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CHAPTER 2

THE LIMITATIONS OF INTERCONNECTIONS
IN PROVIDING COMMUNICATION BETWEEN
AN ARRAY OF POINTS

Haldun M. Ozaktas

Joseph W. Goodman

Stanford Universily

Information Systems Laboratory, Durand Building
Department of Elecirical Engineering

Stanford, California 94305 USA

Abstract

We present a comparative analysis of optical, normally conducting, re-
peatered and superconducting interconnection performance in a very large
scale digital computing environment. We derive tradeoff relations between
delay, bandwidth and system size for each technology based on communica-
tion (wiring) volume and heat removal considerations and discuss their nu-
merical and asymptotic properties. We show that the bisection-bandwidth
and bisection-inverse delay products—which are appropriate measures of
performance for communication limited applications—are bounded from
above for normally conducting layouts, whereas they may be arbitrarily
increased for repeatered, optical and superconducting layouts. The latter
two are shown to suffer slower growth rate of signal delay with increasing
system size in 3 dimensions than repeatered interconnections and thus of-
fer the best performance. Based on the considerations of this paper, the
comparison between optical and superconducting interconnections for same
dimensional layouts reduces to a comparison of their respective communi-
cation energies.

Frontiers of Computing Systems Research, Volume 2 61
Edited by S.K. Tewksbury, Plenum Press, New York, 1991
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system radius in grid units

cross sectional area associated with each physical line
bit repetition rate along each edge of connection graph
vacuum velocity of light

capacitance per unit length

linear extent of a unit cell

linear extent of an element

linear extent of a transducer

Euclidean dimension of layout space

energy associated with each transmitted bit of information
functional form of connection flux distribution
functional form of line length distribution

height of dielectric

bisection

volume critical current density

surface critical current density

number of graph edges per element

number of wiring tracks per cell

length of a line in real units

inductance per unit length

order of moment of line length distribution

number of wiring layers

fractal dimension of layout

number of elements

interconnectivity (Rent exponent) of layout
maximum amount of power we can remove per cross section
length of a line in grid units

average connection length in grid units

mth moment of line length distribution

resistance per unit length

drive impedance

intrinsic delay of repeating devices

inverse of worst case signal delay

inverse of average signal delay

height of conductor

minimum temporal pulse width associated with each
transmitted bit of information
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Ty device imposed component of T'

Ty line imposed component of T'

T, propagation delay along a line

T, minimum pulse repetition interval along a line

14 nominal logic voltage level

w width of conductor

(width) transverse linear extent associated with each physical line

Zo characteristic impedance

« attenuation constant

% number of parallel physical lines used to establish each
graph edge

classical skin depth

permittivity of dielectric

coefficient for average connection length
optical wavelength
superconducting penetration depth
permeability of dielectric
resistivity of conductor

worst case signal delay

average signal delay

velocity of propagation
fundamental frequency component

mECg)‘lb'{:b‘V?ﬁ""%
S
[e.]

optimal number of repeater stages
Cms Cony €1, coefficients for the moments of line length distribution

2.1 Introduction

Interconnections are more and more becoming the factor limiting the
performance of large scale digital computing systems [1] [2] [3] [4] [5] [6] [7]
8] [9]. Optical and superconducting interconnections are major candidates
for alleviating this trend. Many authors have made comparative studies of
optical and normally conducting interconnections [10] [11] [12] [13] [14] and
superconducting and normally conducting interconnections [15] [16] [17].
In this work we combine physical models of interconnection media with an
interconnect dominated, device independent system model which has its
roots in VLSI complexity theory [18] [19] and empirical wiring models [20].
In this manner we hope to understand how the basic physical properties
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of interconnection media affect system performance (inverse delay, band-
width, bisection) and cost (energy, space) parameters. Our viewpoint in
this work is more that of a physicist, rather than of an engineer. The main
feature of our approach is its ability to simultaneously handle several of the
interrelated physical and system aspects of the problem which are often
isolated and treated separately.

Optical and superconducting technologies have not yet achieved full ma-
turity, but are rapidly advancing. Some room for improvement for normal
conductors also exists. In this study we look into the future and attempt
to analyze and compare the basic limitations imposed by these technolo-
gies after all technical and practical difficulties associated with their im-
plementation have been overcome. Determining the ultimate performance
afforded by each technology is a formidable task, especially if one insists
on numerical accuracy. Since our aim is to develop a general qualitative
understanding, rather than to suggest practical design schemes, we will be
crude in our handling of numerical factors. Nevertheless, we believe that
our interconnection models represent, within a factor of the order of unity,
the best achievable by each technology. Of course, we are to a certain ex-
tent conditioned by the current trends in these technologies and the way
present computing systems are built, so we cannot exclude the possibility
of breakthroughs or ingenuity not foreseen by us.

Some of our approximations are made with the interest of maintaining
generality (i.e. we are reluctant to introduce system specific parameters)
and others with the purpose of maintaining analytic simplicity and trans-
parency. As an example, consider the equation y = ay'/? + b where all
quantities are positive. The exact solution is y = (a + va% + 4b )?/4. An
approximate solution may be written as y ~ a®+ b by inspection and differs
from the exact solution by at most a factor of 4/3. Moreover, when either
a® or b is large compared to the other, the approximate solution will be
nearly exact. Likewise, we will often use max(z,y) and z + y interchange-
ably, where x and y are positive quantities. The form y = V22 + 1 will be
approximated by y =z for x > 1 and y = 1 for 0 < # < 1. Needless to say,
care must be exercised in employing such approximations, as raising such
expressions to high powers or using them in the argument of an exponential
function can lead to drastic errors.

An alternative approach would be to ignore constants and bounded vari-
ations altogether, as is common practice in VLSI complexity theory. We
have preferred not to obscure the physical nature of the problem and, of
course, order of magnitude information is better than none. Those inter-
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ested in greater accuracy should be able to improve our results by incorpo-
rating the parameters or additional factors characterizing their particular
application.

We start with some definitions, followed by a description of our system
model. Sections 2.4, 2.5, 2.6 and 2.7 treat optical, normally conducting, re-
peatered and superconducting interconnections respectively. Descriptions
of the physical models used are followed by analyses of the effects of in-
formation density, scaling and heat removal, leading to our major results.
Section 2.8 provides some additional considerations and reservations. Sec-
tion 2.9 introduces an abstract framework for relating the computational
requirements of a problem to the physical limitations imposed by intercon-
nect media. The final section summarizes important conclusions.

2.2 Some Deﬁnitions

For the purpose of this paper, a processing system is a collection of
N given similar primitive elements connected to each other according to
a prespecified graph [21]. The primitive elements may be simple switching
devices or relatively complex subsystems. k will denote the number of
connections (graph edges) per element!, so that there is a total of kN
connections. Within a factor of 2, we may also interpret kN as the total
number of input-output ports. We will assume that the number of input-
output ports of each element does not vary greatly from element to element,
so that each element has ~ k ports. We will treat £ as a given constant,
although many of our results are easily extended to the case where k is
a function of N. dg will denote the linear extent of the elements (also
referred to as devices). Of course, the elements should be at least large
enough to accomodate their input-output ports (transducers in the case of
optical interconnections).

One way to increase the processing power of the system is to increase
the number of elements N. This may enable the system to handle larger
problem sizes in a given amount of time, or given problems in a shorter
amount of time (because of the increase in parallelism), or other interme-
diate combinations.

Another way to increase the processing power of a machine is to increase
the rate at which information percolates among the elements of the system.
The solution of a problem will in general require a certain number of time

!For simplicity we are considering pairwise connections only, the extension to fan-out
and fan-in is discussed in appendix A.1.
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Figure 2.1: Factors determining the speed of the system. Two elements (graph
nodes) sharing an (inter)connection (graph edge) of length £ are shown. 7a is the
time which elapses between arrival of new input to an element and updating of
the output values. T is the minimum temporal pulse width. T} is the propagation
delay along the interconnection.

steps. The physical duration of a time step (measured in seconds) is set
by one of several mechanisms, as illustrated in Figure 2.1. Information
transfer takes place along the edges of the connection graph in the form
of binary pulses of minimum temporal width 7' = max(Tq4,T;), as set by
the greater of device (drive) or line imposed minimum pulse widths, Ty or
Ty, respectively. We assume that a pulse must be completely received for
the value of a transmitted bit of information to be properly registered. T,
denotes the propagation delay along the interconnection. The meaning of
these and subsequent quantities will become clearer when we specify them
for specific technologies in later sections. 74 denotes the time which elapses
between arrival of new input at the elements and the updating of their
output values accordingly. The largest of these quantities will determine
the rate at which computational processes involving the cooperation of
elements situated at a distance £ from each other will proceed. Let us
denote this rate as S = 1/7 where 7, the signal delay, is defined by

r = max(rq, T, T}) (2.1)

and is a non-decreasing function of £. In a synchronous system, the phys-
ical duration of a time step is determined by the worst case delay among
all connections [3]. When we are speaking of an isolated connection, the
quantities T, Ty, T, 7 and S defined in this paragraph, and the quantities
T., x and B which will be defined in subsequent paragraphs will refer to
the properties of that particular connection. When we are talking about
a system, these quantities will refer to the worst case over all connections.
Ty, 74 and T4 (to be defined) will be assumed to be constants.
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In certain cases, the worst case S may be a pessimistic measure. In
general, each element will want to communicate with a certain set of other
elements at different distances. Let 74, be defined as the average of 7 over
all connections. Sgye = 1/74e 1s the inverse of the average delay over all
edges of the connection graph and can be thought to be a measure of the
speed (in nodes traversed per second) at which information flows through
paths [21] of the connection graph. Whether S or S,,. is the relevant
quantity will depend on how we operate our system. In this work we will
limit our attention to S so as not to further lengthen our treatment. All
of the analysis presented may be easily modified for S;,.. Most major
qualitative conclusions will remain unchanged.

Another measure of speed is the rate B (in bits/sec) at which informa-
tion is piped through the edges of the connection graph. We assume that
this rate is kept constant for all lines and thus is determined by the worst
case value of B over all lines. Let T, denote the minimum pulse repetition
interval, 1.e. bits may be emitted into each physical line at a rate of one
every T, seconds. In most cases, T, will approximately equal T", the mini-
mum pulse width. If we desire to increase B beyond 1/7,, we may employ
X > 1 parallel physical lines to establish each edge of the connection graph.
Let 1/7,4 denote the maximum rate at which the elements can emit infor-
mation into each edge of the connection graph when x — co. Thus B may
never exceed 1/ max(7;/x,Trq)-

The use of x > 1 physical channels per graph edge will require an
increase in the number of physical input-output ports by a factor of y.
This may in turn dictate an increase in element size dg. If the cross section
of each port is not greater than the cross section of each physical channel,
this increase in dy will always be overshadowed by the increase in necessary
communication (wiring) space, and thus need not be explicitly kept track
of.2 We will mostly assume this to be the case. In practice, however, input-
output ports may be much larger than the cross section of the physical
channels so that we must explicitly set the element size to be large enough
to accomodate ~ yk ports.

Notice that the effects of 74 and T,.4 are to simply hard limit S and B
to 1/74 and 1/7,4 respectively. In this work we are interested in the limits
imposed by the interconnections, rather than the elements. Thus without
further mention, we will assume T}4 to be negligibly small and that 74 is
no greater than 7jy.

2The use of wavelength division multiplexing constitutes an exception and must be
treated separately.
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Figure 2.2: Embedding the connection graph. For convenience we lay out the
elements in a cartesian array of cells. The size of a cell is to be determined

according to the size of the elements, the space that must be provided for the
wires and heat removal requirements.

\

Although it would certainly be desirable, it is not possible to arbitrarily
increase S, B and N simultaneously due to physical limitations. In this
paper we quantify this by deriving bounds of the form ®(S, B, N) < C for
different interconnect technologies.

