy in order not to damage its credibility. In
the case of affine encoding policies, since the decoder may
not have the knowledge of power constraint at the encoder,
the decoder cannot extract the subjective prior distribution of
the encoder using the announced encoding policy. Thus, from
an affine policy announcement, the decoder may not realize
that its prior is inconsistent in general.

Theorem 2.3: In the quadratic signaling games with sub-
jective Gaussian priors under soft power constraint, the affine

Stackelberg equilibrium is informative if

λσ2
eσ

2
W < σ2

d(2σ
2
e + 2(µe − µd)

2 − σ2
d). (14)

When (14) does not hold, there exists an informative affine
Stackelberg equilibrium if the following conditions simultane-
ously hold:

3(σ2
e + (µd − µe)

2) < 2σ2
d, (15)

4λσ2
eσ

2
W (σ2

d − σ2
e−(µe − µd)

2)

≤ σ2
d(σ

2
e + (µe − µd)

2)2. (16)

Otherwise, the affine Stackelberg equilibrium is non-
informative.

Proof: See Section VII-A.
Remark 2.5: It is noted that the nature of the affine

Stackelberg equilibrium can be non-informative or informative
depending on the system parameters. This is because the
conditions in (14)-(16) may or may not hold. For instance,
the following are examples of informative and non-informative
scenarios:

1) Let σ2
e = 1, σ2

d = 4, σ2
W = 0.25, λ = 2 and µe = µd. In

this case, (15) holds whereas (14) and (16) do not hold,
which lead to a non-informative equilibrium.

2) Let σ2
e = 1, σ2

d = 4, σ2
W = 0.25, λ = 1 and µe =

µd. As (15) and (16) are satisfied in this case, the affine
Stackelberg equilibrium is informative.

Remark 2.6: The conditions in Theorem 2.3 for the infor-
mativeness of the affine Stackelberg equilibrium depend on the
subjective priors of both players. In particular, Theorem 2.3
shows that the Stackelberg equilibrium solution in general
does not coincide with the team theoretic solution when the
common prior is the subjective prior of either of the players.

Remark 2.7: When the consistent priors and the zero-mean
Gaussian source are assumed; i.e., µe = µd = 0 and σ2

e =
σ2
d = σ2

M , then (14) turns into the condition that λσ2
W < σ2

M

whereas (15) is always violated. Therefore, we recover the
result of [10, Theorem 4.5] (with b = 0) whose proof indicates
that the affine equilibrium is informative if λ < σ2

M/σ2
W and

non-informative otherwise.
The analysis in Theorem 2.3 can be carried over to the

N -stage signaling game: the encoder searches over the affine
class to find its optimal policy by anticipating the best response
of the decoder, and this would involve an optimization over
N2 +N parameters for an N -stage problem.

Next, we analyze the Stackelberg equilibrium under the
affine policy restriction when there is a hard power constraint
at the encoder. Due to prior mismatch, the affine equilib-
rium solution may be non-informative in contrast with the
informative nature of team theoretic solution. The following
theorem presents a necessary and sufficient condition for the
informativeness of the affine Stackelberg equilibria.

Theorem 2.4: In the quadratic signaling games with subjec-
tive Gaussian priors under hard power constraint, there exists
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a unique informative affine Stackelberg equilibrium if4

σ2
e

σ2
e + (µe − µd)2

− 2σ2
e

σ2
d

≤ P

σ2
W

. (17)

Otherwise, the affine equilibrium is always non-informative.
Proof: See Section VII-B.

When µe = µd = µM and σe = σd = σM , i.e., the team
theoretic setup, the left hand side of (17) becomes negative
leading to a fully informative scenario, as expected.

Remark 2.8: Unlike the team theoretic solution which is
always informative, the affine Stackelberg equilibrium solution
is either informative or non-informative depending on the
system parameters.

Now, we derive the costs at the affine Stackelberg equilib-
rium in the hard power constrained case to illustrate the effects
of subjectivity.

Theorem 2.5: In the quadratic signaling games with subjec-
tive Gaussian priors and hard power constraint, if (17) holds,
then the cost of the encoder and decoder at the informative
affine Stackelberg equilibrium are

J∗,e
s =

Pσ4
dσ

2
eσ

2
W + σ4

Wσ6
e + σ4

Wσ4
e(µe − µd)

2

(Pσ2
d + σ2

eσ
2
W )2

, (18)

J∗,d
s =

σ2
eσ

2
dσ

2
W

Pσ2
d + σ2

eσ
2
W

. (19)

On the other hand, if (17) does not hold, the affine Stackelberg
equilibrium is non-informative with costs J∗,e

s = σ2
e + (µe −

µd)
2 and J∗,d

s = σ2
d.

Proof: See Section VII-C.
It is noted that if both players share a common prior with

σe = σd = σM and µe = µd = µM leading to a team theoretic
setup, then (18) and (19) reduces to J∗,e

t = J∗,d
t =

σ2
Mσ2

W

P+σ2
W

.

Remark 2.9: Note that one can analyze the Stackelberg
equilibrium solutions under affine policy restriction to investi-
gate continuity and robustness properties. On the other hand,
we can conclude the continuity result directly from Theo-
rem 2.1. In particular, the analysis in the proof of Theorem 2.1
can be carried out when the optimization problem imposes an
additional affine policy restriction. This implies that for the
Gaussian prior case, the Stackelberg equilibrium cost of the
encoder under affine policy restriction is robust with respect
to perturbations around the team setup under either a soft or
a hard power constraint.

