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Abstract—We consider a visible light positioning system in simultaneous position and orientation estimation (SP@j-al
which a receiver performs position estimation based on sigals rithm using RSS measurements in a multi-input multi-output
emitted from a number of light emitting diode (LED) trans- (MIMO) VLP system. The CRLB is also derived to evaluate

mitters. Each LED transmitter can be malicious and transmit .
at an unknown power level with a certain probability. A max- e performance of the proposed SPO estimator. In [11], deep

imum likelihood (ML) position estimator is derived based on learning is employed for joint 3D position and orientation
the knowledge of probabilities that LED transmitters can be estimation of a VLC receiver with a random orientation and
malicious. In addition, in the presence of training measurenents, an unknown emitting power based on RSS measurements. In
decision rules are designed for detection of malicious LED [12], performance analysis of a VLP system, which uses an

transmitters, and based on detection results, various ML baed t b d . . ducted. A timator i
location estimators are proposed. To evaluate the performeace aperture-based receiver, is conducted. An estimator fsqsex

of the proposed estimators, Cranér-Rao lower bounds (CRLBs) Dy utilizing both RSS and AOA information. Also, the CRLB
are derived for position estimation in scenarios with and wihout is derived for assessing the performance of the proposed
a training phase. Moreover, an ML estimator is derived when astimator.

the probabilities that the LED transmitters can be malicious In this work, we focus on a VLP system in which a

are unknown. The performances of all the proposed estimat& . . ) L .
are evaluated via numerical examples and compared againshe visible light communication (VLC) receiver collects power

CRLBs. measurements from signals coming from a number of LED
Index Terms-—Visible light, estimation, localization, malicious transmitters for the purpose of localization. We also odeisi
LED transmitter, CRLB. that the system is not completely secure and some of the LED

transmitters can be malicious (controlled by a third party)
Therefore, we aim to develop position estimation algorghm
|. INTRODUCTION the presence of malicious LED transmitters. Although vasio
ecurity issues in the physical layer have been investigate
or VLC systems [13]-[22], there exists no such work for

widespread due to their low power consumption, efficie tLP systems in the literature. For example, [14] considers
illumination, and long life span compared to convention i€ presence _Of an ea}vesdr(_)pper and proposes a way of
light bulbs [2]. In addition to illumination, LEDs can also>€curng V_LC links via frl_endlyjammers. In ad_d|t_|on, a rabu

be utilized for communications and positioning. In parécy beamforming appr(_)ach is developed tp maximize the worst-
visible light positioning (VLP) has emerged as an attractiVF2S€ sdecrecy'ratﬁ n thlelprels79nce Ofl !rr;pgrfect kpowledge of
approach that provides accurate location information Veitin el\j\llgg r(\)/ﬁ)f?rs channe. in [ .]’ a rgu tlphe-mput smgl&pfut |
implementation complexity. In the literature, various ifios ( ) system Is investigated in the presence of mul-

estimation algorithms are developed and theoretical acqurtiple eavesdropp_er_s. The _transmit beamfor_mer and jamming
limits are investigated for VLP systems thoroughly [3]_[6Irecod_er are optimized to Improve communication secrery. :
(and references therein). Unlike in RF systems, positicn 48], simultaneous beamforming and jamming 15 utilized for
timation based on received power measurements can achiwgo VLC sys.tems under the assumption of .randomly Iocatgd
high accuracy in VLP systems [7]. Therefore, the receiv vesdropper in order to enhgn_ce t-he physical Iayer sgeurit
signal strength (RSS) parameter is commonly employedT e authors formulate an optimization problem with a focus

VLP systems due to its low measurement cost. In [8], closed" the signal-to-interference-plus-noise ratio for thgitimate

form Cramér-Rao lower bound (CRLB) expressions are dgnk and sqlve it bY a h_euristic method. In [19], a physical
rived for location and orientation estimation based on tB&SR layer security technique is proposed for VLC systems wih th

measurements. In [9], a three-dimensional (3D) positignitlf't”'zat'on of an intelligent mirror array. An achievablececy

approach that utilizes both RSS and angle-of-arrival (AO,C{ t?] maximiz(;;ltion_ prfb'?m is_ form;xlﬁted _for the pfrouf)odsed
information is introduced for a single-input multiple-put technique and optimal orientations of the mirrors are foun

(SIMO) visible light system. The authors in [10] propose gddition, the studies in [20] and [21] focus on the calcolati
of the secrecy capacity for VLC systems in various scenarios

F. Kokdogan and S. Gezici are with the Department of Eleadtrand A ComprehenS'Ve SurveY on phyS|caI Iayer secyrlty for VLC
Electronics Engineering, Bilkent University, Ankara 068Turkey (e-mails: Systems can be found in [22]. As an alternative approach,
{kokdogan, gezigi@ee.bilkent.edu.r). _ information theoretic learning criteria, such as minimumoe

Part of this work was presented at 2021 IEEE InternationaclBlSea . L

entropy (MEE) and maximum correntropy criterion (MCC),

Conference on Communications and Networking (BlackSegCamay 24- s TR -
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Recently, the usage of light emitting diodes (LEDs)
efficient lighting sources in indoor environments has bego



systems. For example, an MEE based channel estimatoris derived for two different scenarios. In Section V, tletor
proposed in [23] for massive MIMO VLC systems. ical limits, namely, the CRLBs, on the positioning accuracy
In RF systems, position estimation in wireless sensor nefre derived. Simulation results are presented and distusse
works in the presence of malicious nodes has been cam-Section VI. In Section VII, an extension is provided for
sidered in various studies [24]-[33]. In [24], independenhe case of unknown probabilities of LEDs being malicious.
and collaborative Byzantine attacks are considered and twimally, the concluding remarks are presented in Section IX
different schemes are proposed for mitigation of theselkdta
In addition, the posterior CRLB is derived to characterize t
performance of the wireless sensor network. In [25], an RSS

based localization method is proposed in order to mitigate consider a VLP system withy;, LED transmitters at known
the impacts of Byzantine fault and non-line-of-sight (NJOS|5cations denoted byi. for i € {1,...,Np}. The LED

bias on the positioning accuracy. In [26], coding-theorgdih ransmitters communicate with a VLC receiver, which aims
m|t|ga_1t|on approa_ch schemes are discussed in the preséncg,Qstimate its unknown locatiahy, based on signals coming
malicious nodes in sensor networks. . from the LED transmitters. The VLP system is not completely

Although the approaches developed for RF localization o re and it is possible that some of the LED transmitters
the presence of malicious devices can be considered for VLB, he hijacked by malicious third parties. The VLC receiver
systems, specific analyses are required for VLP in the peeseqeg not know which LED transmitters are malicious but it is
of malicious LED transmitters due to distinct operatingrehag 4 re of such a possibility. Namely, it is assumed that th€ VL
acteristics and channel models of visible light system§. [4¢ceiver knows the probabilities that the LED transmittas
The maip contributions and novelty of this manuscript can Bg malicious. (Extensions to the case of unknown probiilit
summarized as follows: is provided in Section VII.)

