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Fundamental Limits on RSS Based Range Estimation in VisibleLight
Positioning Systems

Erdal Gonendik and Sinan Gezici

Abstract— In this study, theoretical limits are obtained for
the accuracy of range (distance) estimation in visible light
positioning (VLP) systems. In particular, the Ziv-Zakai bound
(ZZB) and the weighted Cramér-Rao bound (WCRB) are derived
for range estimation based on received signal strength (RSS)
measurements. Also, the maximuma posteriori probability (MAP)
and the minimum mean-squared error (MMSE) estimators are
obtained for RSS based range estimation, and compared against
the theoretical limits.

Keywords: Visible light, range estimation, Ziv-Zakai bound,
Cramér-Rao bound.

I. I NTRODUCTION

Indoor positioning via light emitting diodes (LEDs) has
recently gathered significant attention [1]. Since LEDs already
have widespread use for illumination purposes, their utiliza-
tion for visible light communication (VLC) and visible light
positioning (VLP) can facilitate new applications and services
for indoor environments [2], [3]. VLP systems can provide
accurate position information since line-of-sight (LOS) is com-
monly present and much stronger than multipath components
in visible light channels. In addition, VLP systems do not
suffer from interference as in RF systems, and they can also
be employed in environments in which RF emission may be
forbidden, e.g ., planes, hospitals, and mines [4].

One of the common approaches in VLP systems is to
estimate the position of a VLC receiver based on received
signal strength (RSS) measurements between the VLC receiver
and a number of LED transmitters [4]–[6]. In [5], a complete
VLP system, which achieves sub-meter accuracy via RSS
based range estimation and trilateration, is implemented,and
comparisons with other positioning systems are presented.In
[4], Kalman and particle filtering are used for RSS based
position tracking in VLP systems. The study in [6] employs
a single LED transmitter and multiple optical receivers for
position estimation, where the position of the receiver unit is
determined based on RSS measurements at multiple receivers.

Although various studies have been performed on VLP
systems, theoretical limits on estimation accuracy have been
investigated only in few studies. In [7] and [8], the Cramér-
Rao bound (CRB) is derived for RSS based and time-of-
arrival based range estimation, respectively, and effectsof
LED parameters and system configuration are studied. The
CRB provides a lower limit on mean-squared errors (MSEs) of
unbiased estimators; however, it is not a tight bound in general
for low signal-to-noise ratios (SNRs) [9]. In addition, in the
presence of prior information about the unknown parameter,
which is commonly available in indoor environments, the
theoretical limits should also consider the prior knowledge in
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Fig. 1. Visible light positioning (VLP) system.

order to provide a valid bound. Based on these motivations,
the Ziv-Zakai bound (ZZB) and the weighted CRB (WCRB)
are derived in this study for RSS based range estimation in
VLP systems. The ZZB is known for providing tight limits
even in low SNR scenarios and the WCRB is an extended
version of the CRB that takes prior information into account
[9]. Based on a generic formulation with multiple power
measurements, the ZZB and the WCRB on range estimation
are derived for VLP systems for the first time in the literature.
In addition, the maximuma posteriori probability (MAP) and
the minimum MSE (MMSE) estimators are obtained for range
estimation, and their comparisons with the theoretical bounds
are provided.

II. SYSTEM MODEL

Consider a VLC system in which LED transmitters are
located on the ceiling of a room, and a VLC receiver is located
on an object on the floor, as shown in Fig. 1. By utilizing the
signals received from the LED transmitters (which have known
positions), the VLC receiver estimates its distance (range) to
each LED transmitter via RSS measurements and determines
its position based on range estimates [5]. The aim in this study
is to derive the fundamental limits, namely, the ZZB and the
WCRB, on RSS based range estimation in VLP systems.