III. THE NON-COOPERATIVE/NO-COMMITMENT SETUP
(NASH EQUILIBRIA)

In certain communication applications, it may not possible
for the encoder and decoder to inform their policies to the
other decision maker apriori. In addition, subjective prior
distributions of the decision makers may not be known by the
other decision maker. In these applications, a Nash theoretic
treatment is required to analyze the interaction between the
decision makers where there is no hierarchy in the decision
making procedure. Furthermore, this type of interaction is

4In the case of equality in (17), it is possible to have a non-informative
equilibrium as well and the informative and non-informative equilibria induce
the same cost for the encoder in this case.

used to model scenarios where the decision makers guard
themselves against a misleading announcement from the other
decision maker, i.e., a decision maker employs a policy
other than its announced policy to gain advantage. Motivated
by such applications, we investigate affine Nash equilibria
when the encoder have subjective probabilistic beliefs on the
source distribution where these subjective prior distributions
are Gaussian, i.e., the source is M ∼ ϕe(m) = N (µe, σ

2
e)

and M ∼ ϕd(m) = N (µd, σ
2
d) from encoder’s and decoder’s

perspective, respectively.
We first focus on the soft power constrained setup. The

following theorem provides a condition under which the affine
Nash equilibrium solution is informative or non-informative.

Theorem 3.1: In the quadratic signaling games with subjec-
tive Gaussian priors and soft power constraint, if λ ≥ σ2

d

σ2
W

, the
unique affine equilibrium is non-informative; otherwise, there
exists a unique informative affine Nash equilibrium.

Proof: See Section VII-D.
Remark 3.1: From the proof of Theorem 3.1, it is seen

that none of the parameters that specify policies at the equi-
librium depend on the subjective priors from the perspective
of the encoder since the encoder minimizes its cost for every
realization m of source M without considering its distribution.

Remark 3.2: It is seen that the policies for the equilibrium
characterized in Theorem 3.1 are the same policies as in the
team theoretic setup where both the encoder and decoder take
ϕd(m), i.e., the subjective prior of the decoder in the game
theoretic setup, as the source distribution. This is in contrast
with the Stackelberg setup where the equilibrium solution does
not reduce to a team theoretic solution when either of the
player’s prior is taken as the common prior in general.

Next, we investigate effects of the subjectivity in priors on
the equilibrium cost. Due to Remark 3.2, only the objective
function of the encoder deviates from its value with the team
theoretic solution.

Theorem 3.2: In the quadratic signaling games with subjec-
tive Gaussian priors and soft power constraint, when λ <

σ2
d

σ2
W

,
the encoder cost J∗,e

s and decoder cost J∗,d
s at the Nash

equilibrium are

J∗,e
s =

√
λσ2

dσ
2
W

(
σ2
e + σ2

d + (µe − µd)
2

σ2
d

)
− λσ2

W , (20)

J∗,d
s =

√
λσ2

dσ
2
W . (21)

Otherwise; i.e., if λ ≥ σ2
d

σ2
W

, the costs are J∗,e
s = σ2

e+(µe−µd)
2

and J∗,d
s = σ2

d.
Proof: See Section VII-E.

If the priors were equal as µe = µd = µM and σe = σd =
σM ; i.e., the team case with a soft power constraint, then
the costs are given by J∗,e

t = 2
√

λσ2
Mσ2

W − λσ2
W , J∗,d

t =√
λσ2

Mσ2
W for λ <

σ2
M

σ2
W

(i.e., at the informative equilibrium),

and J∗,e
t = σ2

M , J∗,d
t = σ2

M for λ ≥ σ2
M

σ2
W

(i.e., at the non-
informative equilibrium).

We now discuss the robustness of the equilibrium with
respect to perturbations around the team setup. Since the
encoding and decoding policies do not depend on encoder’s
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subjective prior, perturbing encoder’s prior with respect to
decoder’s prior does not lead to a change in the policies
at the equilibrium. On the other hand, if we consider per-
turbation of decoder’s prior with respect to encoder’s prior,
i.e., µd = µe + ϵµ and σd = σe + ϵσ , the policies at the
equilibrium change in a continuous manner with perturbation.
These observations imply that the equilibrium is robust to
perturbations around the team setup. Notice that even though
the nature of the equilibrium may change depending on ϵσ , the
policies are still altered continuously, which ensures robustness
of the equilibrium.

We next generalize our results to the multi-dimensional
source setting. Let the source be M ∼ N (µe,Σe) and
M ∼ N (µd,Σd) from encoder’s and decoder’s perspective,
respectively, and let the channel noise be W ∼ N (0,ΣW).
Let the cost function of the encoder and the decoder be
ce(m,x,u) = ∥m−u∥2+λ∥x∥2 and cd(m,u) = ∥m−u∥2.
Accordingly, the objective function of the encoder and de-
coder are expressed as Je(γe, γd) = Ee[c

e(m,x,u)] and
Jd(γe, γd) = Ed[c

d(m,u)], respectively. Before presenting
our result for the case when the encoder have subjective prob-
abilistic models, we first restate a related result that appears
in [10, Theorem 5.1] for completeness. In this theorem, a
multidimensional signaling game setup with identical priors
and a biased encoder is considered. The difference with the
setup considered in this paper is that we consider a zero biased
encoder and the priors are not identical.

Theorem 3.3 ( [10, Theorem 5.1]): Consider the multidi-
mensional signaling setup with identical priors where the cost
functions are given by ce(m,x,u) = ∥m−u−b∥2+λ∥x∥2
and cd(m,u) = ∥m− u∥2.

(i) The encoder (decoder) is affine for an affine decoder
(encoder) in a multi-dimensional signaling game when
the priors are consistent.