« Position estimation problems in visible light systems in 1ha viC receiver gathers power measurements from the

the presence of malicious LED transmitters are formygp yransmitters for the purpose of localization, which are
lated for the first time in the literature. expressed as [34]

o A maximum likelihood (ML) estimator is derived based

Il. SYSTEM MODEL

on the knowledge of probabilities that LED transmitters Pr.i = R, Prihi(Ir) + n; (1)
can be malicious.
« In the presence of training measurements, decision rufes ¢ = 1,...,Ny. In (1), R, denotes the responsivity of

(namely, generalized likelihood ratio tests) are devaiop¢he photo detector (PD) at the VLC receivdty; is the
for detection of malicious LED transmitters, and based dransmit power of theth LED transmitter,h;(lg) represents
detection results, various ML based location estimatotise channel coefficient between the VLC receiver andithe
are derived. LED transmitter, and;; is zero-mean Gaussian noise with a
« CRLB expressions are derived and used as benchmavksiance ofr?, which is independent of; for all j # i [34]. It
for scenarios with and without training measurements.is assumed that a certain type of multiple access protogch s
« An ML estimator is obtained for the case that thas frequency-division or time-division multiple access]f3
probabilities of the LED transmitters being malicious arf87], is employed so that the signals coming from different
unknown. LED transmitters are processed separately and their power
In addition, simulation results are presented to invettiglae levels are measurement individually as in (1).
performance of the proposed algorithms and to compare theniet ; denote the probability that theh LED transmitter is
against each other and the CRLBs. malicious. Then, the transmit power parameter in (1) ismgive
In the conference version of this study [1], the estimators by
Section lll, Section IV-A, and Section IV-B were presentid.
this manuscript, we also provide the following extensiqfi: P Pyr,i,  with probability +;
An alternative detection approach is proposed in Sectie@ IV T = Py, with probability 1 — ;
by showing the existence of the uniformly most powerful
(UMP) test under certain condition&:) The CRLB expres- wherePy;; denotes the transmit power of tlig LED trans-
sions are derived under three different settings in Seadtion mitter if it is malicious (i.e., controlled by a third partgnd
(144) For the case of unknown probabilities for malicious LEDPy ; represents the transmit power of tite LED transmitter
transmitters, the ML estimator is obtained in Section Vi) if it is honest (i.e., not malicious). The parametéid; ;}\"
More detailed simulation results are performed to inveddg are known by the VLC receiver since transmit power levels in
the effects of various system parameters on localization pease of honest LED transmitters are either reported to theé VL
formance in Section VI. receiver or they are set beforehand for localization pwrpos
The rest of the manuscript is organized as follows. Then the other hand, when an LED transmitter is malicious,
system model is discussed in Section Il. In Section lll, aibh can change its transmit power level in order to degrade
ML estimator is derived based on the knowledge of the protie localization performance of the VLP system. Therefore,
abilities of LED transmitters being malicious. In Sectidh b {PM_,Z-}fV:L1 are modeled as unknown parameters. Also, it is
training procedure is proposed for the detection of malisio assumed that each LED transmitter can be malicious or honest
LEDs, and estimators that utilize the training measuremermdependently of the other LED transmitters.

)



Considering a line-of-sight scenario between each LED Ill. POSITION ESTIMATION IN THE PRESENCE OF

transmitter and the VLC receiver [4], [38], [39], the chahne MALICIOUS LED TRANSMITTERS
coefficients in (1) can be calculated as The aim of the VLC receiver is to estimate its loca-
(m + D AR [(Ir — U5)Tni]™ (1 —1r)Tnr tion Ig based on the power measurements in (1). Bgf
hi(lr) = 27rHl 7 Hmi+3 represent a vector consisting of the power measurements;
RTOT 3) ie, PR = [Pr1---Pan.]7. Also, let Py denote the

vector of unknown transmit powers in (2); that By =
wherem, is the Lambertian order for thith LED transmitter, [Pua - Puv, )T In practice, upper and lower limits can be
Ag is the area of the PD at the VLC receiver, and and jmposed on the elements &%, considering the specifications
n7. represent the orientation vectors of the VLC receiver anff the LEDs. Hence, it is assumed th&, € P, where
the ith LED transmitter, respectively [40]. It is assumed thap _ [Pain.1s Pmax.1] X -+ X [Pmin.Ny,, Pmax.n.]- Similarly,
the VLC receiver knows the parametefs, R,, nr, mi, ety € £, where £ denotes the possible locations of the
T, andnk, ando? [7], [39]. For example, the orientationy/| C receiver; e.g., all possible locations in a room or fagto
of the VLC receiver ©r) can be determined by a gyroscopg; js assumed that there exists no prior statistical infdioma
and the LED parametersi(;, I, andnr) can be sent to the gphout Py, or Ix.
receiver via visible light communications [7]. It is notétat  The Iocation of the VLC receiver can be estimated via the
the channel coefficiertt; (ir ) in (3) is a nonlinear function of \j| estimator [44], which is stated as
the parameter of interest, i.éy. N

Remark 1. As implied from the preceding system model, (lR,PM) = argmax p(Pr|lr,Pwn) 4)
malicious LED transmitters modify the transmit power lavel IREL,PyEP
to degrade the localization performance of the VLP systemm (4), p(Pxg | lr, Pn) denotes the likelihood function, which
Even though a malicious third party can control an LERan be calculated from (1) and (2) as follows:
transmitter, it is not practical for it to change other LED

. . . . No ) (PR,i*PM,iRp’li(lR))z
parameters such ak;, n%, and m; as their modification Pulln. Pu) — Yi o~ 207
: o ) p(Pr |, Pn) = e i
requires physical intervention to the system. For exanthke, i \ V2mo;

modification ofl%: or n’ requires a change in the location |~y PRA=PHLiRpRiGR))?
or the orientation of thgth LED transmitter. Similarly, the 4+ Yi T 207 ) (5)
Lambertian order is fixed for a given LED model. On the other V2mo;

hand, the transmit power levels of the LEDs are controllgg o, (4) and (5), it can be shown, after some manipulation
by the LED drivers (usually via a controller unit). Therefor {hat the ML estimator for the location of the VLC receiver
without any physical change to the system (such as changifig-omes

the locations and orientations of the LEDs or replacing the

N; _Prg s . 2
LEDs), a malicious third party can change the transmit power 7 _ . ﬁ i e*(PR”’ PM”;,?RMI”R))
levels by hacking the LED drivers to degrade the positioning R ieg 1 \ V270,
accuracy of the VLP system. a P s P o (L ))?
. . . 1 —n~, —URii H,i Bphi(R
Remark 2: The VLP system model considered in this work + i, 207 (6)
can be practical in the following cases: (i) While the traitsm V27o;

power level is known for a given LED transmitter under

normal operating conditions (denoted By ; in (2)), there can where Py i(Ir) in (6) is given by

occur situations in which an LED can fail and provide a dif- P g ri o po

ferent (and unknown) power level than the reported one [41]- - L

[43]. With a more general perspective of being “malicious”, Puillr) = q Prmax,i, if Rphi(ln) 2 Prax,i ()
which takes into account such failures of LED transmitters, %, otherwise

the system model in this section becomes valid. Namely,d)aﬁ?is noted that the maximizer of the likelihood function ) (

on some prior knowledge (such as the LED brand and type - . . . .
and previous operating experience), the probability diifei over Py; is obtained for any given value & as in (7), which

can be determined for each LED transmitter, and the mo e?ds to a significant reduction in computational compexit

in (2) can be applied. In this case, it is reasonable to mo Wﬁir::]r? I);gthu?rgggc',nzlnfg;?ilélﬁtf\?effathe '\ﬂ‘ 5?3?;?;1)””;?)’
that each LED transmitter can falil (i.e., become “malicidus 9 P (v,

independently of the others. (i) Consider a hijacking @tan space is reduced to a three-dimensional search in (6).