An LED transmitter at locationlt ∈ R
3 and a VLC receiver

at location lr ∈ R
3 are considered. The distance between

the LED transmitter and the VLC receiver is denoted by
x, which is expressed asx = ‖lr − lt‖2. ConsideringM
measurements at the VLC receiver, the received power for the
ith measurement,Pr,i, can be modeled as

Pr,i =
n+ 1

2π
Pt cos

n(φ) cos(θ)
AR

x2
I{θ≤θFOV} + ηi (1)

for i = 1, . . . ,M , wherePt denotes the transmit power,n is
the Lambertian order,AR is the area of the photo detector at
the VLC receiver,φ is the irradiation angle,θ is the incidence
angle,θFOV denotes the field of view of the photo detector,
and ηi is the noise in theith measurement [5], [7]. Also,
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I{θ≤θFOV} represents an indicator function, which is equal to
1 if θ ≤ θFOV and zero otherwise. The measurement noise
ηi is modeled as a zero-mean Gaussian random variable with
varianceσ2

i [7], and it is assumed that the noise is independent
for each measurement. Multiple measurements can be realized
in a VLC receiver by performing measurements at different
times (under stationarity conditions) or by employing multiple
closely located photo detectors at the receiver.

For brevity of analytical expressions, it is assumed, similar
to [6]–[8], that the LED transmitter is pointing downwards
(which is commonly the case) and the photo detector at the
VLC receiver is pointing upwards such thatφ = θ and
cos(φ) = cos(θ) = h/x, where h denotes the height of
the LED transmitter relative to the VLC receiver, as shown
in Fig. 1. (Possible extensions to different transmitter and
receiver orientations are discussed in Section VII.) Also,as in
[4], [6]–[8], it is assumed that the height of the VLC receiver
is known. This assumption holds in various practical scenarios;
e.g., when the VLC receiver is attached to a robot or a cart
that is tracked via a VLC system (e.g., Fig. 3 in [1]). Under
these assumptions and considering scenarios in which the LED
transmitter is in the field of view of the VLC receiver, the
measurements in (1) can be expressed as

Pr,i =
n+ 1

2π
Pt

(

h

x

)n+1
AR

x2
+ ηi ,

k

xn+3
+ ηi , g(x) + ηi

(2)

for i = 1, . . . ,M , wherek is a known constant that depends
on n, Pt, h, andAR. Let y = [Pr,1 Pr,2 · · ·Pr,M ] denote the
measurement vector. Then, the conditional probability density
function (PDF) of the measurement vector is represented by
p(y|x).

For the considered system model in Fig. 1, the range pa-
rameter,x, can be modeled to lie betweenh andh̄, whereh̄ ,
h/ cos(θFOV).1 Therefore, the prior PDF ofx is represented
by a generic densityw(x), which is zero forx /∈ [h, h̄]. As a
special case, whenx is uniformly distributed over[h, h̄], the
prior PDF is given by

w(x) = I{h≤x≤h̄}/
(

h̄− h
)

. (3)

III. Z IV-ZAKAI BOUND (ZZB)

The ZZB provides a lower limit on the MSE by relating it to
the probability of error in a binary hypothesis-testing problem.
For a prior PDF that is zero forx /∈ [h, h̄], it is given by [9]

ξ ≥ 1

2

∫ h̄−h

0

∫ h̄−δ

h

(w(ϕ) + w(ϕ+ δ))Pmin(ϕ, ϕ+ δ)dϕ δ dδ

(4)

where ξ = E{|x̂ − x|2} is the mean-squared error of an
arbitrary estimator̂x, w(·) denotes the prior PDF of parameter
x, and Pmin(ϕ, ϕ + δ) represents the probability of error
corresponding to the MAP decision rule for the following
hypothesis-testing problem:

H0 : p(y|x = ϕ) , H1 : p(y|x = ϕ+ δ) (5)

1It is assumed that no communications occur when the LED transmitter is
not in the field of view of the VLC receiver. In fact, the theoretical results in
this study are valid for any finite value of̄h with h̄ > h.