(ii) For an affine Nash equilibrium, an encoding policy
γe(m) = Am+C must satisfy A = T (A) where T (A) =
(FFT + λI)−1 and F = (AΣdA

T +ΣW)−1AΣd.
(iii) There exists at least one equilibrium.

We note that Remark 3.2 is valid also for the multidimen-
sional case. In particular, an equilibrium solution is given by
the team theoretic solution by taking the subjective prior of
the decoder as the common prior. The following result uses
this observation together with Theorem 3.3 by taking b = 0.
Thus, we state the following result without proof.

Corollary 3.1: Consider the multidimensional signaling
setup with inconsistent priors where the cost functions are
given by ce(m,x,u) = ∥m−u∥2 + λ∥x∥2 and cd(m,u) =
∥m− u∥2.

(i) The encoder (decoder) is affine for an affine decoder
(encoder) in a multi-dimensional signaling game when
the priors are inconsistent.

(ii) For an affine Nash equilibrium, an encoding policy
γe(m) = Am+C must satisfy A = T (A) where T (A) =
(FFT + λI)−1 and F = (AΣdA

T +ΣW)−1AΣd.
(iii) There exists at least one equilibrium.

As noted in [10], there always exists a non-informative
equilibrium. In fact, it is possible to guarantee the existence

of an informative equilibrium considering a special case. In
particular, [10, Theorem 5.1] focuses on a special case with
diagonal covariance matrices to establish the existence of an
informative equilibrium under a certain condition, and this
result is valid for the case of inconsistent priors analyzed in
this manuscript by taking b = 0 and employing the subjective
prior of the decoder as the common prior.

It is possible to generalize our results to multi-stage setting.
In this context, a related result is presented in [13]. For
completeness, we first restate this result in the following.

Theorem 3.4 ( [13, Theorem 11]): Consider the multi-
stage signaling game setup where the priors are identical and
the source is scalar or multi-dimensional.

(i) If the encoder uses affine policies at all stages, then the
decoder is affine at all stages.

(ii) If the decoder uses affine policies at all stages, then the
encoder is affine at all stages.

By using the results of Theorem 3.1, Corollary 3.1 and
Theorem 3.4, the following conclusion can be made. Thus,
we state the following result without proof.

Corollary 3.2: Even if the priors are inconsistent from the
perspectives of the encoder and the decoder in the multi-stage
signaling game, affine policies constitute an invariant subspace
under best response maps for scalar and multi-dimensional
sources under Nash equilibria.

In the remainder of this section, we focus on the case where
the encoder has a hard power constraint, i.e., the encoder’s
objective is given by (3). Unlike the soft power constrained
case, there always exists an informative Nash equilibrium for
the hard power constrained case as stated in the following
theorem. Nevertheless, this informative Nash equilibrium is
not the same as the team theoretic solution when decoder’s
subjective prior is the common prior.

Theorem 3.5: There always exists an informative affine
Nash equilibrium in the hard power constrained scalar
quadratic signaling game in contrast to the soft power con-
strained scalar quadratic signaling game.

Proof: See Section VII-F.
By examining the proof of Theorem 3.5, it is seen that

when µe = µd = µM and σe = σd = σM leading to a team
theoretic setup, the encoding and decoding policies become

γe(m) =

√
P

σM
(m− µM ) and γd(y) =

√
PσM

P+σ2
W

, as expected.
Remark 3.3: Note that although both the Nash equilibrium

solution and the team theoretic solution are always informa-
tive, the resulting policies are not the same in general. In other
words, the subjectivity in the priors affects the equilibrium
solution.

Remark 3.4: When there is a hard power constraint, the
policies at the equilibrium are affected by the priors from
the perspective of both players, which is in contrast with the
case of soft power constraint. When there is a hard power
constraint, it is shown that the encoder equates its average
power level (with respect to its own prior) to the maximum
possible level at the equilibrium. As a result, the encoding
policy at the Nash equilibrium depends also on the priors of
the encoder in the hard power constrained case.
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Then, we investigate effects of subjectivity in priors on the
equilibrium cost.

Theorem 3.6: In the quadratic signaling games with sub-
jective Gaussian priors and hard power constraint, the encoder
cost J∗,e

s and decoder cost J∗,d
s at the Nash equilibrium are

J∗,e
s =

(
P

σ4
d

(µe−µd)2+σ2
e
+ ((µe − µd)

2 + σ2
e)σ

2
W

)
σ2
W(

P
(

σ2
d

(µe−µd)2+σ2
e

)
+ σ2

W

)2 ,

J∗,d
s =

σ2
dσ

2
W

P
(

σ2
d

(µe−µd)2+σ2
e

)
+ σ2

W

.

Proof: See Section VII-G.
If the priors were equal as µe = µd = µM and σe = σd =
σM ; i.e., the team case with a hard power constraint, then,
J∗,e
t = J∗,d

t =
σ2
Mσ2

W

P+σ2
W

.

When the priors are perturbed around the team setup, unlike
the soft power constrained case, the equilibrium is always
informative regardless of the perturbation. In addition, when
a perturbation is applied, the policies change in a continuous
manner, i.e., the affine Nash equilibrium is robust with respect
to perturbations around the team setup.

IV. SIGNALING UNDER SUBJECTIVE PRIORS WITHOUT
ADDITIVE NOISE: CHEAP TALK RE-VISITED

In this section, different from the previous communication
scenario, there does not exist an additive noise term, i.e., the
decoder observes the encoded message directly, and there is
no power constraint at the encoder. The setup is depicted in
Fig. 1-(b). We consider encoders and decoders with subjective
priors, and to reflect mainly the effects of the subjectivity
in the priors we assume that the costs are identical with
ce(m,u) = cd(m,u) = ∥m − u∥2. In contrast with the
previously analyzed scenarios, there does not exist a power
constraint at the encoder in this case. In fact, the problem
can be viewed as a cheap talk game as the cost function
of the encoder does not depend on the transmitted message,
i.e., transmitting information does not induce a cost for the
encoder. For the cheap talk problem, the existence of babbling
equilibrium can always be established and in that respect the
following is a useful observation, which follows from [7,
Theorem 1] and [40]:

Proposition 4.1: A non-informative (babbling) equilibrium
always exists for the cheap talk game.