2.3 System Model

Let the N >> 1 elements comprising our system be laid out on an e
dimensional regular cartesian grid of as yet unspecified lattice constant d
with N'/¢ elements along each dimension (Figure 2.2). In this work we
do not attempt an interpretation of fractional values of e so that e = 2
or e = 3. Figure 2.3 shows a hierarchical partitioning of such a layout.
We will quantify the communication requirements of connection graphs
to tirst order by the Rent exponent 0 < p < 1, which we also term as
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Figure 2.3: Binary hierarchical partitioning of the array of cells. After [22].

the interconnectivity. Referring to Figure 2.3, Rent’s rule states that the
number of graph edges P emanating from any subgroup containing N' < N
elements is given by P = kN'P. Statistical variations from this formula are
to be expected. The rule breaks down when N’ is close to N, the total
number of elements in the system. Rent’s rule was originally established as
an empirical relationship [23] [24] and later shown to be a consequence of the
logic design process [25] [26]. Such a power law may also be justified based
on a principal of self similarity [22] [27]. We now understand that Rent’s
rule is also related to the separator concept of VLSI complexity theory [18]
[19], which provides a formal basis for the layout of given graphs, and to
the theory of fractals [28]. This relationship has been used widely [20] for
two decades as a wiring model.

Donath [30] and Feuer [31] showed that Rent’s rule led to a connection
fluz distribution which is essentially of the form

F(r) = kre®=1(1 = r¢/a®) 1<r<a (22)

where r denotes distances in units of grid spacing so that physical dis-
tances are given by £ = rd. a > 1 denotes the system radius. f(ro) gives
the ezpected number of connections originating from a certain element and
emanating from a spherical surface of radius ro centered at that element
(Figure 2.4). Note that f(1) = k and f(a) = 0. The smaller p is, the
quicker f(r) decreases. Thus systems with small p are those involving local
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communication, whereas those with large p involve global communication.
The factor (1 — r¢/a®) has been introduced to account for the finite extent
of the system and may be ignored either when r is not close to a or when
pis not close to 1. The line length distribution is defined as

g(r) = ——dj;(:) 1<r<a. (2.3)

g(ro)Ar gives the ezpected number of connections originating from an ele-
ment and terminating in the interval [ro, o + Ar]. k=1g(r) is a probability
distribution defined over [1,a]. When p is small, it is more likely for a
connection to be made to close by elements, rather than distant elements.
When p = 1, we have g(r) o r¢=!, so that it is equally likely for connec-
tions to be made to elements at any distance (notice that there are oc r¢=1
elements at distance r). This is consistent with the usual interpretation of
p=1.

Although f(r) and g(r) have been defined somewhat artificially for an
element located at the center of a circular (or spherical) layout of radius «,
ignoring edge effects and the distinction between cartesian and euclidean
distances, we will assume Ng(r) to be a good approximation to the dis-
tribution of line lengths in our system (Figure 2.2). That is, Ng(ro)Ar
gives the expected number of connections in our system with lengths lying
in the interval [rg,7q + Ar]. Of course, we have [ Ng(r) dr = kN. Like-
wise, we will take a to be ~ N!/¢ without concerning ourselves with precise
geometrical factors.

The fractal dimension of the layout is given by the relationship n =
1/(1 - p) [32] [33]. Although a justification of the use of the term ‘dimen-
sion’ is beyond the scope of this paper, we will use n interchangeably with
p as a measure of the communication requirements of a system. The inter-
ested reader is referred to the work of Mandelbrot for a discussion of the
relationship between inverse power law distributions and fractal forms [34]
[35] [36].

We stress that although the relationships between layout theory, Rent’s
rule, fractal geometry and inverse power law distributions are compelling,
they are not necessary for the purpose of this paper if the reader is willing to
accept the inverse power law distribution of line lengths with parameter p as
a starting point. Some authors have simply assumed similar distributions
[37] without any underlying theory. The use of such a line length distribu-
tion may also be justified empirically [2] [38]. For an alternate approach

more in the tradition of VLSI complexity theory the reader is referred to
[12].
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Figure 2.4: Connections made by an element to other elements.

A useful approximation for the mth moment < r™ >=k~! [r™g(r) dr
may be derived as

e<mn <r™>=(,Nn/e=t/n (2.4)
e = mn <rm>=(,InN
e > mn <1 >=(),

where the coefficients are functions of m, n = 1/(1 — p) and e. The first
and second moments were already derived by Donath [22] [30]. A discussion
of the approximations leading to these equations and expressions for the
coefficients are given in appendix A.2. Because it is most often used, we
will use the special symbols 7 =< r > and & = (; for the first moment.
Notice that r is actually a discrete quantity. It is possible to find graphs
for which our continous approximation leads to erroneous results. For in-
stance, according to (2.3), a simple planar mesh for which p = 1/2 laid out
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in e = 2 dimensions has g(r) ~ r=2. Though a quickly decreasing function,
this is a very crude representation of the actual line length distribution,
which is concentrated at » = 1, and would result in overestimates of higher
order moments. Graphs exhibiting a high degree of regularity for which
exact values of the moments may be calculated by combinatoric methods
are best handled per se. The reader will notice that most of our results
may be cast in a form that depends only on the first two moments of g(r),
without requiring a full specification of g(r). The inverse power law distri-
bution we are using is an attempt to describe the irregular nature of typical
digital circuits we are likely to encounter in practice, as confirmed by earlier
authors [22] [30] [31].

A significant quantity is what has been historically termed the number
of wiring tracks per cell, which we denote by K. If ¥ > 1 physical lines
are being used to establish each edge of the connection graph, the cross
section (or width) of each cell d®~! must be wide enough to allow the
passage of xK physical lines, in addition to accomodating the element
itself [39]. A moment’s reflection reveals that K is given by K = k7 [40]
[41], since k7 is the total connection length per cell in grid units. Letting
(width) denote the linear extent of a single physical line, including its share
of line to line spacings, the above condition may be expressed as d®~! >
x K (width)®—!. Combining this with the condition d > dg4, we will write d >
max(dg, (kx7)'/(¢=V(width)). Notice that the error we incur in pretending
that the interconnections and elements may co-occupy the same physical
space is less than a factor of 2.

We will not consider statistical variations from cell to cell. We will ig-
nore the fact that there will be a greater demand for wiring space towards
the center, and also assume 100% utilization of the available wiring space.
Of course, in practice, a less than unity efficiency factor will be involved.
Typically, an approximately equal number of tracks will be running in each
of the e orthogonal dimensions. We will not be concerned with this distinc-
tion and associated numerical factors. M will denote the number of wiring
layers for 2 dimensional layouts.

The bisection H is defined as the number of graph edges crossing an
imaginary surface dividing the system in two roughly equal parts® and is
given by H = N(-D/eK since there are N(¢=1/¢ cells adjacent to this
surface. When n > e, 7 = gk N1/e=1/n = gNP—(e=1)/¢ g5 that H = kxNP.

3This surface is also referred to as the “bisection”.
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This must be multiplied by x to obtain the number of physical lines crossing

the surface in question.

The HS (bisection-inverse delay) and HB (bisection-bandwidth) prod-
ucts are appropriate figure of merit functions for communication limited
applications. The communication complexity of many problems may be
stated in terms of the amount of information that must pass through the
bisection of the system [18] [42] [43], so that these products are direct mea-
sures of system performance.

More general figure of merit functions may be defined by incorporating
the cost of energy or space. We will not go into the analysis of such cost
based figure of merit functions in this paper.

In this work we will concentrate on highly interconnected systems, char-
acterized by large values of p (or equivalently n). The method of analysis
is easily extended to other cases.

2.4 Optical Interconnections

2.4.1 Physical Model Description

Conceptually, the simplest structure one might use to transmit optical
signals is a single mode waveguide. If a sufficiently high numerical aperture
is utilized (through use of a sufficiently high refractive index difference
between the core and cladding), guide widths of the order of a wavelength
are possible [44]. Use of a sufficiently high refractive index difference ensures
that the evanescent fields in the cladding will decay within a short distance.
In general, the crosstalk between adjacent guides is proportional to the
product of the coupling constant and the length of the guides. This would
mean that for increasing systems sizes, one would have to increase the
separation between the guides in order to maintain an acceptable crosstalk
level. However, the coupling constant is an exponentially decaying function
of the guide separation [45]. This means that the required guide seperation
is a slowly varying function of system size. For this reason, we will take
the necessary guide separation to be constant and also of the order of a
wavelength?. Decreasing the separation will increase crosstalk excessively
with little gain in density. Increasing the separation somewhat beyond a
wavelength may be desirable, but not by a factor much greater than unity.

*.It is also possible to envision a design methodology for which the crosstalk does
not increase with system size. This might be established through the use of design rules
which exploit the periodic nature of coupling with distance and set the lengths of parallel
runs accordingly.
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In 2 dimensions the relevant quantity is the (width) allocated to each

line, whereas in 3 dimensions it is the cross sectional (area) allocated to
each line. For optical lines we will write

(width) = 2 (2.5)
(area) = (width)? = 4)? (2.6)

independent of all other parameters. Although it would be quite difficult to
do any better than this in practice, theoretically there is still a little more
room for improvement [46]. In this work we treat optical communication
links as if they were solid wires of cross section (2X)? (i.e. as is the case
when waveguides are used—whether we allow them to intersect or not does
not make a significant difference). The results thus obtained represent
the limitations of all forms of optical communication (guided wave or free
space) within a factor of the order of unity. This generalization is possible
by virtue of a result that states that the minimum volume required for
providing optical communication among an arbitrary array of points is ~
A2801a1, Where Liotar is the total interconnection length [46]. Because of
the arbitrariness of the factor 2, we will never mix it with other constants
so that the reader may modify our end results conveniently. The essential
feature of our model is that the cross section need not be increased with
increasing line length [46]. A ~ 1 um will be used in numerical examples.

The energy E' per transmitted bit will also be assumed to be constant
and independent of line length. The length dependent attenuation compo-
nent of loss can in principal be made very small in comparison to losses
due to coupling and device inefficiency factors. We assume the use of light
modulators as output transducers so that no threshold term is involved.
Expressions for the energy required per transmitted bit were given previ-
ously by many authors [10] [1 1] [14]. Feldman et al. [11] also discussed the
effects of fan-out on the energy.

For optical interconnections, 7} is simply the minimum pulse width the
modulating and detecting devices can handle. We will be content with
a smooth ‘hump’, rather than a square pulse with sharp edges, so that
the highest frequency content need not be much greater than the inverse
pulse width. This is consistent with our earlier requirement that a pulse
be completely received before its value is registered. Thus, the minimum
pulse width will often be approximately equal to (or twice) the slower of the
rise times of the modulators or detectors. Electron-hole diffusion or transit
time limitations may also contribute to T4. Tp will most probably be set
by material dispersion, since we are assuming single mode guides. Even
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if we launch an impulse, a hump of width 7, will arrive at the detector.
For free space systems, T will be set by the (spatial) dispersive properties
of the imaging elements. Pulses shorter than 7; will not be allowed so
that the imaging system performs its intended function. For the length
scales involved in a computing environment, the effects of dispersion can
be made negligible. Thus we will take 7' = max(Ty,7;) = T4. Since the
refractive indices of most materials are close enough to unity, we will take
the propagation velocity as the vacuum speed of light ¢, so that T, = £/ec.
If a single wavelength source is available, T, will often be approximately
equal to T', unless there are additional restrictions requiring an elapse of
time between consecutive pulses, as might be the case with certain types
of optical switches. If multiple wavelength sources are available, the use of
wavelength division multiplexing might enable the effective value of T, to
be much less than 7.