which the malicious third party gets the control of the whole

VLP network by accessing the VLP controller. In this case, th V. POSITION ESTIMATION IN THE PRESENCE OF

malicious third party can randomly select some of the LED ~MALICIOUS LED TRANSMITTERS AND TRAINING
transmitters and modify their transmit powers in order mot t MEASUREMENTS

be detected easily. Hence, the assumption of malicious LEDIn this section, we suppose that power measurements can be
transmitters in this section becomes valid in such a scerasi taken at known locations in a given environment beforehand
well. (iii) Please also see Sections VII and VIII for exteorss  for training purposes. Based on those measurements, iaform
of the system model. tion related to maliciousness of each LED transmitter can be



collected, which can then be used for the location estimatia well-suited approach for this problem due to the absence of

of the VLC receiver. prior distributions ofPy; ;'s [44]. The GLRT for the problem
The power measurements &, known locations, denoted in (11) can be stated as
(1) (Nv) .
byly’,...,l5 ", can be expressed as follows: O (457))2
P} = Ry PY) i (1)) + (®) - ﬁ c
L Pur,i €[ Pin, i, Pmax,i) - \V2mo; M;
fori=1,...,Npandj =1,..., Ny, WherePl({z is the power [ Finn e > 5 (12)
. ’ P . 2 < 't
measurement at Iocatid{g{)_ due to the signal emitted from Nv 1 _ (Péj,)prPH;hi (‘%“)) Hi
the sth LED transmitter,P%Z denotes the transmit power of H Nz e 207
the ith LED transmitter during the measurement at location J=1 J

1, andn? is the noise component during the reception afiherer; denotes the threshold, which can be chosen according

the signal coming from théth LED transmitter when the VLC to the tradeoff between the conditional probabilities aber

receiver is at Iocatiomg). The variance oﬁl@ is denoted by [44]. In particular, since the probability distribution der

gzj, andngj)’s are modeled as zero-mean Gaussian randd is completely known, the probability of deciding for

variables that are independent for athnd ;. M; when H; is true, i.e., the false alarm probability, can
It is assumed that an LED transmitter is either maliciouze fixed to a suitable value for setting the thresHol@he

or honest during the training and estimation stages; ite., €ffects of threshold selection on localization perforneaace

status does not change over the time interval of interest. investigated in Section VI.) The maximization problem i th

addition, two scenarios, named Scenario 1 and Scenariongmerator of (12) yields the following maximizer:

are considered related to the transmit powers of the makcio . ()4 Ny
LED transmitters. A Prnin, i if 9({PF({J7_§}3‘V:1) < Prin,g
. .. . — 3 A%
Scenario 1: Each malicious LED transmitter employs a M. = { Pmax.i, if g({PRi};21) = Paxi (13)
fixed unknown power level during all the measurements (i.e., g({Pf({fg}ngl), otherwise

during the training and estimation stages). Hence, pamevtvhere
Péj). in (8) is modeled in Scenario 1 as

32

N
o S POR(t) /o2,

. . AN
PO _ {PM_,Z-, W?th probab?I!ty%- ©) g({Plghz}j:Vl) B> (hn (lg)))Q/O"Q‘ (14)
o Py, with probability 1 — ~; J 7
_ Then, the GLRT in (12) can be simplified, after some manip-
for j e {1,..., Nv}. _ o _ulation, as follows:
Scenario 2:In this scenario, a malicious LED transmitter , ,
is modeled to change its transmit power frequently such that ~ 2, P}({_;hi (lg))
its transmit power can vary for each measurement. Tﬁ’éﬂ, RP(PM“' N PHZ) Z o2, (15)
in (8) is modeled as 7 =t N
(J 2( p2 D)2 — (hi(lg)))Q /\g
PU) _ Pkg_?i, with probability y; (10) +0.5R,,(PH71- — (Pu,i) )ZT = log(m)
T\ P, with probability 1 — ~; i=1 n M
for j € {1,..., Ny}. WhereIADM_,Z- is given by (1.3).. . .
Based on the power measurements in (8), the aim is to makd-et Di denote the decision of the GLRT in (15), i.e., the
a decision for each LED transmitter about its status (maisi decision for theith LED transmitter, wheré € {1,..., N}.

or honest), and to then perform localization based on a givéien the power measuremetts, are taken as in (1) related
power measurement vectdPr (see (1)) by utilizing those 0 @ VLC receiver at an unknown locatidi, the problem

decisions. The preceding two scenarios are investigatéiein Pecomes the estimation 6f based onPr and the decisions
following. Dy, ...,Dn,. In Scenario 1, two approaches are considered

as described in the following:
1) Algorithm 1-(a): In this algorithm, the decisions of the
GLRTs in (15) and the power estimates in (13) are assumed to

In Scenario 1, the following binary hypothesis-testingtpro pe perfect, and the probability distribution Bf; is determined
lem can be formulated for th&h LED transmitter based on accordingly. In particular leti and M denote the sets

A. Detection and Estimation in Scenario 1

the measurements in (8): of honest and malicious LED transmitters according to the
H, P}({az =R, Py, hi(lg)) + 771@7 j=1,...,Ny decision of the GLRTSs in (15); that is,
M; = P} =R, P hi (1)) + 07, j=1,....,Ny (11) H={ie{l,....NL}|D; = H;} (16)
where H; and M, denote the hypotheses that tfte LED M= {ie{l,...,NL}| ﬁi = M} (17)

transmitter is honest and malicious, respectively.
P y 1in particular, the threshold can be set via Monte-Carldstrfar a given

As PM-,?,S are unknown, the hy_pOtheSjmi iS. a composite false alarm probability by generating a sufficient numbereafeived power
hypothesis and the generalized likelihood ratio test (GLRT measurements according to thg hypothesis (see (11)).



Then, the likelihood function from this perspective can behere x; denotes the threshold. The maximization problem

expressed as in the numerator of (23) can be solved in closed form, which
| Cra-PuiRphiin)? leads to the following simplified form of the GLRT after some
Pr|lR) = e 207 manipulation:
p( R| R) 11 \/EO'Z'
i€EH Nv 1 . . o~
1 _ (Pr,i— Py, Rphi(r))> Z —5 (Rpplj_({{th (lg)) (Plg,)z — PHJ') (24)
X H e 207 (18) j=1 9ij
X V2mo; M.
’ 20 (1IDONW2(p2 _ (pU) > _
and the resulting ML estimator can be derived as +0.5R, (hi(1g")) (PH,i (Pyti) )> = log ()
R h 2 '
Ip = argmin Z (Pr.i — Phiftphi(le)) where
IreL 201'2 PG
ieH e 9 Pmin.,i 5 lf #(;(J)) S Pmin 7
N Z (Pr,i — Pm,iRphi(lr)) (19) o : PO
= 2012 PlS/f) - Pmax I if —2 > Pmax.i (25)
ieM a 7 Ryhi (1) '
B isasi . A
where Py ; is as in (13) fori € M. o (z§{>) , otherwise

2) Algorithm 1-(b): In this algorithm, the estimates in (13)
are still assumed to be perfect but possible errors in theLet D, denote the decision of the GLRT in (24) fore
decisions of the GLRTs in (15) are taken into consideratiom, ...,Np}. When the power measuremer®; are taken
Specifically, the probability that théh LED transmitter is as in (1) related to a VLC receiver at an unknown location
malicious is calculated as follows: Ir, the estimation of can be performed via the following
%P(ﬁi | M) algorithms in Scenario 2:
= = 1) Algorithm 2-(a): In this algorithm, the decisions of the
YP(Di| Mi) + (1 = 3:)P(Di] Hi)zo) GLRTs in (24) are assumed to be correct and the likelihood
functlon is stated as

Y =P(M;| D;) =

wherey; = P(M;) as defined before. In other words, (Prs — Prt.s Bpha (1))?
Algorithm 1-(b), the probabilities are updated accordmg t p(Pg |lr, Py) = H ! e 207

the decisions produced by the GLRTs in the training stage. hor V2ro;

Hence,v; and7; can be regarded, respectively, as the prior (Pre.i— Pat i Fohs ()2

and posterior probabilities that th&h LED is malicious. « H L - 202 (26)