Let M ∼ fe and M ∼ fd from the perspectives of
encoder and decoder, respectively. We assume mutual abso-
lute continuity of fe and fd; that is, for any Borel set B,
fe(B) = 0 =⇒ fd(B) = 0 and fd(B) = 0 =⇒ fe(B) = 0.
This means that even though the encoder and decoder have
subjective priors, they believe that the source has the same
support, i.e., there is no inconsistency with regard to the
support of the source. For instance, this holds when the source
has unbounded support with a strictly positive probability
density function (e.g., Gaussian and Laplacian distributions)
from the perspectives of both players.

Theorem 4.1:

(i) If the priors are mutually absolutely continuous, there
exists a fully informative Nash equilibrium.

(ii) If the priors are mutually absolutely continuous, there
exists a fully informative Stackelberg equilibrium.
Proof:

(i) Let the encoder and the decoder use fully informative
policies; i.e., the encoder transmits every individual mes-
sage distinctly as x = γe(m) = m, and the decoder
takes unique actions for each distinct message it receives
as u = γd(x) = x. Then, the cost of the encoder and the
decoder is zero almost surely (due to the mutual absolute
continuity assumption, the set of m values in the support
of both the encoder and the decoder priors has measure 1
under either the encoder and the decoder prior); and thus
Je = Efe [∥m−u]∥2] = 0 and Jd = Efd [∥m−u]∥2] = 0.
Since both the encoder and the decoder achieve the
minimum possible cost, none of the players deviate from
their current choices; i.e., they prefer to stick at the fully
informative policies, which implies that there exists a
fully informative equilibrium.

(ii) Under the Stackelberg assumption, the optimal decoder
action is u∗ = γ∗,d(x) = Efd [m|x]. Then, the encoder
aims to choose the optimal encoding policy γ∗,e(m) =
x∗ = argmin

x
Efe [∥m − Efd [m|x]∥2]. Thus, for every

possible realization of m, the encoder can choose x =
γe(m) such that m = Efd [m|x], and this is achievable
at fully informative equilibria; i.e., γ∗,e(m) = x∗ = m.
Under this encoding policy and due to the mutual absolute
continuity assumption, the optimal encoder cost is zero
almost surely, and the optimal decoder policy is u∗ =
γ∗,d(x) = x = m, which entails a zero decoder cost
almost surely.

Remark 4.1: Under the mutually absolutely continuous
priors assumption, the subjectivity in priors does not make
a difference; i.e., both the team setup and game setup result
in fully informative equilibria.

Corollary 4.1: Theorem 4.1 and Remark 4.1 also apply to
the multi-stage case; i.e., if the priors are mutually absolutely
continuous, there exist fully informative Nash and Stackelberg
equilibria in multi-stage and/or multi-dimensional cheap talk
as in the team theoretic setup.

V. NUMERICAL EXAMPLES

In this section, we provide numerical examples for the Gaus-
sian case. We illustrate the performance values of the unique
informative affine Nash and Stackelberg equilibria considering
hard power constrained case. In Fig. 3a, we assume that the
prior of the encoder is the true prior, and thus, we plot the
induced cost of the encoder at the informative equilibria with
respect σ2

d. Note that there always exists an informative affine
Nash equilibria regardless of the parameter values whereas
for the existence of Stackelberg equilibria it is required that
(17) holds. For the considered parameter values, this condition
always holds. It is observed that for small values of σ2

d, the
costs are large whereas for large values of σ2

d, the costs get
smaller for both equilibria. This is intuitive since for small
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(a) The encoder’s prior is the
true prior where σ2

e = 1.
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(b) The decoder’s prior is the
true prior where σ2

d = 1.

Fig. 3: Attained costs at the unique informative equilibria
considering hard power constrained case for the Stackelberg
and the Nash setup where |µe − µd| = 2, P̄ = 1 and
σ2
W = 0.01. The condition (17) for the existence of infor-

mative affine Stackelberg equilibria holds for all considered
parameter values in the figures.

values of σ2
d, the decoder has an incorrect belief with high

certainty (as µe ̸= µd) and the encoder cannot persuade the
decoder to take an accurate action. On the other hand, for
large values of σ2

d, the costs get smaller since the conveyed
information from the encoder gets more effective. It is also
interesting to observe the difference between the costs attained
at the informative Stackelberg and the Nash equilibria. This
difference arises from the difference in subjective means, and
if the subjective means are the same, i.e., µe = µd, the costs
become the same at the informative Stackelberg and Nash
equilibria.

In Fig. 3b, we now assume that the prior of the decoder is
the true prior. Accordingly, we plot the induced cost of the
decoder at the informative equilibria with respect to σ2

e . It is
seen that for small values of σ2

e , the costs are small whereas
for large values of σ2

e , the costs get larger for both equilibria.
This can be explained by the the following: For large σ2

e , the
encoder believes that the source has high variance and thus
has large average power. Then, in order not to violate the
power constraint, the encoder applies a small scaling factor.
This effectively reduces the informativeness of the conveyed
message since there is an additive noise with a fixed variance.
On the other hand, for small σ2

e , the encoder applies a large
scaling, which in turn reduces the costs.