2.4.2 Relations between S, B and N

We postpone the inclusion of heat removal requirements until later.
Thus the interelement spacing d is primarily set by the size of the elements
and the number of ‘wiring’ tracks that must pass through each cell [39]
(8] [41] [3]. When we speak of a ‘volume’, it will be understood that we
mean an actual volume when e = 3 but an area when e = 2. A similar
convention will apply for the use of the term ‘cross-section’. To find the
smallest possible value of d, we equate the total volume occupied by the
interconnections and primitive elements to the total system volume:

max(Nkxf(width)*~, Nd) =~ Nkxf(width)*~' + Nd5 = Nd°*.  (2.7)

where y is the number of physical lines used to establish each edge of the
connection graph and £ = 7d is the average connection length in physical
units. Ignoring dy we find

d = (kx7)Y (= (width). (2.8)

Of course, d may never actually be less than d;. Note that the same
result can be obtained directly by equating K y(width)¢~! to the cell cross
section d®~!, as discussed earlier. When n > e, 7 oc N/¢=1/" 50 that we
find d oc N(n=€)/ne(e=1)  The increase of the volume d¢ per element with
increasing N has been termed space dilation [9]. Space dilation occurs when
" > e. Equation (2.8) is plotted in Figure 2.5. Given k and d4, we can use
these plots to predict beyond what value of N the system volume will be
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Figure 2.5: Cell size for communication limited systems. We take k = 10, x=1
and (width) = 2.

determined by communication requirements, rather than by element size.
The linear extent of the system may be obtained as

NYed = NV (kyr) /(=D (width). (2.9)

Of course, the system linear extent may actually never be less than N1/¢d,.
In all numerical plots we will vary N from 10* to 10!° (for comparison,
the human brain has about 10! neurons [47]). One should keep in mind
however that the larger values of N in this range may lead to unrealistic
system sizes for 2 dimensional layouts.

When T' =Ty is small, S = 1/7 = 1/T, = ¢/nay satisfies
i/ (e-1) — (£ ~1/(e-1)
STmazT (QA) (kx) (2.10)

where £40 = Tmard denotes the length of the longest connection. When
n > e, using ¥ = k N/~ and r,, ., ~ a ~ N/¢ we obtain

g N(=1)/[n(e-1)] _ (5‘%) (kxr)~ (=1, (2.11)
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When BT, < 1, we simply set xy = 1. When BT}, > 1, we must choose® x =
BT, since a single physical channel is incapable of transmitting information
at a rate of B. Then

SBY(e=Dyp 5l/(e=1) — (_‘i) kT)~YCED BT >1  (212)
2
which becomes for n > e,

SBll(e—l)N(nwl)/[n(e—l)]:(%)(kTm)"ll(e-l) BT, >1. (2.13)

Of course, S may never actually exceed 1/T or ¢/N 1/ed;. Thus in
general there are three regions in the relationship between S and N. The
leftmost (small N) region is the device speed limited region (S = 1/T),
the middle region is the element size-speed of light limited region (S =
¢/N'¢d;) and the rightmost (large N) region is the communication volume-
speed of light limited region (equation 2.11 with x = 1 or equation 2.13).
If p is large, element size is small and/or devices slow, the central region
may dissapear.

We remind the reader that the elements must be at least large enough
to accomodate ~ ky transducers. Also, if an m-fold reduction in 7, were
made possible by the use of wavelength division multiplexing of m distinct
wavelength sources, this number must be further multiplied by m. For given
N, there is a limit to the usefulness of wavelength division multiplexing,
since after a certain value of m, system size and delays are set by input-
output limitations, rather than the necessary communication volume.

If feasible, the use of multiple layers can contribute to 2 dimensional
system performance. The width of a cell d must now satisfy

d > max(Ky/M,1)(width)

where M denotes the number of layers [39] and d must at least be wide
enough to admit the passage of one physical channel. We will be justified
in writing d > Kx/M since the requirement d > d4 will always be stronger
than d > (width). It is important to note that there is a maximum useful
value of M. Increasing the number of ‘wiring’ layers, without increasing
the number of layers for input-output ports, leads to element size limited
systems. Assuming this maximum useful value is not exceeded, the right
hand sides of the above equations are improved by a factor of M. If the

5Strictly speaking, X, being an integer quantity, is given by x = [BT,]|, which we
approximate as max(1, BT).
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number of layers is large, the effects of vertical runs must be taken into
account. This is considered in detail in appendix A.3.

To illustrate the usefulness of our formulation, we consider a simple
example derived from concurrent computer architecture. It is often the case
that one desires to minimize the first-to-last bit communication latency
of L bit messages. Thus, we desire to minimize

1 L
TETTEEstE
Let us assume N = 10%, k = 10, e = 2,n=3,T=1T, = 1nsec and L = 20.
Using (2.13) we find that the optimum value of B is ~ 4 Gbit /sec so that
we choose x = 4. S and 71, may be calculated as ~ 150 x 10 sec—! and
~ 12 nsec respectively.

(2.14)

2.4.3 Heat Removal

We assume that the energy E associated with each transmitted bit is
dissipated and must be removed from the system. We also assume that the
dissipation associated with the elements are negligible. If not, we simply
need substitute £ — E + E;/k where E; denotes the energy dissipation
associated with an element.

The 2 and 3 dimensional cases are treated separately.

A. Two Dimensions

Heat removal considerations will also set a lower limit to the cell size d,
and hence system size and delay. The total power dissipation is given by
kNEB. Let @ denote the amount of power we can remove per unit area.
Thus we must maintain QN d? > kN EB. Starting from this relation, the

heat removal limited version of (2.13) may be derived as

1/2p1/2 ¢
SEUNT = gy

When both communication volume and heat removal considerations are
taken into account we have (for p > 1/ 2)

1/2 1/2 1/2
1 _N"d N max (kxchp‘1/2(2/\), (@%B—) ) : (2.16)
c

k=12, (2.15)

S c

where x = max(1, BT,). Of course, as always, S can never be greater than
¢/NY2d; or 1/T. Equation 2.16 is plotted in Figure 2.6 with EB/Q as
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Figure 2.6: The effect of heat removal requirements in 2 dimensions. We take
k =10. d4, T4 and T, are assumed small enough to have no effect. The range of
variation of £ B/Q has been chosen based on the typical ranges of variation of the
individual parameters. For smaller values of £B/Q, the system is communication
limited so that the curves corresponding to these values coincide. (a) e = 2,
=06, (b)e=2,p=0.9.
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Figure 2.7: Critical value of N beyond which heat removal is not a limiting factor.
We take k = 10 and assume 7 is small so that x = 1. EB/Q is varied over the
same range as in the previous figure.

a parameter. We have assumed dg4 and T to be negligible so as to make
‘transparent the effects of heat removal. Notice that if B is kept constant,
for large enough N the system is always communication volume limited,
rather then heat removal limited. The critical system size beyond which
heat removal is no longer a limiting factor is plotted in Figure 2.7 for various
values of p. In some cases, the device speed and/or element size-speed
of light limited regions may extend into the communication volume-speed
of light limited region so that the heat removal limited region completely
dissapears.

Many seemingly 3 dimensional optical architectures are actually as lim-
ited as the 2 dimensional case we have just considered [46] [48]. In partic-
ular, certain multi-facet holographic architectures [10] [49] [12] can be very
inhibitive. In fact, when p < 1 but the longest interconnection is still of
the order of the linear extent of the array of elements, these architectures
are even worse than the fully 2 dimensional case we have considered. In
this case, the linear extent of the system grows as o< N [12] [46] so that the
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Figure 2.8: 3 dimensional heat removal.

asymptotic growth rate of signal delay is 7 oc N as opposed to o« NP which
we have found for the fully 2 dimensional case (equation 2.11). Because
of their flexibility in providing an arbitrary pattern of interconnections,
multi-facet architectures form the basis of many suggested optical comput-
ing schemes. Our results are also valid for systems where the primitive
elements are optical switches, provided we interpret E as the switching en-
ergy. Thus we conclude that for large N, heat removal is not the limiting
factor for such systems as well.

B. Three Dimensions

Whatever the modality (conduction, convection or radiation), heat trans-
fer can only take place through a surface (flux conservation). Thus, just
as in the 2 dimensional case, Q will be specified as the power which we
can remove per unit cross sectional area. This is most easily visualized by
considering the flow of a cooling fluid through our system, as illustrated in
Figure 2.8. A fluid with heat capacity C’s, mass density p,, flowing at an
effective mean velocity v; may carry away at most Q = vs pm C, AT where
AT = Thae — Tinit [50] [61]. Tmae is the maximum permissible operat-
ing temperature of the devices and Tiniq is the initial temperature of the
coolant.

The fluid flowing through a cross section d? must carry away the power
dissipation associated with a stack of N 1/3 glements. Thus the heat removal
condition in this case is

Qd* > kEBN'/3. (2.17)

We can also arrive at this by requiring QN2/3d? to exceed the total power
dissipation kN EB. The above equation results in a larger value of d than
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Figure 2.9: The effect of heat removal requirements in 3 dimensions. We take
k =10, e = 3 and p = 0.8. dg, Ty and T, are assumed to be small enough to
have no effect. Unless p is very close to unity, heat removal is the ma jor limiting
factor for fully 3 dimensional layouts.

for the 2 dimensional case, but the same system linear extent N1/3d =
(kEB/Q)Y2N1/2,
Thus, using the above constraint and (2.8) we can show

1/3 . 1/3\ /2
L ((kmep_z,a)gm), (AEBNE) ) (.19

1
S Q

which is plotted in Figure 2.9. Again we assume device related limitations
to be negligible. If B is kept constant as N is increased, the heat removal
term eventually dominates the communication volume term, unless p = 1,
when they grow together. Thus, for large N, highly interconnected systems
do not suffer greater delay than locally interconnected ones.
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2.4.4 Asymptotic Properties

We make several observations regarding (2.13). For given N, B can be
arbitrarily increased® by incurring a reduction in S. This would be desirable
when massive data transfer is required but the time elapse in which this
transfer takes place is not critical. Thus the HB = kxN? B product can be
arbitrarily increased by suffering a decrease in S. In fact, using (2.13), the
tradeoff between H B and S may be written in the transparent form

SIHBIM D = ()

Unlike B, S cannot be arbitrarily increased by reducing B, since once
B drops below 1/7;, (2.11) with x = 1 is applicable. The growth rate of
the delay with increasing N is then given by 7 oc NP/(¢=1), Thus, for given
B, the dependence of HS on N is given by |

T-1/(e=1), (2.19)

T

HS oc NP(e=2)/(e=1), (2.20)

We observe that the HS product may be arbitrarily increased by increasing
N provided e > 2. If the largest possible value of e = 3 can be attained,
we have HS o NP/2. Despite the faster growth rate of delay, systems with
large p have a faster increase of HS with N.

The above results must be modified if heat removal is accounted for. B
and HB can again be arbitrarily increased at the expense of S, this time
according to (2.16) or (2.18), for 2 and 3 dimensions respectively.

In both 2 and 3 dimensions heat removal considerations result in a
growth rate of the delay o« N/2. Thus

HS o« NP~1/2, (2.21)

The resultant growth rate of H.S is thus the slower of those given by (2.20)
and the above.

2.5 Normally Conducting Interconnections

2.5.1 Physical Model Description

Our analysis will be based on the distributed parameters R, L and C}
the resistance, inductance and capacitance of the line per unit length (Fig-
ure 2.10). As is mostly appropriate [52], the shunt dielectric conductance

8 Of course, as far as the interconnection network is concerned, remember that we are
assuming T4 to be negligibly small.
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Figure 2.10: Section of distributed RLC interconnection model.

is ignored. Figure 2.11 depicts the physical cross section of our model.
Other geometries are also possible and would change our results by only
geometrical factors. It is well known that once a line starts becoming taller
than it is wide, the line to line separation must be increased greatly to
maintain acceptable crosstalk levels, whereas the capacitance and char-
acteristic impedance are improved at most logarithmically [14]. For this
reason, we will require that our lines satisfy ¢ < h and h < w/2. With
these constraints, we will assume—based on a similar argument regarding
crosstalk as in the optical case—that the minimum packing dimension is
(width) = 2w in 2 dimensions and (area) = (width)(height) = 2wx 2(h+t)
in 3 dimensions, independent of length. Whereas the numerical factors in-
volved are again somewhat arbitrary, they seem to be representative of the
geometry to which technology is converging [17]. The resistance, inductance
and capacitance per unit length; and propagation velocity and character-
istic impedance of this line are approximately given by R = p/wmin(t, §),
C = ew/h, L = ph/w, v = 1//IC = 1/\/me and Zy, = \/L/C =
\/,u—/f h/w respectively. p is the resistivity of the conductor and € the
permittivity of the dielectric. We will use room temperature aluminum re-
sistivity and a relative permittivity ¢, = 4 in our numerical examples. The
permeability p will be taken equal to that of free space. § = V2p wp
denotes the classical skin depth at frequency w. Unless otherwise stated,
the voltage level will be taken as V' = 1 Volt in numerical examples.