(&
Accordingly, the ML estimator can be obtained as follows: e V27o;
/\ . (PR, —Pyi Rphi(1r))? ~ — . . .
In = arg max H e 257 where’H and M are as defined in (16) and (17), respectively,
€L \/27r0i for the GLRTs in (24). Then, the corresponding ML estimator
1%  (Prui—Pu,iRphi(Ip)? is derived as
+—=—c 21 (Pr,i — PuiRpha(l
V27o; ) @) Iy —arg min Z =, I;J? (tr))*
where?; is given by (20) andPy; is as in (13). It should be ieH ~ )
noted thatP(D; | M;) andP(D; |#;) can be calculated for + Z (Pr,i — Puillr) Byphi(lr)) (27)
the GLRT in (15) based on analytical approaches or simply 207

via Monte-Carlo trials. R e .
where Py ;(Ir) is as in (7) fori € M.
B. Detection and Estimation in Scenario 2 2) Algorithm 2-(b): In this algorithm, possible errors in the

In this scenario, the hypothesis-testing problem for ithe decisions of the GLRTs in (24) are considered by updating the
LED transmitter can be stated as probabilities that the LED transmitters can be maliciousnas

(20). Then, the ML estimator is designed as in Section Il by

Hi - P;({JZ =R, Pu; h‘(l(j)) + n(j)7 J=1,...,Ny replacingy;’s with 7;'s. Consequently, Algorithm 2-(b) can be
M; - pY) — p pli) hi 19y 4 (3)7 ; Ny (22 expressed as in (6) and (7) by replaciés in (6) with 7,
for e ML CORUSEE v (2 htained from (20).
Then, the GLRT is given by Remark 3: It is noted that the estimates obtained in the
(P9 - rp @ (:§0))” training stage for the power levels of the malicious LED
max H 1 - 207 = transmitters in (25) are not employed during the estimation
(PPN, \/27@,7 M; stage since the power levels of the malicious LED transrsitte
S = , — z k; (23) varyin Scenario 2 (i.e., they become different in the etiioma
1 - G D) M stage).
202 . . . . ) . )
H \/ﬂoz J J Remark 4: It is noted that Algorithm 1-(a) and Algorithm 2

(a) can be implemented without using the probabilities that



LED transmitters can be malicious. However, the knowled@ncePé{Z’s are independent for differents, we get
of these probabilities is required for Algorithm 1-(b) and

Algorithm 2-(b). In practice, the knowledge of the probites MV szhi(lg)) Ny RpPH.ih?(lg)) Nv hf(lg))
that the LED transmitters are malicious can be obtained iE T ~N Z =) ’ 2.
various ways: (i) For the case in which an LED transmittef=! Y j=1 Y =1 Y
becomes “malicious” due a failure in the LED chip (see (33)

Remark 2), the probability that an LED can fail can be learnetkcordingly, setting the false alarm probability to a givevel
based on some prior knowledge depending on the LED bragdeads to

and type or based on previous operating experience. (ii) For

the case in which an LED transmitter becomes malicious due i — ZJ_VV RpPuih} (1)
.. . ™ . T Jj=1 o2,
to hijacking, the probability of such an event can be estitat 1-Q iJ = (34)

based on the history of VLP networks operating in similar

ZNV h2(1y)
environments/conditions.

F— 2
Jj=1 o3

Then, solving fory; yields the following threshold:
C. Alternative Detection Approach for Scenario 1

In Section IV-A, the GLRT is obtained as in (15) and 7; =
its threshold is set according to the tradeoff between the
conditional probabilities of error, namelf(D; | M:) and ;00 the test in (31) with the threshold specified by (35) is

P(Di|H). As an alternative apProaC,h' the “”‘Torm'y MOS] |ikelihood ratio test (as it is equivalent to (29)) and does
powerful (UMP) test can be derived in Scenario 1 if ther

. ior inf ion th lici LED - Ehange with respect to the unknown paramefr;, it is
exists prior information that a malicious transmitt a UMP test for the problem in (11) [44]. Hence, when the

not increase the power_level with.re§pect to the.power Ie,ﬁl_elz?ssumption in (28) holds, the UMP test exists for Scenario 1

an hqngst LED transmitter; that is, if the following conaifti and can be obtained as described in this section (which can

is satisfied: be used instead of the GLRT in (15)). It should be noted that
Py < Pui, Vi (28) if the condition in (28) is reversed, i.e., By ; > Py, Vi, a

UMP test can again be derived based on a similar argument.

eHowever, it is more likely for a malicious third party to remhi

the transmit powers of the LED transmitters to degrade the

. . 2 1t H
Ny (PY)— Ry Pru.chi 1)) } positioning accuracy.

exXp {Zg-l 202,

2.
j=1 J

Ry X R, Pu,ih2(1Y)
Z l(R)Q 1(1—0&)—|—Z P H7021(R) (35)
j=1 i

Under this condition, the likelihood ratio test for th
hypothesis-testing problem in (11) can be expressed as

g Ml
_ —< = (29) V. CRLB DERIVATIONS
N (PO -RpPaihia@))” | #; . . . .
exp ijl ' 202, In this section, CRLB expressions are derived for three
- J . .
different cases to establish benchmarks for performance of

wheren; denotes the threshold. Taking the natural logarithfh€ Proposed algorithms in the absence and presence of

of both sides leads to training measurements. In the first case, it is assumed that
Ny D ) the transmit powers of all the LEDs, i.e{,Pr;} %, are
3 Ryhi(lg”) Pr i (Pai — P) (30) perfectly known. This bound applies to Scenario 1, in which
= o? the transmit power of each malicious LED transmitter is

fixed and can be estimated via training measurements. In the
second case, it is assumed that the transmit power of madicio
LED transmitters are unknown but their indices are known.
This bound corresponds to Scenario 2, in which there exist
Based on the condition in (28), the expression in (30) can baining measurements and malicious LED transmitters fyodi

2, th?(lg))(ﬂ?{,z‘ — Pp) M4

+ Z 20_2 E 1Og i
j=1 g Hi

simplified as their transmit powers for each measurement. In the third
Nv Péjihi(l%’) i case, the CRLB is derived for the scenario without training
Z T = i (31) measurements, which corresponds to the setting consiitered
j=1 * M Section Ill. Overall, via three different CRLB derivatignge
L , - A take into account various levels of knowledge related to the
where 7; is defined as 7 = (logn; —

Nv 5212000\ b2 ) 5 transmit powers of the malicious LED transmitters and the
2= Rphs (l_R ) (P — Pi)/ (207 ))/(RP(PMJ = BPui)). _indices of malicious LEDs.

For the test in (31), the false alarm probability can be astiv

analytically as follows. Under hypothesi$; in Scenario 1

(see (11)), the received powePl(DjZ follows a Gaussian A- CRLB for Scenario 1 (Knowledge of Transmit Powers)

distribution with meaanPH_ihi(lg)) and variancer;; i.e., In this case, the transmit powers of all the LEDs, i.e.,
) N

‘ . {Pr;};l4, are perfectly known. Therefore, the vector of

sz NN(RPPHyihi(lg)),crfj) (32) unknown parameters consists only of the PD location, i.e.,



lg. Thus, the likelihood function folg based on the mea-and the number of elements i is denoted byM . Then,
surements in (1) can be expressed as the vector of unknown parameters is defined as

Ny, (PR RPPT ihi(lp)?

p(Prllr) = (H V2o, ) e i 0= [lg Pg{]T (48)

(36) Where Py is the vector consisting of the transmit powers of
the malicious LEDs. Accordingly, the likelihood functioorf
© based on the measurements in (1) can be expressed as

Ny (PR RpPr, ihi(r)?
-2 202

Then, the Fisher information matrix (FIM) is given by

J(Ir) = E{(Vi log p(Pr|Ir)) (Vi log p(Prllr))"} (37)
and the CRLB is expressed as [44] p(Pr|®) = (H