VI. CONCLUDING REMARKS

We have investigated Nash and Stackelberg equilibria for
quadratic signaling games under subjective/inconsistent priors.
We have established qualitative (e.g., full revelation, linearity,
informativeness, non-informativeness and robustness around
the team setup) and quantitative properties (on linearity or
explicit computation) of Nash and Stackelberg equilibria. We
have established that the Stackelberg equilibrium cost is upper
semi continuous around the point of identical priors and in
the particular case of Gaussian priors it is also lower semi
continuous, which shows the robustness of the Stackelberg
equilibria around the team setup. Moreover, we have shown
that for Gaussian signaling, the Stackelberg equilibrium so-
lution is in general nonlinear, which is in contrast with the

linearity property of team optimal solution. In addition, we
have proven that there exist informative affine Nash and Stack-
elberg equilibria depending on conditions stated explicitly for
the signaling game setup under soft power constraints. Fur-
thermore, we have shown that the Nash equilibrium solution
reduces to the team theoretic solution when decoder’s prior
is the common prior. Moreover, we have established that
there always exists a unique affine Nash equilibrium for the
signaling game under the hard power constraint as in the
team theoretic setup. In addition, we have proven that the
affine Stackelberg equilibrium for the signaling game under
the hard power constraint is informative or non-informative
depending on the system parameters, which is in contrast with
the informative nature of the team theoretic solution. Finally,
when the source is perceived to admit different probability
measures from the perspectives of the encoder and the decoder,
under identical cost functions and mutual absolute continuity,
we have shown that there exist fully informative Nash and
Stackelberg equilibria for the dynamic cheap talk (noiseless
case) as in the usual team theoretic setup.

VII. APPENDIX

A. Proof of Theorem 2.3

Assuming an affine encoder; i.e., x = γe(m) = Am + C,
from the previous part, we know that the optimal decoder is
u∗ = γ∗,d(y) = Ed[m|y] =

Aσ2
d

A2σ2
d+σ2

W
y +

σ2
Wµd−ACσ2

d

A2σ2
d+σ2

W
≜

Ky + L, where y = Am + C + w. Then, by inserting the
best response of the decoder into the objective function of the
encoder and after some manipulation, the goal of the encoder
becomes

min
x=γe(m)=Am+C

Ee

[
(m− u)2 + λx2

]
= min

A, C

σ4
W ((µe − µd)

2 + σ2
e − σ2

d)

(A2σ2
d + σ2

W )2

+
σ2
dσ

2
W

A2σ2
d + σ2

W

+ λA2σ2
e + λ(Aµe + C)2 . (22)

Here, the optimal encoder cost is achieved when C∗ =
−A∗µe, and A∗ can be found by solving

A∗ = argmin
A

σ4
W (σ2

e + (µe − µd)
2 − σ2

d)

(A2σ2
d + σ2

W )2

+
σ2
dσ

2
W

A2σ2
d + σ2

W

+ λA2σ2
e ≜ f(A2) . (23)

In order to investigate the optimization problem in (23), we
need the first and second derivatives of f(A2) with respect to
A2. Taking the first derivative of f(A2) with respect to A2,
we get

df(A2)

d(A2)
= −2σ2

dσ
4
W (σ2

e + (µe − µd)
2 − σ2

d)

(A2σ2
d + σ2

W )3

− σ4
dσ

2
W

(A2σ2
d + σ2

W )2
+ λσ2

e .

Differentiating further leads to

d2f(A2)

d(A2)2
=

σ4
dσ

4
W

(
6(µe − µd)

2 + 6σ2
e − 4σ2

d

)
+ 2A2σ8

dσ
2
W

(A2σ2
d + σ2

W )4
.
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It is seen that if (15) holds, the objective function is first
concave and then convex when A2 is increased starting from
zero. If (15) does not hold, the objective function is always
convex. Therefore, a solution to (23) always exists.

Now, we wish to see if the optimal solution of (23) leads
to A ̸= 0 or not. If the first derivative at A2 = 0 is negative,
it means that there exists A ̸= 0 which induces a lower cost
than the non-informative scenario for the encoder. Therefore,
the affine Stackelberg equilibrium is informative under the
condition that df(A2)

d(A2) < 0 when A = 0, and this condition
can be expressed as in (14).

If (14) does not hold, then the objective function is non-
decreasing at A2 = 0. Notice that if (15) does not hold, then
the objective function becomes strictly convex when A2 >
0. Since a strictly convex function with a non-negative first
derivative at A2 = 0 is an increasing function for A2 > 0,
the optimal solution becomes non-informative with A∗ = 0 in
this case.

In the remainder of the proof, we consider the remaining
scenario when (15) holds and (14) does not hold. In this case,
we wish to see if there exists a solution to f(x) = f(0) with
a positive x. We note that in this remaining case, f(x) is non-
decreasing at x = 0 and strictly concave when x < 0. Hence,
when there exists a solution to f(x) = f(0), this solution
must be attained with a positive x. Now, we are looking
for a solution to the following equation for an informative
equilibrium:

σ4
W (σ2

e + (µe − µd)
2 − σ2

d)

(A2σ2
d + σ2

W )2
+

σ2
dσ

2
W

A2σ2
d + σ2

W

+ λA2σ2
e

= σ2
e + (µe − µd)

2. (24)

Note that (24) is equivalent to

A4λσ4
dσ

2
e +A2

(
2λσ2

eσ
2
dσ

2
W − σ4

d

(
σ2
e + (µe − µd)

2
))

+σ4
dσ

2
W + λσ2

eσ
4
W − 2σ2

dσ
2
W

(
σ2
e + (µe − µd)

2
)
= 0,

which is a second order polynomial in A2 whose discriminant
is expressed as ∆ ≜ σ8

d

(
σ2
e+(µe−µd)

2
)2

+4λσ2
eσ

2
dσ

2
W

(
σ2
e+

(µe − µd)
2 − σ2

d

)
. Hence, when ∆ ≥ 0 or equivalently (16)

holds, there exists a solution to (24). This implies that there
exists an informative affine Stackelberg equilibrium in this
case.