Based on this model, we will show that the line imposed minimum
temporal pulse width for a normally conducting interconnection is given
approximately by

T, = (16p6)m% = (16p6)a—fZT). (2.22)

We will not mix the constant 16 with other constants so as to enable easy
modification of end results. As in the optical case, the device imposed
minimum temporal pulse width T} is set by the intrinsic limitations of the
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Figure 2.11: Physical cross section of interconnection model. t and h are the
heights of the conductor and dielectric respectively. We constrain t < h and
h < w/2. These constraints not only ensure reasonable confinement of the fields,
but also justify approximate use of a parallel plate model for calculating capaci-
tances and inductances. (width) = 2w is the two dimensional minimum packing
dimension. (area) = (width)(height) = 4w(h + t) ~ 4wmax(h,t) = dwh is the
three dimensional minimum packing area. '

transmitting and receiving devices and is assumed to be a given constant.
Thus 7' = max(Ty4,T¢) is the minimum temporal width associated with
each bit?. For conducting interconnections, the minimum pulse repetition
interval is simply given by T, =T = max(Ty,T¢) so that we will drop the
subscript r.

Equation 2.22 is valid for both RC lines which are left unterminated and
charged up and for terminated transmission lines. For unterminated lines,
T = max(Ty, T¢) is simply the RC rise time of the receiving end voltage and
satisfies T' > T, = £/v where v is the propagation velocity [53]. As in the
optical case, we are not requiring sharp square pulses and are content with
smooth ‘humps’. Pulse transmission is not possible along high-loss lines
(i.e. lines for which R{ > Zp), such lines must be charged up. In general, it
is energetically wasteful to terminate a line if T > T, since in this case the
energy per transmitted pulse £ = V2T/Z, would exceed that possible with
an unterminated line E = V2C¢. However, when T’ < T, (which is possible
only for lines with sufficiently low loss), it is beneficial to terminate the line
so as to pipeline pulses through the line with less energy without worrying
about reflections. In this case of terminated transmission, T corresponds
to the minimum temporal width of a pulse travelling along the line. Thus
we are agreeing to leave a line unterminated when T' > T, and to terminate

. "In practice, Ty and Ty may be coupled, as in MOS VLSI technology. However,
it is mostly possible to break the total pulse width into the maximum (or sum) of
a line independent constant Ty and a device independent function of line parameters
T¢, enabling us to maintain a device independent model. This is further discussed in
appendix A.4.
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it when T' < T,,. We assume perfect termination is possible. The signal
delay for any normally conducting line can be written as max(Ty, Ty, Tp).
If T < T, and the line is terminated, 7, /T pulses may be simultaneously
in transit along the line.

We derive (2.22) first for unterminated lines. It is known that the skin
effect need not be considered in this mode of operation [53]. The rise time
of the line is given by ~ (R, + RE)CE where Ry is the drive impedance [1].
Assume for the moment that the line is not drive limited, then the rise time
and energy per bit are given by

=RCP = LW _pl _ ww O
Tg_RC'E_wthﬂ_ ¥ —4pehtm (2.23)
E=V3Ct= eVQng (2.24)

where (width) = 2w has been used. We are again assuming the energy
dissipated by the devices to be negligible. It is evident from these equations
that one should choose h/w and t/w as large as possible. Just as it is not
beneficial to make lines tall and skinny, neither is it to make them flat and
wide. Thus with A = w/2 and ¢ = k we obtain (2.22) and an expression for
the energy: E = 2¢V2¢. This discussion is consistent with and confirmed
by the somewhat different approach of Masaki [54].

The performance of present day VLSI lines may be much worse than
predicted by the above, because such lines are often drive limited [5] [55], i.e.
R4 > RL. The above corresponds to what may be achieved with arbitrarily
strong drivers. A more detailed discussion is given in appendix A 4.

Now we turn our attention to terminated transmission lines. We ignore
the effects of dispersion, anomalous skin effect and assume the quasi-TEM
approximation to be valid. We will show that the fundamental frequency
satisfies wL > R so that we may ignore the correction terms [56] 1/(1 +
R?/8w?L?) and (1 —JjR/2wL) associated with the propagation velocity and
characteristic impedance respectively.

In this case, the minimum pulse width satisifes 7' < T, = £/v. Since
we are not insisting on sharp square pulses, but are satisfied with rounded
‘humps’, the highest frequency content need not be much greater than the
inverse pulse width. Of course, since T' < T, a frequency of at least w ~
2/Tp = 2v/f exists. Since the attenuation coefficient a of a transmission

'line is given by R/2Z, [57]), we require approximately R¢ < Z; so that
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attenuation is kept at an acceptable level®. Using these relations, we may
immediately show wL > R which we have promised above. Furthermore,
one can show that the skin depth § = /2p/wyu satisfies 6°R < ph/w.
The resistance per unit length R is given by R = p/wmin(¢,8) so that
62 < hmin(t, §). Since t < h, this leads to § < h.

Since (height) is already determined within a factor of 2 by h, we will
agree never to set { < § and unnecessarily increase the resistance. We can
always do this without violating the constraint ¢ < h since we have just
shown that 6 < h. Thus, we have R = p/wé.

Now the attenuation condition R{ < Z; may be used to set a lower

bound on hé as
hé > p\/E £. (2.25)
T,

A lower bound on the skin depth leads to an upper bound on the largest
frequency component and hence to a lower bound on the minimum pulse
width 7. Thus using w ~ 2/T; and the definition of the skin depth we

obtain the minimum line imposed pulse width as

2 w\2 2 02 02
T, = pers = 4pe (E) (_W = (16pe)m = (lﬁpe)w

(2.26)

where we have taken h = w/2 to keep T; as small as possible. Of course,

no matter how small 7} is, we cannot shape pulses shorter than Ty so that

T = max(Ty,T;). The energy is given by E = V2T/Zy = (w/h)\/e/p V*T

which also indicates that we should choose h/w large. Thus we obtain

E= 2\/6/_[1 V2T as the energy per transmitted bit in this case.

When T} exceeds T;, we may express the condition T' = T < T}, as
16p+\/e/u £ = 16pevt < (width)? = (area). If this condition is not satisfied,
the line is high-loss and pulse transmission is not possible. Our model
equations are summarized in Table 2.1 and Figure 2.12 for the case T; < T}.
Of course, neither T' nor 7 may actually be less than T;. We also note that
it is suboptimal to work with Ty > T,. If for any given (width) and £ we
have T} < Ty, we can reduce the (width) of the line until 7, = Ty, ending up
with a wire that occupies less space with the same pulse width and delay.

Referring to (2.22), we ask whether it is beneficial to use a bundle of
narrow lines or a single wide line in order to achieve the greatest information
throughput. First consider a 3 dimensional layout. Increasing (width) by
two (i.e. (area) by four) decreases T} by four, corresponding to a potential

8This corresponds to degradation of the signal level by e~ = ¢=0-5 = 0.6.
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Table 2.1: Normally conducting interconnection model when Ty < T.

width)? < 16pevt | (width)? > 16pevet
p p
2
delay, 7 = max(T,T}) IGPGW -f-
pulse width, T = max(T}, Ty) lﬁpfm 16p€m§{ﬁ;‘?
energy, E 2V 2eV 2T
termination no yes
\"
0
& \‘be
_\//
T
I
(area)

Figure 2.12: Normally conducting interconnection model when T4 < T%.

increase in bit repetition rate by four. However, we are now able to pack
only a fourth as many lines in the same cross sectional area. Thus in 3
dimensions, the same amount of information can be transmitted through
given area in given time. Of course, we should never attempt to reduce T
below Ty, since then the increase in (width) cannot be compensated by an
Increase in bit repetition rate. In 2 dimensions, Ty is again reduced by four,
but the linear packing density is reduced by only a factor of two, so that
throughput is increased! Thus, as long as Ty dominates Ty, we will agree
to use a single wide line (x = 1) rather than many narrow ones to establish
each edge of the connection graph.

2.5.2 Relations between S, B and N

In order to accomodate K = k# wiring tracks, the linear extent of a cell
d must satisfy d*=! > K(width)*~! [39]. We must also satisfy d > d; and
the heat removal requirement, which will be discussed later. We are free in
choosing (width) provided it exceeds a certain minimum manufacturable
value. If d; is small and heat removal is not an issue, we would prefer to set
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(width) to this minimum so as to make d and the overall system as small
as possible. In this case, d®*=! = K(min. manuf. width)¢=1. However, if
element size or heat removal require that we set

d*=' > K(min. manuf. width)*~*,

we will agree to increase (width) until d*~! = K(width)*=1. If d and
hence the lengths of the lines are already set by factors other than wiring
density, we increase (width) so as to fill up available space. In this way, we
reduce the resistance of the lines as much as possible. Despite the fact that
increasing (width) no longer decreases the pulse width or delay once the line
becomes device or propagation limited, we will never be at a disadvantage
by choosing (width) in this manner. As noted before, the error associated
with assuming that the elements and wires may cooccupy the same physical
space is bounded by a factor of 2 (i.e. we are using max(z,y) ~ z + y).

Thus using d*=! = K(width)*~! and (2.22) with £pee = Fmazd we
immediately obtain

Ty = (16pe)r2, . (k7)2/(e=1) (2.27)

When T} > Ty so that T' = T}, the maximum value of B satisfies B = 1/T;
or
Br o7 = (16pe) =1k~ (- 1) BT;<1 (2.28)

which becomes, for e < n, using rmaee ~ a ~ NV¢ and 7 = k N/ e-1/n

If the above equation predicts B < 1/T}, then we are justified in assuming
that T, > T;. Otherwise, we must use x = BT, > 1 physical lines per
graph edge in order to improve B beyond 1/Ty. Since each physical line is
bottlenecked by T}, there is no use making 7; any smaller than 7. Thus
with Ty = Ty = (16pe)f2,,,/(width)?, d*=! = y K (width)¢~! and y = BT}
we obtain

B2/(e—1)rngf2/(e—l) — (16p€)—lk—zl(e-l)T(ge“Q‘)/(e—l) BT;>1
(2.30)
which becomes for e < n,

B2/(e=1) pr2(n=1)/[n(e-1)] _ (16p€)_l(kn)_ﬂ(e“1)T§8"3)/(e_1) BT; > 1.
(2.31)
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The above assumes the use of a constant (width) for lines of all lengths.
Actually, since we are only interested in the delay and pulse width along
the longest (worst case) connection, we may make shorter lines narrower
with the objective of reducing cell size. Thus, for the case BTy < 1, let us
set

! Ty = (16 6)___r2d2 constant (2.32)
e — = an .
B~ T VP Twidth(r))?

for all lines. That is, the width of each line is chosen in proportion to its
length so that all lines have the same T,. Then, since a wire of length rd
occupies volume (or area) rd(width(r))¢~!, the minimum value of d must
satisfy

d® = frd(width(r))e“lg(r) dr. (2.33)

Solving for (width(r)) from (2.32) and performing the integration we
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Figure 2.13: B versus N for normally conducting interconnections. The branches
correspond to different values of Ty (0.1, 1 and 10nsec). We take k¥ = 10.
M =10 layers has been assumed for the 2 dimensional cases. (a) e = 2, p = 0.6.
{Continued}
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Figure 2.13: (Continued). (b) e =2, p=10.9, (c) e=3, p = 0.8.
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Figure 2.14: Critical width and cell size below which inductive effects need not be
considered. Each part of this figure corresponds to those of the previous figure.
(a) e=2, p=0.6, (b) be = 2, p = 0.9.{Continued}
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Figure 2.14: (Continued). (c) e = 3, p = 0.8.
find
1 _ _ e 2/(e-1)
5= Ty = (16pe)(k < r¢ >) BT; <1 (2.34)
leading to, for e < n,
BN(=D/lr(e=11 = (16p6)=1(k¢,)=2/(e=1) BT; <1 (2.35)

which represents an improvement over (2.29) by only a constant factor! The
asymptotic dependence of B on N remains unchanged. Similarly, when
BT; > 1, one can show that (2.31) is improved by the same factor. It
is important to note that this calculation overestimates the improvement
possible since we may not be able to manufacture the shortest lines as

narrow as dictated by (2.32).