For the estimation problem described in Section II,p(y|x) is
obtained from the model in (2) as

p(y|x) = exp

{

−
M
∑

i=1

(Pr,i − g(x))2

2σ2
i

}

M
∏

i=1

1√
2π σi

(6)

wherex ∈ [h, h̄] andPr,i corresponds to theith element of
y, as defined earlier. Sincex has a PDF denoted byw(x), the
prior probabilities of hypothesesH0 andH1 in (5) are given
by w(ϕ)/(w(ϕ)+w(ϕ+δ)) andw(ϕ+δ)/(w(ϕ)+w(ϕ+δ)),
respectively. Then, from (5) and (6), the MAP decision rule
can be expressed, after some manipulation, as

M
∑

i=1

Pr,i

σ2
i

H1

S
H0

(g(ϕ+ δ) + g(ϕ))

M
∑

i=1

1

2σ2
i

+ Λ(ϕ, ϕ+ δ) (7)

for δ ≥ 0, whereΛ(ϕ, ϕ+δ) , log(w(ϕ+δ)/w(ϕ))/(g(ϕ)−
g(ϕ + δ)), with log denoting the natural logarithm. The
probability of error for the rule in (7) can be obtained as

Pmin(ϕ, ϕ + δ) =
w(ϕ)Pe,0 + w(ϕ+ δ)Pe,1

w(ϕ) + w(ϕ+ δ)
with (8)

Pe,i = Q

(

g(ϕ)− g(ϕ+ δ)

2

√

√

√

√

M
∑

i=1

1

σ2
i

+ (−1)i+1Λ̃(ϕ, ϕ+ δ)

)

(9)

for i ∈ {0, 1}, whereΛ̃(ϕ, ϕ+δ) , Λ(ϕ, ϕ+δ)/
√

∑M
i=1 σ

−2
i

andQ(t) = (1/
√
2π )

∫∞

t e−τ2/2dτ denotes theQ-function.
The ZZB in (4) can be evaluated based on (8) and (9) for any
given prior PDF. In particular, for the uniform prior PDF in
(3), Λ(ϕ, ϕ + δ) in (7) (hence,Λ̃(ϕ, ϕ + δ) in (9)) becomes
zero∀ϕ, δ, and the ZZB in (4) reduces, based on (2), (8), and
(9), to

ξ ≥ 1

h̄− h

∫ h̄−h

0

∫ h̄−δ

h

Q

(

k̃

ϕn+3
− k̃

(ϕ+ δ)n+3

)

dϕ δ dδ

(10)

wherek̃ , 0.5k

√

∑M
i=1 σ

−2
i . The ZZBs in (4) and (10) can be

evaluated accurately via numerical approaches as the integral
limits are finite. Also, they provide tight limits on MSEs of
optimal estimators for RSS based range estimation in VLP
systems, as investigated in Section VI.

IV. W EIGHTED CRB (WCRB)

The CRB belongs to the family of covariance inequality
bounds [9]. For a given value of parameterx, theconditional
CRB can be calculated as in [7] based on (2) and (6) as follows:

ξ ≥ (JF(x))
−1 =

(

E

{

(

d log p(y|x)
dx

)2
})−1

=
(g′(x))

−2

∑M
i=1

1
σ2
i

=
x2n+8

k2(n+ 3)2
∑M

i=1
1
σ2
i

(11)

whereξ represents the MSE of an unbiased estimator.
In the presence of prior information about the unknown

parameter, theBayesian CRB (BCRB) can be considered to
provide a lower limit on the MSE of any estimator [9].
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However, for some prior distributions, such as the uniform
distribution, the BCRB does not exist (since an assumption
in the derivation of the BCRB is violated), in which case the
weighted CRB (WCRB) is commonly employed. The WCRB
is given by [9]

ξ ≥ (E{q(x)})2

E{q2(x)JF(x)} + E

{

q2(x)
(

d log(w(x)q(x))
dx

)2
} (12)

whereξ denotes the MSE of any estimator, the expectations are
with respect tox, JF(x) is the conditional Fisher information
defined in (11),w(x) is the prior PDF ofx, and q(x) is a
weighting function. Similarly to [9], the following weighting
function is employed in this study:

q(x) =

(

x− h

h̄− h

)c (

1− x− h

h̄− h

)c

(13)

if x ∈ [h, h̄], andq(x) = 0 otherwise, wherec is a parameter
that can be adjusted to improve the bound in (12). From (13),
E{q(x)} is calculated as