B. Proof of Theorem 2.4
Assuming an affine encoder; i.e., x = γe(m) = Am + C,

from the previous part, we know that the optimal decoder is
u∗ = γ∗,d(y) = Ed[m|y] =

Aσ2
d

A2σ2
d+σ2

W
y +

σ2
Wµd−ACσ2

d

A2σ2
d+σ2

W
≜

Ky + L, where y = Am + C + w. Then, after inserting the
best response of the decoder, the objective function of the
encoder becomes

Ee

[
(m− u)2

]
= Ee

[
(m−AKm−KC −Kw − L)2

]
=

A2σ4
dσ

2
W + σ4

W (σ2
e + (µe − µd)

2)

(A2σ2
d + σ2

W )
2 ≜ f(A2) (25)

Thus, the goal of the encoder is to solve the following
optimization problem:

J∗,e = min
A, C

f(A2) s.t. (Aµe + C)2 +A2σ2
e ≤ P .

It is seen that the cost to be minimized is independent of C.
Therefore, if we set C = −Aµe, we obtain all feasible values
of A. Hence, the optimization problem can be solved under
the constraint that A2σ2

e ≤ P . Taking the derivative of the
objective function with respect to A2, we get

df(A2)

dA2
=

σ2
dσ

2
W

(
A2σ2

d + σ2
W

)
(A2σ2

d + σ2
W )

4

×
(
σ2
W (σ2

d − 2σ2
e − 2(µe − µd)

2)−A2σ4
d

)
.

Here, if σ2
d − 2σ2

e − 2(µe − µd)
2 ≤ 0, then f(A2) is a

decreasing function of A2. Therefore, the minimization can be
accomplished by choosing A2 as large as possible satisfying
the constraint, which makes the optimal encoding policy
(A∗)2 = P

σ2
e

and C∗ = −A∗µe.
On the other hand, if σ2

d − 2σ2
e − 2(µe − µd)

2 > 0, then
f(A2) is first an increasing and then a decreasing function of
A2. As the goal is to minimize the cost, the optimal A2 value
is obtained by choosing either the largest or the smallest A2

depending on the value of P . The objective function takes the
value of σ2

e + (µe − µd)
2 when A2 = 0. It is necessary to

check if the solution of f(A2) = σ2
e +(µe−µd)

2 for nonzero
A2 is feasible. In particular, f(Ã2) = (σ2

e+(µe−µd)
2) yields

Ã2 =
σ2
W (σ2

d−2σ2
e−2(µe−µd)

2)

σ2
d(σ

2
e+(µe−µd)2)

and such a value is feasible

when Ã2σ2
e ≤ P . As a result, if (17) holds, then there

exists an informative affine equilibrium with A∗ = ±
√

P
σ2
e

.
On the other hand, if (17) does not hold, then the largest
possible A2 gives an objective value larger than the objective
value at A = 0, which leads to a non-informative equi-
librium. Hence, for a non-informative equilibrium, we need
σ2
Wσ2

e(σ
2
d−2σ2

e−2(µe−µd)
2)

σ2
d(σ

2
e+(µe−µd)2)

> P and σ2
d−2σ2

e−2(µe−µd)
2 > 0

to hold simultaneously and otherwise the affine equilibrium
is informative. Since the former condition implies the latter
condition, the former condition becomes the only condition
which leads to a non-informative equilibrium.

C. Proof of Theorem 2.5

As shown in Theorem 2.4, an encoding policy γ∗,e(m) =

Am + C with A =
√
P/σe and C = −Aµe leads to an

informative affine equilibrium. In response to this encoding
policy, the decoder takes its optimal action as u∗ = γ∗,d(y) =

Ky+L = AKm+KC+L+Kw with K =

√
Pσ2

dσe

Pσ2
d+σ2

eσ
2
W

and

L = µd −K
√
P (µd −µe)/σe. By inserting the optimal value

of A into (25), the cost of the encoder becomes as in (18).
Now, we derive the cost of the decoder at the informative
equilibrium. By using best response characterization of the
decoder, it can be shown that KC +L = (1−AK)µd. Then,
the cost of the decoder becomes

Ed[(m− u)2] = Ed[(m−K(Am+ C + w)− L)2]

= Ed[((1−AK)m− (KC + L))2] +K2σ2
W

= (1−AK)2Ed[(m− µd)
2] +K2σ2

W

=
σ2
eσ

2
dσ

2
W

Pσ2
d + σ2

eσ
2
W

.



14

When (17) does not hold, an encoding policy γe(m) = C
with C ≤

√
P leads to an affine Stackelberg equilibrium. In

this case, the best response of the decoder becomes γd(y) =
Ed[m|y] = Ed[m] = µd. Then, the costs are given by

J∗,e
s = Ee[(m− u)2] = Ee[(m− µd)

2] = σ2
e + (µe − µd)

2,

J∗,d
s = Ed[(m− u)2] = Ed[(m− µd)

2] = σ2
d.