The use of multiple layers in 2 dimensions contributes greatly to per-
formance. The number of layers M may exceed the order of ~ 10 [58].
Of course, our previous comments regarding the existence of a maximum
useful value of M apply to this case as well. Increasing M beyond this
value will no longer contribute to performance. Assuming this value is not
exceeded, the right hand sides of the above equations are improved by a

factor of M?2.
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Equations 2.29 and 2.31 define the relation between the maximum pos-
sible value of B and N over the whole range of N. This relation has been
plotted in Figure 2.13 along with the corresponding relation derived using
(2.32). The improvement possible using nonuniform linewidths is greatest
when p is small and least when p is large. When p is small, there exists
a larger fraction of shorter lines so that greater reduction in cell size is
possible.

The above relations are scale invariant in the sense that they do not
depend on the actual choice of (width), provided (width) is chosen large
enough to fill available wiring space, as discussed at the beginning of this
subsection. This result, based on interconnect scaling, is in contrast to
those based on device scaling, which predict ever increasing performance
as the scale is reduced [1].

Until now, we refrained from mentioning S. By definition, S may never
exceed 1/ max(Tg, T4,T,). The above relations for B may be used to find

= 1/max(1/B,T4,T,). Remember that the condition for 7, < 7} was
(width)? < 16pevl. As we scale down the system photographically, all lin-
ear dimensions are decreased in proportion. Thus, below a certain critical
(width), this condition is satisfied so that propagation effects (i.e. induc-
tive effects) need not be considered. Indeed, downscaling is recognized
as a useful tactic to ensure that S is not worse than 1/ max(7;,Ty) =
1/max(1/B,Ty) [54]. But is this critical value of (width) manufacturable?
Using the above condition with £, = Pmazd and d = (kxf)ll(e‘l)(width),
we can show that for the longest line not to be propagation limited, the
scale must be reduced down to

(width) < 16pevryqq (kx7)/ =1 (2.36)

which is plotted in Figure 2.14 for e < n along with the corresponding cell
size d. These (width) values are certainly manufacturable. Somewhat dif-
ferent considerations apply if we employ the nonuniform width distribution;
nevertheless, the qualitative behavior remains unchanged, inductive effects
need not be considered for large N.

Two other factors may be an impediment to downscaling. One is the
size dgq of the elements. Since d may not be less than dg, the critical value
of dg below which inductive effects need not be considered may be directly
determined from Figure 2.14, from which we see that this does not become
a problem for large N. The other is heat removal requirements, which will
be considered below.
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2.5.3 Heat Removal

A. Two Dimensions

Heat removal has no effect on the relations between B and N derived
in the preceding subsection, which are scale invariant. If the system can be
downscaled sufficiently so that the longest line is not propagation limited
(ie. T, < T), it does not have any effect on § either. In 2 dimensions, this
is often possible. Since the energy dissipated per bit along a line of length
£ is 2¢V2¢, the heat removal condition becomes

Qd® > k(2eV20)B = 2¢V2kidB (2.37)
2e¢V/?

d> krB (2.38)
where £ = #d. Let us assume that T; — 0 and assume the maximum
possible bit repetition rate is employed, as given by (2.29). Thus, we may
calculate the minimum valye of d as set by heat removal. For e < n we find

_ 2V —1ar2ar—p—1/2
d= W(km) M2N-?-1/ (2.39)
which quickly drops below the critical cell size presented in Figure 2.14 for
voltages V' ~ 1Volt and the modest @ = 1 W /cm?. Thus, with increasing
N, heat removal is not a limiting factor in 2 dimensions.

Figure 2.15 provides a comparison of the S versus curves for optical
and normally conducting interconnections. We assume dy and Ty to be
small so as to push the element limited regimes as far as possible to the
left. Based on the discussion of the preceding paragraph, we assume 12 /Q
is small enough to enable the scale to be reduced to the extent that T, < T
on the longest line. Thus S = B for the normally conducting case. The
curves for the optical case are in terms of the parameter EB/Q, as in
Figure 2.6.

These curves do not provide a fair comparison, as they assume that B
1s kept constant with increasing N for optical interconnections, whereas it
must be involuntarily decreased for normal conductors. Thus in Figure 2.16
we set B to the largest possible value allowed by normal conductors with
honuniform widths. Remember that our analysis of the nonuniform width
Case was optimistic in the sense that 1t was strictly applicable only in the
limit of arbitrarily small manufacturable linewidths.
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Figure 2.15: Comparison of optical and normally conducting interconnections.
We take k = 10 and assume d4, Ty and T, to be small so as to isolate their
effects. Heat removal is not considered for normal conductors. We take M = 10
for normal conductors and M = 1 for the optical layout. Both the constant width
and nonuniform width cases are shown for the normally conducting case. For the
optical case, EB/Q fans from 1072 m? to 10™* m? in increments of 1072 m?, as
in Figure 2.6. (a) e=2,p=0.6. (b) e=2,p=10.9.
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Figure 2.16: Comparison of optical and normally conducting interconnections for
the same values of B. We assume the nonuniform width distribution for normal
conductors. Similar parameter values are taken as in the previous figure. E /Q
fans from 1072 m% sec to 107! m? sec in increments of 102 m? sec. (a) e = 2,

p=06,(b)e=2,p=0.9.
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Figure 2.17: Comparison of optical and normally conducting interconnections in
3 dimensions. We take k = 10, e = 3, and p = 0.8 and assume dq, Ty and
T, to be small. Heat removal is not considered for normal conductors. For the
optical case, EB/Q fans from 107 m? to 10™* m? in increments of 1072 m?, as
in Figure 2.9.

In general we observe that there is a critical system size beyond which
optical communication offers superior performance over normal conductors.
Normal conductors are beneficial for small systems since the linewidths can
be reduced much below than ever possible with optical lines. However, with
increasing system size and line lengths, we must either i.) keep linewidths
constant and suffer quadratic increase of delay; or ii.) increase linewidths
so as to keep attenuation at an acceptable level and maintain linear growth
rate of delay with length, once again resulting in quadratic growth rate of
delay with system size (since the growth of line lengths are compounded
by the increase in linewidths). Optical communication has the advantage
of enabling us to keep the effective communication cross section constant
with increasing system size [46].

For large p, certain multi-facet holographic optical architectures [12]
[48], as we have discussed in an earlier section, exhibit similar behavior to
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Figure 2.18: Comparison of optical and normally conducting interconnections for
the same values of B in 3 dimensions. Similar assumptions as in the previous
figure are made. E/Q fans from 10™2! m2 sec to 10~1° m? sec in increments of
10™2? m? sec.

the fully 2 dimensional case we have considered. Thus we see that despite
their inhibitive nature, these architectures are superior to 2 dimensional
normally conducting layouts for large N.

The heat removal limited normally conducting case is of historical im-
portance and has been subject to many previous studies. For instance, see

[59] [60] [61] [62] [29].

B. Three Dimensions

We saw that for typical parameter values, 2 dimensional layouts may be
downscaled to the extent that inductive effects need not be considered on
the longest line (i.e. 7, < T) so that S is given by 1/max(1/B,T,). This
may not be possible for 3 dimensional layouts. A complete analysis of this
situation is somewhat involved and thus will be treated at length elsewhere.
For room temperature voltages and for the range of N in consideration, it
may be the case that the cell size need be greater than the values given
in part b.) of Figure 2.14. Thus, the value of S may be quite worse than
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min(B, 1/T},). Of course, for ever increasing values of N, heat removal will
eventually cease to be an issue since B must necessarily drop, and, wiring
requirements become more stringent.

By reducing the temperature, we may reduce V' to an extent that the
system may be downscaled sufficiently. Then, a similar comparison as for
the 2 dimensional case is possible and is presented in Figures 2.17 and 2.18.

The advantage of optical communication is greater when p is large
and/or the dimension e is low.

2.5.4 Asymptotic Properties

In this subsection we assume arbitrarily fast devices (Tz — 0), negligible
element size dg and arbitrarily small manufacturable linewidths. As N
increases heat removal ceases to be a problem. Thus, the scale of the
system may be reduced sufficiently so that inductive effects need not be
considered and S = B as given by (2.29).

Equation 2.29 immediately leads to an important conclusion: For given
N, there is an upper limit to B. This is in contrast to the optical case
where B could be arbitrarily increased by suffering a reduction in 5. Any
attempt at increasing B by using wider lines or x > 1 parallel channels is
thwarted by the increase in line lengths, since T; o £2/ (width)?.

Let us also investigate the dependence of the HS = H B product on N.

We find
| HS = HB o NP(e=3)/(e=1) (2.40)

which cannot be improved by increasing N since e < 3. In fact, since
fully 3 dimensional circuits are very difficult to realize, these quantities
will often decrease with increasing N. Thus, once N is large enough to
bring us into the interconnect dominated regime for which our analysis is
applicable, further improvement in these products is not possible. The use
of normal conductors is inhibitive for applications for which these products
are a suitable figure of merit.

2.6 Repeatered Normally Conducting Interconnections

2.6.1 Physical Model Description

The inhibitive square law behavior of normal conductors may be allevi-
ated with the use of repeater structures. In our treatment, we will consider
a highly idealized situation. We will not address the issue of power dis-
tribution to the repeating devices and not be concerned with the discrete
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structure of such lines, treating them as if they were a continous structure.
We will assume repeatered lines are used for all connections, although the
optimal number of stages for the shortest connections will be less than
unity. We also assume that the system is large enough so that the longest
line requires more than one stage. Bakoglu [63] derived the optimal config-
urations of such interconnections for the lumped case (i.e. when inductive
effects need not be considered). Within numerical factors the optimal num-
ber of stages £ and the resulting delay is given by

RCP??
~ 41
¢ \/ ReCl (2.41)

T, ~ \/RoCoRCEZ . (2.42)

In this section T}, denotes the time it takes a single bit to ripple through
the £ stages, rather than an electromagnetic propagation delay as in earlier
sections. RoCj is the intrinsic delay of the repeaters. Following similar
arguments as in the preceding section, our model equations may be derived

as
N pE l

$= Y RoCo Twiain) (2.43)

I, =T~Ty~Ty~ RyCy (2.44)
¢

T;) = ET =~ 4\/ R()Cgpf m (245)

E ~ 2¢V2¢. (2.46)

As before, the numerical factors are crude. We are assuming bits may be
pipelined through each line at a rate of one every T seconds, the time it
takes one bit to traverse a single stage. Depending on RyCy, the value of
T may be low enough to challenge other high bandwidth approaches. Most
importantly, it is independent of other line parameters. The optimum value
of { is proportional to £/(width); the number of stages increases linearly
with distance. The length of each stage depends only on (width) and may

be found to be
_ 4 _ 1 ROCO .
Lotage = = 41/ p (width) (2.47)

which together with (width)? < 16pevlyiqage dictates that approximately
(width) < 41/pRoCofp is necessary for inductive effects not to be con-
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Table 2.2: Repeatered interconnection model.