E{q(x)} =

∫ h̄

h

w(x)q(x)dx = β(c+ 1, c+ 1) (14)

where the final expression is obtained for the uniform prior
PDF in (3) withβ(a, b) ,

∫ 1

0
xa−1(1− x)b−1dx representing

the beta function. Also, the second term in the denominator
of (12) can be obtained for the uniform prior as

E

{

q2(x)

(

d log(w(x)q(x))

dx

)2
}

=
c β(2c+ 1, 2c− 1)

(h̄− h)2
·

(15)

Finally, based on (11) and (13), the first term in the denomi-
nator of (12) can be stated for the uniform prior as follows:

E{q2(x)JF(x)} = k2(n+ 3)2
M
∑

i=1

1

σ2
i

×
∫ 1

0

x2c(1− x)2c
(

(h̄− h)x+ h
)−2n−8

dx . (16)

From (14)–(16), the WCRB in (12) can be evaluated. In
addition, maximization overc is performed to find the tightest
lower bound. Since the calculation of the WCRB for a given
value ofc involves single integrals only, the maximization over
c leads to comparable computational complexity with that of
the ZZB in (10).

V. MAP AND MMSE ESTIMATORS

To compare the theoretical bounds against practical estima-
tors, the MAP and MMSE estimators are derived for the range
parameter,x, in this section. The MAP estimator [10] for the
range can be expressed as

x̂MAP(y) = argmax
x∈[h,h̄]

w(x)p(y|x) . (17)

For the uniform prior PDF in (3), the MAP estimator in (17)
reduces, based on (2) and (6), to

argmin
x∈[h,h̄]

M
∑

i=1

(Pr,i − kx−n−3)2

2σ2
i

· (18)

To obtain a closed-form solution for̂xMAP(y), the first-order
derivative of the objective function in (18) is calculated as
follows:

k(n+ 3)x−n−4

(

M
∑

i=1

Pr,i

σ2
i

− kx−n−3
M
∑

i=1

1

σ2
i

)

. (19)

The sign of the first-order derivative depends on the expres-
sion in the big parentheses, which is a monotone increasing
function ofx for x ≥ 0. Then, the MAP estimator in (18) can
be obtained as

x̂MAP(y) =















h , if
∑M

i=1
Pr,i

σ2
i

> k
hn+3

∑M
i=1

1
σ2
i

h̄ , if
∑M

i=1
Pr,i

σ2
i

< k

(h̄)n+3

∑M
i=1

1
σ2
i

f(y) , otherwise
(20)

wheref(y) ,
(

k
∑M

i=1
1
σ2
i

/
∑M

i=1
Pr,i

σ2
i

)1/(n+3)

.
On the other hand, the MMSE estimator is given by [10]

x̂MMSE(y) = E{x|y} =

∫

xp(x|y)dx

=

(

∫ h̄

h

xw(x)p(y|x)dx
)

/

(

∫ h̄

h

w(x)p(y|x)dx
)

(21)

wherep(y|x) is as in (6).
It is noted that the MAP estimator has lower computational

complexity than the MMSE estimator. However, the MMSE
estimator can achieve lower MSEs in general since it is the
optimal estimator in terms of MSE minimization [10].

VI. N UMERICAL RESULTS

In this section, numerical examples are presented to investi-
gate the ZZB and the WCRB and to compare them against the
MAP and MMSE estimators for RSS based range estimation
in VLP systems. The following parameters are employed for
the model in (1):n = 1, AR = 1 cm2, andθFOV = 60o [4],
[5]. Also, the uniform prior is considered, andh = 4m, and
h̄ = h/ cos(θFOV) = 8m are used in (3). The variances of
the measurement noiseηi in (1) are taken to be equal; that is,
σ2
i = σ2 for i = 1, . . . ,M , andσ2 is set to10−13 A2 [7].
In Fig. 2, the root mean-squared errors (RMSEs) for the