D. Proof of Theorem 3.1

If the encoder is affine; i.e., x = γe(m) = Am + C, then
the optimal decoder becomes

u∗ = γ∗,d(y) = Ed[m|y] = Ed[m|Am+ C + w]

= µd +
Aσ2

d

A2σ2
d + σ2

W

(y −Aµd − C)

=
Aσ2

d

A2σ2
d + σ2

W

y +
σ2
Wµd −ACσ2

d

A2σ2
d + σ2

W

.

Now suppose that the decoder is affine; i.e., u = γd(y) =
Ky + L, then the optimal encoder is given by [10]

x∗ = γ∗,e(m) =
K

K2 + λ
m− KL

K2 + λ
.

We now wish to see if these optimal sets of policies satisfy
a fixed point equation. By combining the optimal policies, we
get

A =
K

K2 + λ
, K =

Aσ2
d

A2σ2
d + σ2

W

, (26)

C =
−KL

K2 + λ
, L =

σ2
Wµd −ACσ2

d

A2σ2
d + σ2

W

. (27)

Since 1−AK =
σ2
W

A2σ2
d+σ2

W
and C = −AL from (26) and (27),

it follows that L = µd and C = −Kµd

K2+λ . Hence, it suffices
to find A and K that satisfy (26) for an affine equilibrium.
Similar to [10, Theorem 4.1], we obtain (K2 + λ)2σ2

W =

λσ2
d from (26) by assuming A ̸= 0. Here, for λ >

σ2
d

σ2
W

,
(K2 + λ)2σ2

W = λσ2
d cannot be satisfied, thus A = 0 and

the affine equilibrium is non-informative. If λ =
σ2
d

σ2
W

holds,
then (K2 +λ)2σ2

W = λσ2
d leads to K = 0 and thus the affine

equilibrium is non-informative. Finally, if λ <
σ2
d

σ2
W

holds,
the unique informative affine Nash equilibrium is attained by
the encoding and decoding policies γe(m) = Am + C and
γd(y) = Ky + L with

A = γ, C = −µdγ, (28)

K = (γσd

√
λ)/σW , L = µd (29)

where γ ≜ ±

√√
σ2
W

λσ2
d
− σ2

W

σ2
d

.

E. Proof of Theorem 3.2

We first consider the informative equilibrium; i.e., the case
with λ <

σ2
d

σ2
W

. At the affine Nash equilibrium, the encoder
policy is x∗ = γ∗,e(m) = Am+ C, and the decoder receives
y = x+w = Am+C+w. Then, the decoder takes its optimal
action as u∗ = γ∗,d(y) = Ky+L = AKm+KC+L+Kw.

From (26)-(29), it follows that L + KC = L + K(−AL) =

L(1−AK) = µd(1−AK) and 1−AK = λ
K2+λ =

√
λσ2

W

σ2
d

.

Now observe the following:

E[(m− u)2] = E[(m−AKm−KC − L−Kw)2]

= E[(m(1−AK)− µd(1−AK))2] +K2σ2
W

=
λσ2

W

σ2
d

E[(m− µd)
2] +

√
λσ2

dσ
2
W − λσ2

W .

Since x = Am + C = Am − AL = A(m − µd), the cost of
the encoder becomes

J∗,e
s = Ee[(m− u)2 + λx2]

=

(
λσ2

W

σ2
d

+ λA2

)
Ee[(m− µd)

2] +
√
λσ2

dσ
2
W − λσ2

W

=

√
λσ2

W

σ2
d

(
σ2
e + (µe − µd)

2
)
+

√
λσ2

dσ
2
W − λσ2

W

=
√

λσ2
dσ

2
W

(
σ2
e + σ2

d + (µe − µd)
2

σ2
d

)
− λσ2

W .

Similarly, the cost of the decoder is given by

J∗,d
s = Ed[(m− u)2]

=
λσ2

W

σ2
d

Ed[(m− µd)
2] +

√
λσ2

dσ
2
W − λσ2

W =
√

λσ2
dσ

2
W .

As stated in Theorem 3.1, the case with λ ≥ σ2
d

σ2
W

leads to a
non-informative equilibrium with A = 0, C = 0, K = 0 and
L = µd from (26) and (27). Then, x∗ = γ∗,e(m) = Am+C =
0, y = x + w = w, and u∗ = γ∗,d(y) = Ky + L = µd are
obtained. Thus, the objectives of the encoder and decoder at
the non-informative equilibrium are given by J∗,e

s = Ee[(m−
u)2+λx2] = σ2

e +(µe−µd)
2 and J∗,d

s = Ed[(m−u)2] = σ2
d.

F. Proof of Theorem 3.5

For an affine encoder; i.e., x = γe(m) = Am + C which
satisfies Ee[x

2] = A2(µ2
e + σ2

e) + 2ACµe + C2 ≤ P , the
optimal decoder is affine; namely,

γ∗,d(y) =
Aσ2

d

A2σ2
d + σ2

W

y +
σ2
Wµd −ACσ2

d

A2σ2
d + σ2

W

.

For an affine decoder; i.e., u = γd(y) = Ky+L, we inves-
tigate the optimal encoder as follows: With y = γe(m) + w,
it follows that u = Kγe(m)+Kw+L. Then, under the hard
power constraint Ee

[
(γe(m))

2
]
≤ P , the optimal cost of the

encoder can be written as

J∗,e = min
x=γe(m)

Ee

[
(m− u)2

]
= min

γe(m)
Ee

[
(m−Kγe(m)−Kw − L)2

]
= min

γe(m)
Ee

[
(m−Kγe(m)− L)2

]
+K2σ2

W . (30)

For the optimization problem in (30), the corresponding La-
grangian function is expressed as

L (γe(m), ν) = Ee

[
(m−Kγe(m)− L)2

]
+K2σ2

W
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+ ν
(
Ee

[
(γe(m))

2
]
− P

)
=

(
K2 + ν

)
Ee

[(
γe(m)− (m− L)K

K2 + ν

)2
]

+
ν

K2 + ν
Ee

[
(m− L)

2
]
+K2σ2

W − νP , (31)

the dual function is given by

g(ν) ≜ inf
γe(m)

L (γe(m), ν) , (32)

and the Lagrangian dual problem of (30) is defined as

min
ν

g (ν) s.t. ν ≥ 0 . (33)

Since the optimization problem is convex, the duality gap
between the solutions of the primal and the dual problem is
zero.