(width) < 4,/2RoC

(width) > 4,/282<

delay, 7

44/RyCope m}fl_ﬂi‘j

et

pulse width, T' RyCo RyCy
energy, E 2V2 BeV2, /efele s
termination no yes

sidered. This evaluates to about (width) < 5 pm for RyCp = 100 psec and
our usual choice of physical parameters. If (width) is set to 44/ pRoCo/u
we obtain T, ~ /pe £. If (width) is greater than this value, each stage
will become propagation limited and the delay will still be given by this
expression independent of (width). When this is the case, we will agree to
individually terminate each repeater stage. The energy for this repeatered
transmission case may be calculated in a similar manner as for repeaterless
transmission. We multiply the number of stages £ by V2T /Z,, the energy
per stage. Thus, we find that the energy per transmitted bit is given by

pRoCo £
n (width) |

E ~ min (261/23, 8eV2 (2.48)

The aspect ratio of a single stage is given by

Cytage/ (width) = (1/4)/RoCo] pe

which evaluates to ~ 2500 for RoCy = 100 psec. If (width) ~ 1 pm, all lines
up to a few millimeters will be single stage and longer ones multistage.

We finally inquire whether it is safe to ignore the space occupied by
the repeaters in comparison to the wires. For concreteness, let us consider
CMOS VLSI repeaters. The optimum transistor strength (and hence area)
was derived to be s = \/R_DCTCD—R = \/RO/CO\/%\/U_h w times that
of a minimum sized transistor [63]. Remember that we took ¢ = h and
w = (width)/2. With Ry = 20K and Co = 5fF consistent with RoCo =
100 psec, and (width) ~ 1pm, we find s ~ 35 which we compare with
Lstage /(width) found above. Thus the space occupied by the drivers may
be absorbed into that occupied by the wires with little error.

Our model is summarized in Table 2.2 and Figure 2.19.
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Figure 2.19: Repeatered interconnection model.

2.6.2 Relations between S, B and N

First assume that element size and heat removal need not be considered.
As in the optical case, T' =~ RyCy is a constant independent of other line
parameters. Thus if BT < 1 we set x = 1. Then, for e < n, using
de=! = ke N(*=e)/n¢(width)*~! and

= N'/¢d
p =4 R()Copf ( dth) (249)
we obtain

SN(” 1)/[n(e-1)] — 4, /ROCDPE ) -1/(e- 1) (250)

where we assumed 7, > T so that S = 1/7,. Of course, S may actually
never exceed 1/T. This relation is similar to the corresponding relation for
optical communication in form (equation 2.11 with x = 1), despite being
numerically inferior. The relation between S, B and N when BT > 1 18
also similar to that derived previously for the optical case (equation 2.13).

Upon comparison with the coefficient of (2.11), we see that repeaters
are worse than optical communication by less than a factor of 10, assuming
RoCo = 100 psec and an optical wavelength of about a micron. Thus, if fast
devices are available, we may approach the performance offered by optical
communication within an order of magnitude. Such a system may be more
compact than the corresponding optical system, if deep submicron scaling
1s employed.

Notice that (2.50) is scale independent, assuming (width) is small enough
so that inductive effects need not be accounted for (< 5pm for RoCo =
100 psec). When element size is accounted for, S is given by the minimum

predicted by (2.50) and 1/S = \/ie N'/¢d.
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2.6.3 Heat Removal

A. Two Dimensions

Since (2.50) is scale invariant, heat removal has no effect unless it
requires that the scale be chosen large enough to lead to inductive ef-
fects. The power dissipation per cell is kEB where E is the average of
E given by (2.48) over lines of all lengths. The power dissipation per cell
must not exceed Qd?. Just as in the repeaterless case, we are agreeing
to fill up available wiring space by choosing kxr(width)/M = d. Since
¢/(width) = rd/(width) = rkxt/M, we find that we must maintain

.
Qd? > k7 min (ZGVZd, 8eV'?, /-’%ﬁ%) B (2.51)

so that d must be at least

2% 2 Y oii-pi
d = min (QEVQ’”’B, (Sf‘/ \/;5'3000/#) X2 E‘f ) . (2.52)

This is to be compared with the critical value d = (kx#/M) 4y/pRoCo/p
below which inductive effects need not be considered. If the first term is
less than the second, we can show that d is less than the mentioned critical
value. Then, (2.50) is applicable. If the second term is less than the first,
we find that d is greater than the mentioned critical value. Then

1 1
g =T = i Nt (2.53)

where d is given by the preceding equation (which is dominated by its
second term in this case). In general, S is given by the smaller predicted
by (2.50) and (2.53). The resulting dependence of S on N is presented in
Figure 2.20.

Let us take a closer look at the dependence of the heat removal limited
value of d on the various parameters. First of all note that d o 7, a direct
consequence of the fact that the energy always increases with line length.
Assuming B > 1/T so that x = BT, we may reexpress d as follows

1
2 (8eV2\/pRoC :
d = k7B min (QEV ( VVr UM"/’*‘ RUC") ) (2.54)

Q Q

which we may simply write as d = k#B(cons.). For Q/V? = 10 W/cm?volt?
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Figure 2.20: S versus N for B = 1Gbit/sec for repeaters in 2 dimensions. We
take k =10, M =10 and T = RoCo = lnsec so that x = 1. da is assumed to
be small enough to have no effect. The curves corresponding to the two smaller
values of V2/Q overlap. (a) e=2,p=0.6,(b)e=2,p= 0.9,
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Figure 2.21: S versus N for B = 1 Gbit/sec for repeaters in 3 dimensions. We
take k = 10, e = 3, and P =0.8 and T = RyCy = 1nsec so that x =1 dgis
assumed to be small enough to have no effect.

and our usual parameters, (cons.) may be approximately expressed as ~
min(0.7, 3.5 (RoCo)3/* /MY ?)(fm sec) where RyCy is in nsec. Thus, if RyCy
1s not small or M is not large we will most likely be operating in the lumped

regime so that (2.50) is applicable. The growth rate of d as imposed by
* heat removal is o 7B whereas wiring requirements dictate d oc x7 which is
also o< #B when BT > 1. Thus which mechanism will dominate depends
on numerical factors, in contrast to the optical case where heat removal
requirements were always overshadowed by communication requirements
with increasing N.

B. Three Dimensions

We repeat the analysis of the preceding section. Now the minimum cell
size is found to be

2k N % 2 : 1 3.1 1
d = min | 2VkTN B,(SEV V”R"C"/‘”) xHEAINEBY | | (255)

Q Q
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Thus the resulting delay is the greater of 7, = ,/fi¢ N'/3d and that given
by (2.50) and is illustrated in Figure 2.21.

2.6.4 Asymptotic Properties

The asymptotic behavior of repeatered lines are similar to those pre-
sented for optical interconnections, when heat removal is not considered. It
remains the same for 2 dimensional layouts even when heat removal is con-
sidered. However, the situation is worse when heat removal is considered
in 3 dimensions.

For the 3 dimensional case we refer to (2.55). For large N and B, the
second term in this equation will be applicable so that d oc 73/4B3/4N1/6
as opposed to d o< #/2B!/2 dictated by wiring requirements. Thus the
resulting growth rate of signal delay becomes 7 oc 7#3/4 B3/4N1/2 44 opposed
to oc BY/2N1/2 possible with optical communication. For given B, the
growth rate of the bisection-inverse delay product is then found to be (for
e < n)

HS o« NP/* (2.56)

which is inferior to the optical HS o« NP~1/2 in its range of applicability
(e < n or equivalently p > 2/3).

If we do not terminate each stage of the repeaters individually and
charge up the segments, then the first term in (2.55) becomes applicable
so that 7 o« FBN2/3, In this case we find that for given B, the bisection-
inverse delay product cannot be increased with increasing N, an inhibiting
situation.

2.7 Superconducting Interconnections

2.7.1 Physical Model Description

The propagation delay and characteristic impedance of a superconduct-
ing transmission line are essentially given by [56]

T, = /e [% coth (}) + 1] ' (2.57)

R ¢ ¥
- JERA L 2.58
Zo — [hcoth (A) +1] (2.58)

o
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where all parameters are defined as previously, except A which denotes the
superconducting penetration depth throughout this section. We again refer
to Figure 2.11 and invoke similar geometrical constraints. Attenuation and
dispersion are small enough to be safely ignored for the length scales in
consideration [17]. Thus, just as in the optical case, we assume that the
minimum temporal pulse width 7' = max(Ty, T;) = Ty is set by device limi-
tations in transmission mode. During lumped operation, T; will correspond
to the rise time of the output end voltage and may or may not be greater
than T;. As with normally conducting lines, the minimum pulse repetition
interval is just 7. = T', so that we drop the subscript . We again assume
perfect termination in transmission mode is possible.

Throughout our analysis, we will use as an example the high critical
temperature superconductor Ba-Y-Cu-O with 7, = 92.5K, absolute pen-
etration depth Ao = 1400 A, normal resistivity p, = 200 u Qcm operated
at 77K [17]. The value of the penetration depth at 7' = 77 K may be cal-
culated as A = Ag/+/1 = (77/925)% = 1942 ~ 2000A. We will assume
these materials to have standard superconducting behavior below critical
current, critical field, critical temperature and energy gap frequency.

In order to maintain desirable superconducting behavior, both the flux
entry field and the critical current density should not be exceeded. If a
surface barrier to flux entry is not present and breakdown at edges can be
neglected, the flux entry field is just H,;, the lower critical field of the super-
conductor. If the thickness of the conductor is larger than the penetration
depth, current only flows through a sheet of thickness A. The maximum
surface current density that can be allowed before vortices enter the super-
conductor is just Js. = H.1. A value of J,. = 8mA/pm was estimated [15]
based on earlier experimental results (The author extrapolated a critical
field value of 500 Oersted measured at a lower temperature to 100 Qersted
at 77K). Kwon et al. [17] estimated 50 mA /pum for low temperatures based
on the same data. In general, a few hundred Oersteds seems to be a value
which one might reasonably expect to achieve. When the penetration depth
exceeds the conductor thickness it is preferable to speak of a volume criti-
cal current density J.. Based on intuitive grounds, we would expect J, to
satisfy J.A ~ Jy.. Indeed, with A = 2000 A, the above mentioned values
for J,. are consistent with often cited values for the volume critical current
density (J. = 10%-107 A/cm?). However, for films this thin, edge effects
become increasingly important so that one must be careful in interpreting
the physical origin of J, and the implications of our simple model.
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The energy per transmitted pulse is given by £ = V2T'/Z, with T = Tj.
Thus (2.57) and (2.58 )lead to

T,E = eVzT%t’. (2.59)
This product does not depend on (width) = 2w or the cross sectional
(area) = (width)(height) ~ 4wh, but only on the ratio (w/h). For any
given cross section, it is optimal to set w/h to its smallest value of 2,
leading to T, E = 2¢V2T¥. A knowledge of T, directly leads to a knowledge
of E and vice versa.
First assume that h > ¢ > A. Within factors close to unity,

T, = Jfie £ = £ (2.60)

v

Jo =

B

% (2.61)

E= zv?\/g T. (2.62)

Since (width) = 2w and we take h = w/2, the condition ¢ > A may be
expressed as (width) > 4\(h/t). By choosing t = h, the region of validity
of the above equations may be extended down to (width) = 4.

So that the critical current density is not exceeded we require V/Z; <
Jscw. Using the above expression for Z;, this condition can be expressed
as 4V/(Jyen/pt/€ ) < (width). If the critical current is high enough and
the operating voltage low enough this condition is less restrictive than
(width) > 4\(h/t). Even for t = h, with presently achievable critical cur-
rents as cited above, voltage values somewhat less than 1 Volt are sufficient
to ensure this. One expects much lower voltage values to be used at these
low temperatures. Also, we might expect materials with even higher critical
current densities to be produced. Hence we will assume A > V/(J;0\/pt/€)
throughout our analysis. This means that we need not be concerned with
the critical current density in this regime of operation.