. V2o
E{|[ix — ln|*} > trace{J(Ix) '} 2 CRLB  (38) " (49)
After some manipulation, the elements of the FIM in (37) can
be calculated from (36) as follows: and the FIM is given by
I i P, r) Ohi(lr) (39) J(©) = E{(Ve logp(Pr|©))(Ve logp(Pr|©))"} (50)
2 6lR BlR(q)

Based on the FIM, the bound on the estimation error for the
wherep,q € {1,2,3} anle(p) denotes thepth element of locationlyr of the VLC receiver can be specified as

lr. In addition, based on (3), the partial derivativespflr ) R )

with respect tdlg (p) can be expressed as E{|[lr — Ir||"} > trace{J(©)151.5} £ CRLB;, (51)

Ohi(lr) _ (mi+1)Ar 91,(Ir)g5 (lR)‘ +g1(lr)g5,(Ir) wherely, denotes any unbiased estimatorlgf Likewise, the
Ilr(p) 2m g5(lr) bound on the estimation error for the transmit powers of the
(40) malicious LEDs can be stated as

t(Ir)gh(Ir)gs (1
_ 9i(r)ga gl R)> E{||Py — Pu} > trace{J(©);}), 15101, 15} = CRLBp,
g5 (Ir) (52)
where ~ . .

; i m where Py, represents any unbiased estimatorfef;. After
Q}UR) = [GR —I3)" ny] (41)  some manipulation, the elements of the FIM in (50) can be
gh(lr) = (1% — lr) ' nr (42) calculated from (49) as

i o _gi |mat3
gS(IR) = |(|;R (l l’)[‘” (43) [ %L: 1 8PT1 lR) 3PT1 (lR) (53)
i g1r i iyl g
1p(lr) = m =m; [(lr — I7)" ny] n7(p) < 07 90(q)

(44) wherep,q € {1,..., My + 3} and ©(p) denotes thepth
; 094 (I element of®. As in Section V-A, forp € {1,2,3
ho(tn) = T — ) (45) pe{l 23}
o gi(in) et OPrahille) _ p Ghulln) (54
g5, (Ir) = 8l;(p) (m; +3) HlR—l I 00(p) " Olr(p)
x [(tr(p) — U5 (p))] (46) where2: s ( ) is as defined in (40), and fore {4,..., My +
Thus, the CRLB can be obtained from (38)—(46), yleldlné}
a lower bound on mean-squared errors (MSESs) of unbiased . _
. . aPT,l z( R) o aPT,l
estimators forlg when the transmit powers of the LEDs —en) hi(lR)iap »=3 (55)
are known. Since the malicious LEDs employ fixed transmit P MP
powers that can be learned via training measurementswhere
Scenario 1, the CRLB expression in this section applies to
Scenario 1; hence, it is referred to as “CRLB - Scen. 1” in OPr; _J1, ificeMandi=p-3 (56)
Section VI. OPy(p—3) 0, otherwise

B. CRLB for Scenario 2 (Knowledge of Indices of Malicious The CRLB expression specified by (51) and (54)-(56)
LEDs) provides a lower bound on position estimation in Scenario 2
In this case, it is assumed that the transmit powers of tRCe the indices of malicious LED transmitters can be ledrn
malicious LEDs are unknown but their indices are known. THda training measurements in that scenario. (However, the
set of indices of the malicious LEDs is expressed as transmit powers of malicious LEDs cannot be learned since
they change for each measurement in Scenario 2.) Therefore,

M={ie{l,...,Np}|ith LED is malicioug (47) it is referred to as “CRLB - Scen. 2" in Section VI.



C. CRLB without Training Measurements VI. SIMULATION RESULTS

In this case, neither the transmit powers nor the indices!n this section, simulations are conducted to evaluate

of the malicious LEDs are known. Therefore, the likelihoof® Performance of the proposed approaches. A room
function in (5) is used to derive the CRLB. The naturalith dimensionsi x 4 > 3 meters (width, depth and height,
logarithm of (5) can be expressed as respectively) is considered. The number of LED transnstigr

taken asVi, = 9 and they are placed at the following locations:

N1, {(-1,1,3),(0,1,3),(1,1,3),(-1,0,3),(0,0,3), (1,0, 3),
logp(PRr|©®) = Zlog (viEym + (1 =) En) (57) (-1,-1,3),(0,-1,3),(1,-1,3)} (all in meters) such that
i=1 they cover the room in a symmetric manner, whéye0, 0)

corresponds to the center of the room floor. The orientation

where® is as defined in (48), and vectors,ni’s, are taken ag0,0,—1]7 Vi such that all the

| PR PuiRphitn)? LEDs face downwards. Alsop;’s are set to 1vi. Although
Ey2—c¢ 207 (58) the derivations in Section Il and Section IV are generic for
V2o, any three-dimensional setup, the VLC receiver is consitlere
o 1 - UmasPaafphidn)® to be at a fixed height of.85 meters in the simulations
En = \/%Uie ! (59) (i.e., a two-dimensional localization scenario is conside

[46]). Moreover, the orientation of the receiver is spedifées
Based on (57), the FIM is constructed as ngr = [0,0,1]7, i.e., it faces upwards, the area of the PD is
taken asAr = 1cm?, and the responsivity of the PD is set
J(©) = E{(Ve logp(Pr|®))(Ve logp(Pr|©))"} (60) to R, = 1. Moreover, the noise variances are assumed to be
the same, that is;? = o2 fori=1,..., NL.
The partial derivatives in (60) can be expressed as follows: Since the localization problem can be ill-posed when the
number of honest LED transmitters is bel@wthe probabil-

w ities that the LED transmitters can be malicious are set as

Olr(p) follows:
_ i YiEm (PR _QPM,Z'Rphi(lR))PM,iRp Ohi(lr) ~Jo, ifi=1,6,7
i=1 oip(Pr|©) Ilr(p) T {7, otherwise (65)
n %L: (1-— %‘)EH(PR,iQ— Pu,iRphi(lr)) Pr,iRp Ohi(lr) Namely, in the simulations, it is guaranteed that theretexis
p oip(Pr|©) Ir(p) at least3 honest LED transmitters for any given scenario. It

(61) should be noted that the indices of thelséalways honest”
Ny LED transmitters is not known by the VLC receiver and that
Ologp(Pr|©) — Z il (Prii — Paiphi(IR)) Bphi(IR) - the other LED transmitters can also be honest with prokgbili
P (p) — o;p(Pr|©) (1 —~) independently of each other.
(62) To investigate the performance of the proposed ML es-
timator in (6) (which is designed for the scenario without
The partial derivatives% are the same as in (40). Astraining measurements), the location of the VLC receiver is
the expectation in (60) is hard to evaluate analyticallynéo set tolg = [0.5 0.5 0.85]7 meters and various values of
Carlo integration methods can be used to compute the CRBBe considered. For eaeh 10* different sets of honest and
in a similar fashion to that in [45]. Namely, the FIM in (60)malicious LED realizations are obtained according to (65),

can be approximated as follows: and the powers of the malicious LED transmittelg; ;'s, are
generated as uniform random variables in the[s&V, 3 W],
Nuc . .
1 i) ) o+ Whereas the honest LED transmit power is set5% . In
J(©)~ Natc Z (Ve logp(Py'|®)) (Ve logp(Pr’|©)) addition, Py ; is set tol W and Pyyax,; is set tol0 W, which
=1 63) are the estimation parameters used in (7), (13), and (25).