It is observed from (31) that the Lagrangian function
L (γe(m), ν) can be decomposed into

L (γe(m), ν) =
(
K2 + ν

)(∫
m∈R

Lm (γe(m), ν) pe(m) dm

)
+

ν

K2 + ν
Ee

[
(m− L)

2
]
+K2σ2

W − νP , (34)

where Lm (γe(m), ν) ≜
(
γe(m)− (m−L)K

K2+ν

)2

. Evidently, the
optimal encoder policy that minimizes L (γe(m), ν) obtained
from (32) should also minimize Lm (γe(m), ν) for each given
value of m. This is known as dual decomposition and it
facilitates the decomposition of the dual problem into sub-
optimization problems which are coupled only through m.
More explicitly, we need the compute

min
γe(m)

Lm (γe(m), ν) = min
γe(m)

(
γe(m)− (m− L)K

K2 + ν

)2

(35)

for each value of m ∈ R.
The Karush-Kuhn-Tucker (KKT) conditions can be obtained

for the optimization problem in (30) as follows:

∂Lm (γe(m), ν)

∂ (γe(m))
= 0 , (36)

ν
(
Ee

[
(γe(m))

2
]
− P

)
= 0 , (37)

ν ≥ 0 , (38)

Ee

[
(γe(m))

2
]
− P ≤ 0 . (39)

From (36), the optimal encoder policy is γe(m) =
K

K2+νm − KL
K2+ν . By (37), we must have either ν = 0 or

Ee

[
(γe(m))

2
]

= P . If ν = 0, for an informative affine

equilibrium, K =
Aσ2

d

A2σ2
d+σ2

W
and A = K

K2+ν = 1
K must be

satisfied simultaneously, which is not possible. Thus, we must
investigate the case of Ee

[
(γe(m))

2
]
= P with ν > 0 to

obtain the conditions for an informative affine equilibrium.
More specifically, we need

P = Ee

[
(γe(m))

2
]
= Ee

[(
K

K2 + ν
m− KL

K2 + ν

)2
]

=
K2

(K2 + ν)2
(
µ2
e + σ2

e − 2Lµe + L2
)

(40)

with ν > 0. At the equilibrium, we have

A =
K

K2 + ν
, K =

Aσ2
d

A2σ2
d + σ2

W

, (41)

C = − KL

K2 + ν
, L =

σ2
Wµd −ACσ2

d

A2σ2
d + σ2

W

. (42)

It is seen that (41) and (42) lead to L = µd. From (40)-
(42) and L = µd, it follows that A = γ, C = −µdγ and
K =

γσ2
d

γ2σ2
d+σ2

W
where γ ≜ ±

√
P

(µe−µd)2+σ2
e

. Finally, we need
to ensure ν > 0. Observe that (40) and L = µd lead to

ν =

√
K2 (σ2

e + (µ2
e − µd)2)

P
−K2 =

√
K2

A2
−K2 > 0,

where the second equality follows from A = γ and the
inequality is due to AK < 1. This shows that there always
exists an informative affine Nash equilibrium.

G. Proof of Theorem 3.6

At the affine Nash equilibrium, the encoder policy is x∗ =
γ∗,e(m) = Am + C, and the decoder receives y = x + w =
Am + C + w. Then, the decoder takes its optimal action as
u∗ = γ∗,d(y) = Ky + L = AKm + KC + L + Kw. Since
L+KC = L+K(−AL) = L(1−AK) = µd(1−AK) and
1−AK = 1−A

Aσ2
d

A2σ2
d+σ2

W
=

σ2
W

A2σ2
d+σ2

W
, the following holds:

E[(m− u)2] = E[(m−AKm−KC − L−Kw)2]

= E[(m(1−AK)− µd(1−AK))2] +K2σ2
W

=
σ4
W

(A2σ2
d + σ2

W )
2E[(m− µd)

2] +
A2σ4

d

(A2σ2
d + σ2

W )
2σ

2
W .

Then, the encoder cost is

J∗,e
s = Ee[(m− u)2]

=
σ4
W

(A2σ2
d + σ2

W )
2Ee[(m− µd)

2] +
A2σ4

d

(A2σ2
d + σ2

W )
2σ

2
W

=
σ4
W

(
σ2
e + (µe − µd)

2
)

(A2σ2
d + σ2

W )
2 +

A2σ4
d

(A2σ2
d + σ2

W )
2σ

2
W

=
σ2
W

(
(σ2

e + (µe − µd)
2)σ2

W + P
(µe−µd)2+σ2

e
σ4
d

)
(

P
(µe−µd)2+σ2

e
σ2
d + σ2

W

)2 ,

whereas the decoder cost is

J∗,d
s = Ed[(m− u)2]

=
σ4
W

(A2σ2
d + σ2

W )
2Ed[(m− µd)

2] +
A2σ4

d

(A2σ2
d + σ2

W )
2σ

2
W

=
σ2
dσ

2
W

A2σ2
d + σ2

W

=
σ2
dσ

2
W

P
(

σ2
d

(µe−µd)2+σ2
e

)
+ σ2

W

.
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