Now, let us consider the case t < h < A. Again within numerical factors
close to unity,

¢

hit

T, = /fic A (2.63)

W=
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h%
Z[): Ea\

T
€ wtz

(2.64)

The critical current condition can now be written as V/Zy < J.wt which
translates into V/(JcAy/ufe ) < h'/2t1/2 making it desirable to choose
h and t as large as possible. If this condition is violated, we can use a
sufficiently large drive impedance Ry > Zy to limit the current and charge

up the line
|4
= — > Z,. 2.
Rq Towt = 20 (2.65)
The lumped delay and energy are then expressed as Ty = R;C? [5] and

E=V2Ce,

T, = VL 16V (L ?

T kT T, (widih)? (266)

E =2V% (2.67)

where (width) = 2w = 4h was used. We immediately observe from the
above that ¢ = h is the optimal choice, leading to 7 = (16€V/J. )t/ (width)?
in the region (width) < 4V/(Jse\/pife). If the critical current condition is
not violated, then using (2.63) and 2.64 the delay, characteristic impedance
and energy are expressed as

A ¢ [h\?

T = 3 Coiathy (?) (2.68)
1 [poax (h\?

Zo = '2'\/-?_ (width) (?) (2.69)
V2T

= (2.70)

where v = 1/, /€ was used. We previously showed T,E = 2¢V2T¢. For
given £, any pair of 7, and E compatible with this equation determines
the value of (width)(t/h)!/2. Thus to minimize (width) we choose t = h,
leading to

0
P v (width)

1 fu 44X
=g/t (width) (2.72)

(2.71)
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Table 2.3: Superconducting interconnection model when Ty < T, (or Ty < T
in the lumped case). Delay (7 = max(7},T)), pulse width (T), energy (£), and
termination (“ter”) are given for various ranges of (width).

: 4V 4V . :
r 16V ¢ 4A__ ¢ £
Joe (widih)2 v (width) v
iy, Ta Ty
E 2V2¢ 2\/§ viludh) 2\/5 V2T,
ter. no yes yes
ViT
E= 2.

valid in the region 4V/(J,./1f¢) < (width) < 4.

Finally, we consider the case t < A < h. If A2 < ht, then a very similar
analysis as for the case h > ¢ > A applies. If A2 > ht, then a very similar
analysis as for the case t < h < A applies. In both cases we again find that
t = h is the best choice (or at least as good as anything else) so that this
case collapses.

Thus we agree to set t = h = w/2. In some cases, a smaller value of ¢
may do just as well, but since this can improve (height) by at most a factor
of 2, we will not be overlooking any significant room for improvement in this
direction. As remarked before, due to the arbitrariness of our constraints,
the actual optimum dimensions may be somewhat, but not greatly different
from these. Table 2.3 and Figure 2.22 summarize our superconducting
model when Ty < T, (T3 < T, for the lumped case), i.e. when 7T} has no
effect in determining the delay. Of course, the delay may never actually be
less than 7. Note that it is suboptimal to work with 7 > Tp (or Ty > T; in
the lumped case), since we can reduce (width) until Tg = T, (or Tq = Ty),
ending up with a line occupying less space with the same delay.

2.7.2 Relations between S, B and N

As was with normal conductors, we agree to choose (width) so that
the condition d*~! > kx#(width)*~! is always satisfied with equality. We
will mostly be at an advantage (because of the inverse dependence of 7 on
(width) for given £), and never at a disadvantage by doing so (within the
limits of our abstraction).
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Figure 2.22: Superconducting interconnection model when 7 <Tp(or Ty < Ty
in the lumped case).

We refer to Figure 2.22. If d; is small and heat removal need not be
considered, a moments reflection reveals that it is optimal to work in the in-
termediate region, assuming we can manufacture (width) < 4X. To see this,
simply notice that as we scale the system photographically, £ varies in linear
proportion to (width). The key quantity to be calculated is Cmac/(width).
If BL1/T, =1/T =1/Ty so that xy = 1, then for e < n

Since in this region T}, = (4\/v)¢/(width), and assuming T} is small so that
T =T,, we find, with r,,,,, ~ N/

GN(=1)/[n(e-1)] _ (%) (k)= 2/(e-1), (2.75)

- This relation is independent of the specific choice of (width), as long as

it lies between 4V/(J,.\/pt/¢) and 4. Can a nonuniform distribution of
linewidths help? 4 is already less than a micron. Unless we can manufac-
ture (width) less than 0.1 um or so, there is not much room for variation,
even if we assume 4V/(Js.1/jt/€) to be small. Thus we do not consider
this case.

Notice that this relation is identical in form with (2.11) derived for
optical interconnections. The relation for BT} > 1 1s likewise similar to
(2.13). If ¢ =~ 4 for the superconducting interconnections and optical
wavelengths (A ~ 0.5 ym) are utilized for the optical interconnections, the
relations become numerically identical within a factor of 2.

We stress that despite the similarity of the above relation to the cor-
responding optical relation, the superconducting system may be smaller
in size. The reduction in line lengths is precisely cancelled by the inverse
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dependence of the delay on (width), so that there is no performance ad-
vantage. The potential advantage in terms of cost of area is limited by
how small we can manufacture (width) and how much the voltage can be
reduced and /or critical current increased.

2.7.3 Heat Removal

A. Two Dimensions

Heat removal has no effect on performance unless it requires that d
be large enough that (width) > 4X. Wiring requirements dictate d >
kx7(width)/M whereas heat removal dictates d > (kEB/Q)Y2. Thus
with increasing N, heat removal is not a problem in 2 dimensions. For
finite values of N, heat removal may require (width) to be larger than 4\.
The analysis is very similar to the optical case; in fact, Figure 2.6 is ap-
proximately applicable to superconductors as well, provided we interpret
E= 2V2\/e/_,u Ty. If low voltage values are used, this energy can be much
less than ever achievable with optical interconnections.

When heat removal or element size is not a limiting factor, reducing
(width) also reduces £z, keeping Lmac[(width) and the system delay
constant. This not only reduces system size, as mentioned earlier, but
results in less total energy consumption (since Zy o 1/ (width)), making it
desirable to choose (width) as small as possible. However, this increases
power dissipation per unit area. Thus, if we use the expression for energy
E = 2\/e/u V2T valid in the region (width) > 4)X and find that heat
removal requires that the scale be large enough that (width) > 4), we know
that we are not excluding any room for improvement in the (width) < 4\
region. When heat removal allows (width) < 4X, S does not depend on
heat removal parameters anyway and is given by (2.75).

B. Three Dimensions

This case is likewise similar to the corresponding optical case, with
the above remarks in mind. We only need interpret Figure 2.9 with the
appropriate superconducting energy E.

2.7.4 Asymptotic Properties

The asymptotic behavior is identical to that of optical interconnections
whether heat removal is considered or not and is not repeated.
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2.8 Discussion

In this work we have emphasized certain basic physical considerations
which we believe are major factors limiting the computational capacity of
large scale processing systems. Apart from a multitude of engineering issues
[20], one must also be aware of other physical limitations which we have not
considered. For instance, it may be that power distribution is the major
limiting factor, especially if resistive wires are employed.

Of the many implementation related issues and limitations we have not
considered, we briefly mention a few. Satisfactory termination of trans-
mission lines may prove to be very difficult, putting optical systems at
an advantage. We are still far from being able to construct fully 3 di-
mensional systems with conductors. In fact, we do not know of a fully 3
dimensional optical architecture that can provide an arbitrary pattern of
interconnections [46]. The performance of stacked 2 dimensional or other
‘quasi’ 3 dimensional layouts would lie between the fully 2 dimensional and
fully 3 dimensional cases we have considered. Presently we are far from
being able to realize waveguide circuits approaching the diffraction limited
(width) ~ X we have assumed. The construction of efficient, reliable and
small size transducers is another major difficulty with optical interconnec-
tions. A mature thin film technology for superconducting interconnections
is still to be developed. On the other hand, the use of laminated conductors
promises improvement (even if by only a constant factor) for normal con-
ductors [64]. Another issue we did not directly account for is that of fan-out.
Architectures involving large fan-outs tend to favor optical communication
[11].

We have exclusively concentrated on highly interconnected systems char-
acterized by large p (or equivalently n). Not all applications require such a
system. For instance, to add a million pair of numbers, all we need is a mil-
lion adders. However, it is generally recognized that the solution of many
interesting problems, including those that are often loosely associated with
human ‘intelligence’, require greater degrees of communication between the
primitive elements.

In this work we have assumed p to be constant throughout the system
hierarchy. More generally, p may be a function of hierarchical level. Al-
though it is possible to extend our analysis to this more general case, here
we have not attempted to do so as this greatly complicates the analysis
without contributing any additional understanding.

Perhaps our most important reservation regards the underlying paradigm
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of computation inherent in our models, which is essentially related to the
way electronic digital computers have been traditionally built. For instance,
we are assuming the energy associated with the transmission of each bit of
information to be irreversibly dissipated. For some applications, this need
not be the case at all [66]. Although our results are applicable when the
primitive elements are optical switches, we must bare in mind that the
way we process information with optical computing systems may be quite
different than with a digital electronic computer.

2.9 Towards Unifying Physical and Algorithmic Approaches

We desire to solve problems of ever increasing size, despite the fact that
the human life span is more or less constant. Let us say we are interested in
solving a problem of certain size in a certain finite amount of time. We will
construct our processing system by assembling together a set of primitive
elements with given function. We will agree on a certain procedure in which
the number of elements N may be increased by introducing new elements to
the system in a useful way, and on how the computation is to be performed
(i.e. the algorithm). In conjunction, we will agree on a family of connection
graphs, one for each value of N, with interconnectivity p.

It is possible to an extent to trade off between the three quantities S
(or Sgve), B and N in solving a given problem. For instance, it may be
possible to solve a given problem in a given amount of time with a small
yet fast system, or alternatively with a large yet slower system. In general,
the set of all possible triplets (S, B, N) which will enable us to solve the
given problem in the given amount of time will define a region in S-B-N
space, satisfying the following property: if (So, Bo, No) is an element of this
region, so is (¢150, t2Bo, t3Np), where ¢; > 1. This region may be described
as ¥(S,B,N) > Cg. We will speak of this region as the W-region and
the surface defining this region as the W-surface. Simple examples of such
considerations are the area-time bounds of VLSI complexity theory [18].

These lower bounds should be interpreted in conjunction with the up-
per bounds of the form ®(S, B, N) < Cs derived in this paper, for which
the terms ®-regions and ®-surfaces will be used. If there exists a triplet
compatible with both bounds, we will be able to solve the given problem
in the given amount of time with the given interconnection media.

By comparing the regions ®(S, B,N) < Cg and ¥(S,B,N) > Cy it is
not only possible to decide whether a given interconnect medium is capable
of handling given problems, but also to determine the appropriate choice
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of S, B and N. Figure 2.23 illustrates the various possibilities, where, for
simplicity in illustration we assume that B is not involved in the tradeoff.
Figure 2.23a illustrates a situation where the ®-surface completely lies be-
low the ¥-surface. This interconnect medium is not capable of performing
the prespecified task in the given amount of time. It is necessary to relax
the W-surface by increasing the time allowed for computation until a point
of intersection is reached (Figure 2.23b). Thus it is possible to determine
the minimum time in which the task may be performed. There will be a
certain value of N for which this minimum time value can be achieved. Fig-
ure 2.23c shows a situation where we have the flexibility of choosing S and
N from a finite interval where the technology curve exceeds the requirement
curve.

We now see how we may compare various interconnect media charac-
terized by the functional forms ®(S,B,N) < Cg with reference to the
computational requirements of a given problem-algorithm. We illustrate
this in Figure 2.24 where we have again assumed that B is not involved.
Figure 2.24a shows the upper bounds for two different interconnect media.
The curve lying to the upper right is superior to the other regardless of
problem requirements and operating point. Figure 2.24b illustrates a sit-
uation where one medium is superior to the other for N greater than a
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Figure 2.23: U-surfaces versus ®-surfaces. (a) illustrates a situation where there
are no common points among the regions defined by the lower and upper bounds.
In (b), the requirement on computation time has been relaxed so that a point
of intersection is obtained. In (c) we are free to choose from a range of possible
values of S and N.
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Figure 2.24: Comparison of interconnect media. (a) illustrates the ®-surfaces
associated with two different interconnect media, one of which is superior to the
other. In (b), again the surfaces of two media are shown, one is superior for
values of N larger than a critical value, the other for lower values. (c) shows a
requirement curve which has an intersection with only the curve belonging to the
first media, whereas (d) shows one which intersects only the second.

certain critical value. Neither, one, or both may be able to perform the
stated task in the stated amount of time. Figure 2.24c and d illustrate two
different requirement curves, one of which has an overlap with only the first
technology curve, the other with the second.