In Fig. 1, the root-mean squared error (RMSE) performance

where Ny is the number of Monte-Carlo trials andof the proposed ML esti_mator in (6) is plotted versu.ffor
P is the realization of Py in the ith trial. In (63), 7 = 10~'*. For comparison purposes, we also consider the

Vo logp(Pg)|®) is evaluated based on the expressions fpsein which the VLC receiver is unaware of the secuntyassu_
. (D) . and assumes that all the LED transmitters are honest. In this
(61) and (62) for the given realizatioRy;’. Hence, a semi-

. X . . case, the VLC receiver employs the model in (1) with; =
analytic evaluation approach is employed. Finally, the BRLPHi fori=1,..., Ny, which results in the following ML es-
can be expressed as ’ -~

timator: Iz = argmin Y% (Pr.i — P Rphi(Ir))%/(202).

E{|[lr — lRHQ} > trace{J(©)1.3,.5} = CRLB;, (64) This ML estimator is labeled as “ML — Unaware” in Fig. 1.
As another way of comparison, the ML estimator in the
This bound is referred to as “CRLB - No Training” in Sectiorpresence of perfect knowledge of malicious LED transnstter
VL. is considered, which is given by (27) whehand M are equal
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Fig. 1: RMSE versusy for o= = 107" Fig. 3: RMSE versus0log;,(1/02) for Scenario 14 = 0.5).

W et CRLB and the RMSE of the “ML — Perfect” as the noise
oML praesed variance decreases. However, the RMSE of “ML — Unaware”
= estimator does not improve significantly as the noise vagan
10%¢ NI gets lower as it assumes that all the LED transmitters are
honest. In addition, it is noticed that for large values oiseo
variances, the RMSEs of all the estimators are below the
CRLBs. This is due to the fact that the possible locations
of the VLC receiver in the room are limited tbx 4 meters
in two dimensions, and the ML estimators perform the search
o\ ¢ over this space. On the other hand, the CRLB derivations do
102 N R R R R R e not assume any prior information about the location of the
80 8 90 95 f&gglo(lfﬁﬁ)(ﬁ?) 115 120 125 130 yLC receiver; hence, can lead to larger values than RMSEs
o , in very noisy cases.

Fig. 2: RMSE versud0log,o(1/0%) for y = 0.5. To evaluate the performance of the algorithms in Section
IV-A (Scenario 1), a similar setup is used. The algorithms in
this section require a training phase. For this purpdée,is

to the correct sets of honest and malicious LED transmitteggt to one and the training location is chosen as the center
respectively. This ML estimator is labeled as “ML — Perfectdf the room in two dimensions at a height 6f85 meter,
in Fig. 1. The results in the figure show that the proposée., (0,0,0.85) meters. Again,10* different sets of honest
estimator in (6) provides performance improvements (esp@d malicious LED realizations are used to obtain average
cially when~ is not small) over the estimator that assumgserformance results. The same LED transmitter powers as in
that all the LED transmitters are honest. Also, the estimatthe previous part are used in both the training and estimatio
that perfectly knows which LED transmitters are maliciouphases since, in Scenario 1, transmit powers of malicious
provides a performance lower bound, as expected. In additi@ ED transmitters do not change over time. In addition, to
the estimators have higher RMSE valuesydacreases due to set the values of; for the decision rule in (15), a Neyman-
the increased level of uncertainty about transmission pawePearson type approach is followed. Namely, for each noise
In Fig. 1, we also present the CRLB in the absence of trainingriances?, 7;’s are determined so as to set the false alarm
measurements (“CRLB - No Training”) and the CRLB wheprobability of each decision rule to a fixed value f for
the indices of malicious LED transmitters are known (“CRLB each LED transmitter. In the simulations, two differentuesd
Scen. 2”). The CRLB with no training measurements provide$ Pr are considered, namel$r = 0.001 and Pr = 0.5.
a lower bound on the performance of the proposed MBased on the obtained thresholds, the conditional error and
estimator. On the other hand, the CRLB for Scenario 2 presenbrrect decision probabilities, i.&2(D; | M;) andP(D; | H;),
a performance limit for “ML — Perfect”, which is also desighe are calculated using0® Monte-Carlo trials and employed in
under the assumption of known indices of malicious LEIgorithm 1-(b). To provide comparisons, the “ML — Perfect”
transmitters. It is noted that the CRLB in the absence ebtimator is also considered, which knows not only the mali-
training measurements is a tight limit for the RMSE of theious LED transmitters but also their transmit powers irs thi
proposed ML estimator only when is close to zero or one. scenario (Scenario 1). Fig. 3 shows the RMSE performance of
In Fig. 2, the RMSE performance of the estimators is plottetie algorithms versus the noise levél) log,,(1/0?), where
versus the noise level0log,,(1/0?). It is observed that the v = 0.5. It is observed that, foPr = 0.001, Algorithm

% CRB-Scen.2 1 RMSE of the proposed ML estimator in (6) gets close to the
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1-(a) has the same performance as the “ML — Unaware’ 10"
estimator up to around00dB and then gets close to “ML
— Perfect” at low noise variances. FBr = 0.5, Algorithm 1-

(a) performs worse than “ML — Unaware” up to arouri) dB 029
but afterwards it achieves lower RMSEs than Algorithm 1-(a) 100F

with Pr = 0.001 up to aroundl13 dB. However, for higher £

values of101log,,(1/02), Algorithm 1-(a) with Pr = 0.001 w

outperforms Algorithm 1-(a) wittPr = 0.5. Moreover, it is z ——CRLB-Scen.2 1
noted from Fig. 3 that the performance of Algorithm 1-(b) 10 e ML Unaware

is not affected significantly by the false alarm probability O Algorithm 2-(@) w/ P = 0.001

(equivalently, the thresholds). This is because, in Alioni 1- - 72:22:22 zim?zg’l 8,
(b), the probability that an LED transmitter is malicious,is _ + _ Algoritm 2_(b)W,P:=o:5 e
updated based on the observations (see (20)). Thus, Algorit 102 r—  r— — . | | |
1-(b) is robust to changes in the threshold valiess opposed 80 85 90 95 100 105 110 115 120 125 130

. - . . 10logo(1/0?)(dB
to Algorithm 1-(a), which is a practical advantage. (/o)

For performance evaluation of the algorithms in Section
IV-B (Scenario 2),10* different sets of honest and malicious
LED realizations are employed with @ value of 0.5. As
opposed to Scenario 1, in this scenario, the transmit powe
of malicious LEDs are different at each measurement both i
the training and estimation phases. AgaMy is chosen as
one by considering the same training point as in the previot
case. The training is performed according to the decisite ru
in (24). To determine the, values, the same approach as in
Scenario 1 is taken by settingr = 0.001 and P = 0.5.
Then, based on the; values, the conditional probabilities

Fig. 4: RMSE versud0log;,(1/02) for Scenario 24 = 0.5).