MAP estimator, the MMSE estimator, the ZZB, and the
WCRB2 are plotted versus the transmit powerPt for M = 1
(i.e., single measurement). It is observed that the ZZB provides
a very tight lower limit for the performance of the optimal
MMSE estimator whereas the WCRB gets loose at high
values ofPt. As Pt increases, the measurements in (2) get
very accurate and the prior information becomes negligible
compared to the information gathered from the measurements.
In such situations, the WCRB may not be a tight bound when
the conditional CRB is a function of the unknown parameter
[9], which is the case in the considered problem (cf. (11)).
Another observation from Fig. 2 is that the MAP estimator
has higher RMSEs than the MMSE estimator for low power
levels. This is due to the fact that asPt goes to zero, the MAP
estimator in (20) results in eitherh or h̄ whereas the MMSE
estimator in (21) converges toE{x} = 0.5(h+ h̄).

2For eachPt, the optimal value ofc is calculated and the tightest WCRB
is employed (see (12)–(16) in Section IV).
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Fig. 2. RMSEs of the MAP and MMSE estimators, together with the ZZB
and the WCRB forM = 1.

In Fig. 3, the RMSEs for the MAP estimator, the MMSE
estimator, the ZZB, and the WCRB are plotted versus the
number of measurements,M , for a transmit power ofPt =
1W. Similar to Fig. 2, the ZZB provides a very tight limit
for the performance of the optimal MMSE estimator and the
WCRB is not very tight in general. As expected, the RMSE
decreases withM ; however, a diminishing return is observed
as M increases. It is also noted that performing multiple
independent measurements can result in significant reductions
in the RMSE (e.g., 34.2% reduction in the RMSE of the
MMSE estimator withM = 5).

The numerical results indicate that the ZZB can be used to
provide guidelines for determining the parameters of a VLP
system with a desired level of ranging accuracy. For example,
from (10) and the definition of̃k presented after (10), it is
deduced, based on the monotone decreasing property of the

Q-function, that the ZZB reduces ask and/or
√

∑M
i=1 σ

−2
i

increases. Since each new measurement results in a larger
√

∑M
i=1 σ

−2
i term, the ZZB can be decreased by employing

multiple measurements, as expected. In particular, ifσ2
i = σ2

for i = 1, . . . ,M , the ZZB reduces as
√
M/σ increases. On

the other hand, parameterk, which is defined as in (2), can be
increased by, e.g., employing higher transmit powers or photo
detectors with larger areas. In fact, a larger areaAR of the
photo detector also results in a higher noise variance sincethe
variance of the shot noise (which is commonly the dominant
component of the noise at VLC receivers) is proportional to
AR [8]. However, asAR increases, thẽk term in (10) still
increases with

√
AR (sincek is proportional toAR), resulting

in lower ZZBs.

VII. C ONCLUDING REMARKS AND FUTURE WORK

In this study, the ZZB and the WCRB have been derived
for RSS based range estimation in VLP systems. In addition,
the MAP and MMSE estimators have been obtained for range
estimation, and performance comparisons have been presented.
It has been observed that the ZZB provides a very tight lower
limit on the performance of the optimal MMSE estimator
while the WCRB is not very tight in general. Hence, the ZZB
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Fig. 3. RMSEs of the MAP and MMSE estimators, together with the ZZB
and the WCRB forPt = 1W.

can provide guidelines for the design of VLP systems; e.g., for
choosing an LED transmitter with required parameters such as
the transmit power.

The assumption that the LED transmitter and the VLC
receiver are pointing downwards and upwards, respectively,
can be relaxed to some extent based on arguments similar to
those in Section II-C of [7]. In that case,g(x) in (2) and h̄
can be updated accordingly and the generic ZZB expression
specified by (4), (8), and (9) still holds. Also, the WCRB can
be obtained based on (12) by modifying (11) and (14)–(16)
accordingly. As future work, range/position estimation with
multiple LED transmitters can be considered in the presence
of unknown height for the VLC receiver.
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