~ ~ —4A— CRLB - Scen. 1 —A—— CRLB - Scen. 1
P(D; | M;) andP(D; | H;) are calculated using0> Monte- T Mpetea et
Carlo trials and employed in Algorithm 2-(b). The results o ﬁ:;a;g:g:ggi %2;3;;:;x;;:gggi
in Fig. 4 reveal that forPr = 0.001, the performance of — 7 — A L@ P, =08 — 7 — Ag 1@ WP, =08
Algorithm 2-(a) is the same as “ML — Unaware” up 160 dB 102 = - ;:g 1’“’”"”:‘1:0'5 102l = ;:Q' ”'”W'P‘l:“
and then converges to “ML — Perfect” at low noise variances Distance m(soom Center Distance co(g)oom Center

However, forPr = 0.5, Algorithm 2-(a) performs closely
to “ML — Perfect’ at high noise variances but achieves Ejg. 5: For Scenario 1, RMSE versus distan_ce of VLC receimaszlogation_
L . . . . ,0,0.85) m, wherey = 0.5 and VLC receiver moves on the straight line
significantly inferior performance at low noise variancls. towards(1,1,0.85)m. (a)o? = 1011, (b) 02 = 10~ 2.
addition, it is observed that the performance of Algorithm 2
(b) is not affected significantly by the false alarm rRieas in
Scenario 1. Thus, Algorithm 2-(b) is robust to changes:.jn than Algorithm 2-(a) withPr = 0.001. On the contrary, in
values. Based on Fig. 3 and Fig. 4, it can be noted that if thég. 6-(b), Algorithm 2-(a) withPr = 0.5 performs poorly
false alarm probability can be adapted according to theenois the VLC receiver moves away from the center, whereas
variance, the performance of Algorithms 1-(a) and Algarith Algorithm 2-(a) with Pr = 0.001 performs closely to the
2-(a) can be enhanced. Namely, lower (higher) false ala®@RLB. Again, Algorithm 1-(b) achieves very similar RMSEs
rates can be chosen for lower (higher) noise variances.  for both false alarm probabilities and the RMSE values of
To observe the effects of the VLC receiver position othe estimators and the CRLB tend to increase as the VLC
the accuracy, the VLC receiver is placéd, 0,0.85) meters receiver moves away from the center of the room. These sesult
and moved along the straight line towards the locatighustrate the robustness of Algorithm 1-(b) and Algoritfam
(1,1,0.85) meters, wherey is set to0.5. The simulations (b) against the threshold values used in the detection kiep.
are conducted for two different values of the noise variancaddition, Algorithm 1-(a) and Algorithm 2-(a) are obserted
namely,c? = 10~'' ando? = 10~'2. In Fig. 5-(a), Algorithm be sensitive to the threshold values, and it is concludet tha
1-(a) achieves lower RMSEs witlPr = 0.5 than with lower false alarm probabilities should be used for setthregrt
Pr = 0.001. Conversely, in Fig. 5-(b), Algorithm 1-(a) with thresholds as the noise level decreases; i.e., the SNRagese
Pr = 0.001 outperforms that withPr = 0.5. On the other ~ Moreover, the UMP test proposed in Section IV-C for
hand, the RMSE performances of Algorithm 1-(b) are ver$cenario 1 can be investigated as thg ; values are lower
similar at both false alarm probabilities due to its proligbi than or equal taPy ;, Vi for the considered setting (namely,
update operation, as discussed previously. In additiofs it P, € [1W, 3W] and Py; = 5W); hence, the condition
observed that the RMSEs of the estimators get larger as thg(28) is satisfied. The false alarm probability is set0té
VLC receiver moves away from the center. This simulation is the simulations to highlight the advantage of employing
repeated for Scenario 2 and the results are presented i6.Fighe UMP test. It can be seen from Fig. 7 that the UMP
In Fig. 6-(a), Algorithm 2-(a) withPr = 0.5 performs better test specified by (31) and (35) achieves higher detection
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Fig. 6: For Scenario 2, RMSE versus distance of VLC receiv@nflocation
(0,0,0.85) m, wherey = 0.5 and VLC receiver moves on the straight line
towards(1, 1,0.85) m. (@) 02 = 10~ 11, (b) 02 = 10~ 12,

Fig. 8: RMSE versud0log;(1/02) for Scenario 14 = 0.5).

at a height 0f0.85 meter across the room for eadh;.? It is
observed from Fig. 9 that for the false alarm rate0di01,
Algorithm 1-(a) is outperformed by Algorithm 1-(b) whéeYy,

is small; however, it achieves lower RMSEs than Algorithm 1-
(b) and converges to the performance of the ML estimator
that perfectly knows the transmit powers of the malicious
LEDs (labeled as “ML — Perfect”) a&y; increases. Similarly,
when the false alarm rate &5, Algorithm 1-(b) has better
(worse) positioning accuracy than Algorithm 1-(a) for simal
(large) values ofVy. In general, it is noted that from Fig. 9
that after the value ofVy, = 8, there are not any significant
improvements in the performance of the algorithms. A simila
simulation is also performed for Scenario 2 in Sec. IV-B with
the same parameters. It can be seen from Fig. 10 that for
the false alarm rate df.001, Algorithm 2-(a) is outperformed

04 I S S NN N SN H B
80 8 90 95 100 105 110 115 120 125 130 by Algorithm 2-(b) whenNy is small; however, it achieves

0101/ (AR) lower RMSEs than Algorithm 2-(b) a&y increases. On the

other hand, when the false alarm rate(i§, Algorithm 2-
(b) outperforms Algorithm 2-(a) for all values a¥y, and
its performance is not affected significantly by the numbfer o
training locations. Similar to Scenario 1, the performancgé

probabilities than the GLRT in (15) for the large values ke aigorithms do not have any significant improvements afte
the noise variances while keeping the false alarm prottgbily, o | 51ue of Ny = 6 in Scenario 2.

the same. Thus, the UMP test can lead to improved RMSE

performance at high noise levels. In Fig. 8, it is observed /|| ExTENSION TO THECASE OF UNKNOWN 7S
that Algorithm 1-(a) that utilizes the UMP test, labeled as
“Algorithm 1-(a), UMP”, outperforms Algorithm 1-(a), whic
employs the GLRT test. Hence, enhanced localization acgur
can be achieved via the UMP test when the condition
(28) is satisfied. However, Algorithm 1-(b) with the UMP
test, labeled as “Algorithm 1-(b), UMP”, does not provide 0, if ith LED is honest
significant performance improvements since Algorithm )1-(b = 1, if ith LED is malicious
is robust to the changes in the values.

Furthermore, we conduct simulations to investigate t
effects of the number of training locations, i.&%, used in the
algprithm; in Sec. IV on the positioning accuracy. The noise Pr;=(1—2)Pu;+ 2Pu,; (67)
variance is fixed a30log;,(1/0?) = 110dB to illustrate the )
effects of increasing the number of training locations. The N this case, the unknown parameters &ge Py, and z,
value of Ny is changed froml to 16 while keeping the where z denotes the vector of; values fori = 1,..., N.
rest _Of the parameters th_e Same'_ For the_ ChOICe_ of tre_unmgObtaining the optimum arrangement of training locations ba consid-
locations, we employ a uniform grid array in two dimension&ed as an important theoretical problem, which is out opeauf this work.

Fig. 7: Detection and false alarm probabilities of the GLRId &JMP tests
versus10logo(1/02) for Pr = 0.5.

In this section, we consider the case in which the probabili-
Esies of the LED transmitters being malicious, i@, ..., vy,

e unknown. Let; denote whether théh LED transmitter
IS malicious or not; that is,

(66)

H&hich is a Bernoulli random variable with parameter Then,
using the definition in (2)Pr; can be expressed as
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Fig. 9: RMSE versusVy in Scenario 1 forl0log;,(1/02) = 110 dB.
is derived:
10°

8885 -9 § 5 5 5 55 55 55— (lR’ PM’E) = arg ljnapr(_l-_’R“l:{7 _IJM7 z) (71)

lr,Pwm,2z

(Pri — Pu,iRphi(lr))?

V-~ — 4
~v- = arg min E 5

VNV Y-y — a;
t b — 4 lr.z 1€Hz v
€ v Pri — Pai(lr)Rphi(Ir))?
: Y (PR, M,z(;{) phi(lr)) (72)
= ) a;
4 —4A—— CRLB - Scen. 2 €M,

—>— ML - Perfect

N —&— ML - Unaware —~ . .
107 r —o— Algorithm 2-(a) wi P_ = 0.001 ] where Py ;(Ir) for any z is given by
= Algorithm 2-(b) w/ PF =0.001

— = — Algorithm 2-(a) WIPF:O.S P f PR,'L < P
— -+ Algorithm 2-(b) W/ P_= 0.5 min,is 1 Bphi(ln) = 1min,i
~ . Pr.i
A S S S P (1 X P . if i >P . 73
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 YRICY) m;"’“ Rphi(lr) = & maxzt (73)
Ny R fa
Rohi () otherwise

Fig. 10: RMSE versusVy in Scenario 2 forl0log,,(1/0?) = 110dB.

It should be noted that there a@V: possible values of
z1,...,2nN,,. Hence, the ML estimator in (72) has high com-
putational complexity for large values ofy..

To evaluate the performance of the proposed ML estimator
for the case of unknowt;’s, simulations are conducted for the
setting in Section VI considering no training measurements

Thus, the likelihood function ofPg given these parameters
can be stated as

(Palix Pr.2) = |] 1 ef(PR”"PH;UI;P’””R)F The results in Fig. 11 illustrate that without the knowledge
PLERER, M, i V2ro; ~, the positioning accuracy can degrade S|g.n|f|can.tly for all
= 2 values ofy compared to the proposed ML estimator in (6) for
_ (PR —Pm,iRphi(R))
1 207 the case of knowny.
x I ——=—- 1
icn, V27O
(68)

VIIl. EXTENSION TO CASES WITHALL OR NONE OF
. LEDs BEING MALICIOUS
where setdd, and M, are defined as
In this part, we extend the results in Sections Ill and IV
H,={ic{l,...,Np}|z =0} (69) to cover a different case. Namely, it is assumed that when a
M,={ie{l,....No} |z =1} (70) hijacking event occurs, the malicious third party acce$t_3e_s
VLP controller and makes all the LED transmitters malicious
(i.e., modifies all the power levels). Let the probability of
Then, for the estimation without a training phase (as iniact such a hijacking event be denoted fyThen, the probability
1) in the case of unknowny;’s, the following ML estimator distribution of the received powers from the LED transmite
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in (1) for given values of the unknown position and maliciousn (1) with Py ; = Py, for all i € {1, ..., Np}, which leads
power levels can be expressed as follows (cf. (5)): to the “ML — Unaware” estimator in Section VI. Hence, the
main ideas in Sections Ill and IV can also be employed for

L iyt th in which a malicious third party aims to modify th
p(Pr |lr, Py) = v e 257 e case in which a malicious third party aims to modi e
E V2mo; power levels of all the LED transmitters.
NL 1 7(PR,i’PH,iR:Dh1Z(LR,))2 IX. C R
2
+(1- 7)l‘I e 207 (74) | 3 ONCL-L-JDING . EM-ARKS
=1 V2mo; In this manuscript, position estimation problems have been
Then, the ML estimator for the location of the VLC receiveformulated for VLP systems in the presence of malicious LED
is obtained as transmitters for the first time in the literature. An ML eséitar
N N 2 has been derived based on the knowledge of probabilitiés tha
L 1 _ (Pr,i —PM,i AR)Rphi(R)) K L. . .
207 LED transmitters can be malicious. In addition, in the pnese

b aiiglaaxvg \/ﬂoie of training measurements, GLRTs have been employed for
Moo (Pros — Pet.i Fiphs (p)? detection of malicious LED transmitters, and based on the
+(1—7) H - e 202 decisions of the GLRTSs, various ML based location estingator
=1 V2ro; have been developed. Moreover, CRLB expressions have been
derived and used as benchmarks to evaluate the performance
of the proposed estimators. Finally, an ML estimator has
been proposed for the case that the probabilities of the LED
transmitters being malicious are unknown.
As possible directions for future work, uncertainties ie th
> - pé{iz =R, Pui h; (lg)) + 771(-7')’ knowledge of the probabilities that the LED transmitters ar
_ (j’) - @) 1 () ) malicious (i.e.,v;'s) can b_e considered. Also, more ger_weral
M PR = Ry By hi (lR ) +n (75)  channel models that take into account reflected and/orstifu
for j = 1,..., Ny andi = 1,... Ny, under each hypothesis,components (in addition to the line-of-sight component) ba
WherePlg)i becomesPy;; in Scenario 1 (cf., theVy, separate employed. In addition, information theoretic learningteria

problems in (11)). Then, the GLRT can be formulated as Such as MEE and MCC can be used for VLP systems
in the presence of malicious LED transmitters to develop

WhereﬁMJ(lR) is as in (7). In addition, if there exist training
measurements, then a single hypothesis-testing problerneca
formulated for Scenario 2 (instead of thg, separate problems
in (22)) as follows:

Ni, Ny 1 _ (PS?*RpPéféﬂhri (‘%”))2 new approaches. Furthermore, possible ways of dealing with
max H H e 275 the presence of malicious LED transmitters, such as power
(P i1y V204 4 (76) allocation, can be developed.

Ny Ny (Prgp,RppH ihi(@)f by " For the analyses in this stu_dy, the noise compc_ments_ (i.e.,
H H 1 o 207 n; in (1)) are modeled to be independent of received signal
pal sl V2rao; powers, which is a valid assumption when shot noise is

. o ) _negligible compared to thermal noise. (In the simulaticiuge
which can be simplified into the following rule for Scenario 2 gqtion VI, the shot noise is negligible.) When the reegiv

(cf. (24)): power levels are high, shot noise can be important and the
N Mvoog ) G ¢ 506) variances of the Gaussian noise components in (1) can depend
ZZ 0__2_<RpPR',ihi(lfg )(PM]l_PHz) on the received signal powers [47], [48]. In this case, the
i=1j=1 "%J position estimation approaches in this paper can be extende

) (N2 [ 52 S\ 2 M as follows: Let the variance of the zero-mean Gaussian noise
+0.5R;(hi(ly)) (PH,z' — (P) )) log(~) componenty; in (1) be denoted bys?, which is expressed
o as the sum of the variances of the thermal and shot noise
where Pﬁ,)i is as in (25) andx is the threshold parameter.components [48]. That is,
Also, in Scenario 1P1\(/'[7,)i is set toPy;, and (76) is simplified 52 = 02 4+ ¢R,Pr ihi(Ir) (77)
as (cf. (15))

LAV

wherea? is the variance of the thermal noise componeris;

. R (Pu:— P il P}({{zhi (lg)) a constant for the variance of the shot noise component [47],
_z; p(Pai — Pai) 2; - o2 and the other terms are as defined in Section Il. Based on
i= J= ’

N ( PRI this model, the ML estimator in Section IIl can be updated as

S 2\ = (Rai(l follows (cf. (4) and (5)):

+ 0'5R127(P}21,i — (PM,i) ) Z 7( G; )) ) = log(k) (cf. (4) )
j=1 J

’ft _(PR,i*PM,iRp’w(lR))z
P (i P ) = argmax ﬁ yie 2eitepPaihiln)
i i R, M| =
where Py ; is as in (13) and (14). inel,PyeP it \ \/21(02 + SRy Parihi(Ir))

In this case, when the decision is hypothesis no local-
ization is performed since all the power levels are claskifie
as incorrect (manipulated). This can be regarded asutage =
event. When the decision 13, localization is performed based V2m(0F + <Ry P ihi(l))

_ (Pr,i—Pu,iRphi(R))>
(1 _ %_)e 2(02+sRp Py ;hi(lR))

(78)




Since eachPy;; can be optimized separately for a givag
it is also possible to determine the optimal valuesif; in
terms oflg (called ﬁM,i(lR)) and obtain a simplified version
of the ML estimator (similarly to (6)). For the position esfi- [19]
tion approaches in the presence of training measurements in
Section IV, extensions based on the updated variance farmgh;
in (77) can be performed in a straightforward manner. For

example, the GLRT in (12) can be updated by replaeiﬁl.gs
in the numerator bwzj + <R,,PM7ihi(l§§)) and those in the

denominator byr? ; + GR, P ihi(19)).

(18]
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