The use of ¥-surfaces is only one of many possible ways to characterize
the computational requirements of a problem-algorithm, but one which we
believe is especially suitable for interfacing the algorithmic and physical
aspects of computation.

Hillis [68] has noted the disparity between traditional abstractions of
computing systems and their physical implementation. For instance, much
of the literature on parallel computation is based on models which may
not be possible to directly implement [18]. He has argued in favor of a
physical theory of computation. Such a theory should take into account
basic properties of the universe, such as the impossibility of action at a



118 CHAPTER 2: LIMITATIONS OF INTERCONNECTIONS

distance, and in the case of dissipative systems, limitations associated with
heat removal.

The mentioned abstractions have been inherited from a time when all
computing systems were device limited. Although this is no longer true,
there is still a tendency to consider wires to be mere parasitics degrading the
intended performance of the devices they interconnect [5]. With increasing
system sizes, it is probably more appropriate to base our expectations of
intended performance on interconnect oriented models and consider device
limitations as parasitics degrading these expectations. This has been the
philosophy of this paper.

(Parallel) algorithms must be developed in conjunction with their phys-
ical implementation. As an example, we consider the work of Feldman et
al. [69]. They consider the problem of matrix vector multiplication, which
may be solved in parallel on many graph topologies. They, however, intro-
duce a new family of graphs on which this problem may be solved which
also have an efficient optical implementation due to their space invariant
properties.

In this paper we limited ourselves to an examination of the behavior of
S (i.e. inverse signal delay) as a function of N for constant B and to an
examination of the asymptotic properties of the bisection-inverse delay and
bisection-bandwidth products. Based on the discussion of this section, the
reader will realize that these are mere examples, which we have chosen for
their simplicity and general interest. A complete treatment employing the
formalism of this section is beyond the scope of this paper.

2,10 Summary and Conclusions

In this work we quantified the communication requirements of a pro-
cessing system by its interconnectivity (Rent exponent) p, or equivalently
the fractal dimension n. The distribution of line lengths in our system
obeys an inverse power law distribution, with p as a parameter.

We derived physical models of interconnection media which we believe
approximately represent the best achievable. We provided a unified de-
scription of terminated and unterminated cases for conducting lines which
inherently account for major physical mechanisms such as the skin effect,
superconducting penetration depth and critical current limitations. We
showed that it is preferable to use a single wide normally conducting line
rather than many narrow ones, as long as the pulse width is not device
limited. The interconnection models presented in this work enable results
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which are more physically realistic than those of VLSI complexity theory,
which are based on physically naive models.

Combining our system and physical models, we derived relations of the
form ®(S, B, N) < Cj for each interconnection technology. These relations
bound the largest simultaneously possible values of S (inverse signal delay),
B (bit repetition rate) and N (number of elements). We presented an
abstract formalism enabling us to relate these bounds to the computational
requirements of given applications.

In discussing the limitations of conducting interconnections, we allowed
arbitrarily small scaling and arbitrarily fast devices. We saw that normal
conductors, whether unterminated or terminated, did not allow B to be
kept constant with increasing system size. Both, B and S were found to
sharply decrease with increasing N. Making longer lines wider leads to
improvement by only a constant factor and does not change the asymptotic
dependence on N. The bisection-inverse delay and bisection-bandwidth
products were found to be bounded from above. This is in contrast with
the other technologies with which it is possible to arbitrarily increase B and
the bisection-bandwidth product for any given N, by suffering a decrease
in S.

If repeater structures employing ultrafast devices are possible, the per-
formance for 2 dimensional layouts may approach that possible with the
other technologies we have considered within an order of magnitude. For
large system sizes, they will still be more costly in terms of energy consump-
tion. In 3 dimensions, repeaters are inferior to optical and superconducting
technologies since they result in faster growth of signal delay and slower
growth of the bisection-inverse delay product with increasing N.

Optical and superconducting interconnections lead to very similar per-
formance for same dimensional layouts and similar switching energies. Al-
though superconducting layouts may be much smaller than optical layouts,
they do not result in smaller delay because of the inverse dependence of
delay on line width, once conductor thickness drops below the penetration
depth. Optical interconnections may enable a 3 dimensional layout and
freedom from termination problems. On the other hand, superconductors
may offer much lower energies, especially if the voltage level is reduced. In
2 dimensions, this leads to improved performance for only a limited range
of N, since wiring density becomes more important than heat removal as
N increases. In 3 dimensions however, this enables lower signal delay for
given N and B.

In this work we compared the ability of given technologies in providing
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communication between a given array of elements. Elsewhere, we have
discussed how these technologies may be used in conjunction to achieve
performance not possible with any alone [70] [71].
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A Appendix

A.1 Extension to Fan-Out and Fan-In

One can model the equivalent of a fan-out or fan-in situation using only
pairwise links. This is depicted in Figure 2.25b. The layout minimizing
connection length is shown in Figure 2.25a. Notice that the inefficiency
in using pairwise links is bounded between 1 (when two target elements
are located as in Figure 2.25d) and 1/F (when the target elements are as
in Figure 2.25¢), where F' is the maximum fan-out or fan-in. Thus our
analysis based on the total interconnection length kNZ may be modified by
the introduction of an appropriate average factor 1/F < nr < 1, if specific
characteristics of such an architecture are specified. For a discussion of the
effects of fan-out and fan-in on energy, the reader is referred to [72] [11].

A.2 Coefficients for the Moments of g(r)

The coefficients appearing in (2.4) are given by

me

Gm = (m—e/n)(e —e/n+m) (2.76)
o=
=1
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Figure 2.25: Extension to fan-out and fan-in. (a) shows optimal power splitting
which minimizes the total connection length. (b) illustrates the same connec-
tions wired using pairwise connections only. (c) and (d) show the two extreme
cases illustrating the bounds on the inefficiency incurred by using only pairwise
interconnections.

The major approximation made in the derivation of (2.4) is to ignore
1 with respect to N™/¢=1/? when e < mn and vice versa when ¢ > mn.
Thus, if N™/¢=1/" s at least ~ 2 when ¢ < mn (or at most ~ 1/2 when
e > mn), our error is less than about a factor of 2. If m/e — 1/n ~ 0, it
is more appropriate to use the logarithmic dependence. In this work only
the first, second and third moments are used. Since we restrict ourselves
to highly interconnected systems for which n > e, the condition mn > e is
always satisfied.

As an example, let us calculate the values of & = (; for the special case
n=oo(p=1). We find 2/3 and 3/4 for e = 2 and e = 3 respectively.
Assuming a cartesian metric, the exact values of these coefficients for a
square (or cubic) grid are 2/3 and 1.

A.3 Three Dimensional Optical Layouts Where the Elements
Are Confined to a Plane

Here we consider the case where the elements are constrained tr lie on a
planar N1/2x N1/2 grid, as in the fully 2 dimensional layout, b=t the ‘wires’
are allowed to leave the plane. Let the system be confined t. a square prism
of volume N'/2dx N'/2d x M(2)). That is, we are me=suring the height of
the system in units of (2A) and denoting it by M. if a sandwich of planar
waveguides is used, M may be interpreted as the number of layers. Unlike
in the fully 2 dimensional case, where M wus specified as a constant, here
we will be free to choose M as large as we wish. The contributions of the
vertical runs will be taken into consideration.
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Due to finite element size d; and heat removal considerations, d must
satisfy the conditions d > dg and d* > kEB/Q.

The horizontal contribution to the total interconnection length is just
kNy7d as before. For the vertical contribution, let us first consider the
worst case, that all signals must travel up and down a total length of
2M(2)). This would be the case (within factors like V2 etc.) if communica-
tion is established by a hologram or other reflective imaging system located
M (2)) above the device plane. Thus by multiplying the total connection
length by (2))? [46] we find the total volume needed for communication to
be kNx(7d(2X)? + 2M(2))?). Requiring that the total available communi-
cation volume Nd?M(2)) exceed this, we obtain, in addition to previous

requirements,
d? > ﬂ%(ﬁd-{— 2M(2))) (2.77)
kx(2\)7 1
d> —X(ﬁ—)f + (2kx) 3 (2)). (2.78)

We immediately notice that the second term may be ignored, if the trans-
ducers are restricted to a single planar layer on the surface of the elements,
as would almost always be the case in practice. We cannot expect the trans-
ducers to be packed denser than one per (2))? so that d? > dj > kx(2X)*.
Thus, the condition d > dy already covers this requirement (within a factor
of v/2 ). Now we remember that we had assumed the worst case for the
contribution of the vertical runs. The vertical contribution, which we saw
can be ignored even in the worst case, may actually be much less.
Thus including all considerations, the minimum value of d is given by

d = max [(’“EB) & "’X’:m),dd} . (2.79)

Q M

In passing, we notice that it is of no utility to choose M to be any greater
than kx7(2))/ max[(kEB/Q)Y?,dq).

Assuming the propagation delay T, > T, the signal delay 7 = 7, may
now be expressed as

r= % [N%d + 2M(2A)] , (2-80)

again assuming worst case contribution of the vertical runs. For the moment
assuming that d is given by d = kx7(2X)/M, the optimum value of M
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minimizing the delay is found as M = (N'/2kx#/2)Y/2. Of course, we
never need set M to a value greater than that mentioned in our passing
remark above. We then find, within a factor of two that the resulting delay
is given by (for p > 1/2)

1 1 kEB
—=T=-max |N? ) (lcxn)%N%(QA),N’i‘dd (2.81)
S c Q

where x = max(1, BT}) and d2 > kxd>.,,, where dirqans denotes the extent

of a transducer. The reader will notice that apart from the last term, this
equation is very similar to (2.18).

Unless p = 1, the second term falls behind with increasing N. Let us
consider the case p = 1 and rewrite the above equation for BT} > 1 as

1

31- = %(kNB)%max [(g)

where we ignored all numerical factors and assumed that d% ~ kxd?. ...,
Le. the element size is transducer limited. Of course, the second term
is redundant since dirqns > A Thus, we conclude that, given that the
elements are to be arrayed on a planar surface, circuits with p = 1 do
not lead to greater delay than those with smaller p, since the system is
transducer surface limited [46] anyway. Another conclusion is that, when
p=1, only a constant increase in delay (by at most a factor of dirans/ 2)
is incurred by constraining the elements to lie on a plane, instead of a 3
dimensional grid.

As noted earlier, our results are valid for a system employing optical
switching if one interprets £ as the switching energy.

The reader is referred to [12] for further discussion of situations where
the elements are constrained to lie on a plane.

:Tr%’\: Tr%dtransJ (282)

A4 Signal Delay for VLSI Circuits

In this work we have attempted to derive models of conducting intercon-
nections which represent the basic limitations of the wires and which are
independent of device technology. For an alternate approach, the reader is
referred to 3] [4]. Essential to our analysis is the assumption that Ty, the
intrinsic delay of the switching devices can be specified as a given constant
independent of line length. In practice Ty may be coupled to T} and/or
may depend on whether the line is terminated or not.
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As an example, let us consider the rise time 7 = T of an unterminated
VLSI line driving a very high impedance load

T~RqCa+ (Ra+ Rf)Cf = R4(Ca + Cf) + 1% (2.83)

where Cy is the drive capacitance and we have replaced RC¢? = T;. Now,
if we can argue that the first term can be kept constant independent of line
length, we may define Ty = R4(Cq + C¥) and thus write the total delay in
the form T' = Ty + T} ~ max(Ty, T¢).

The term R4(Cq + C¥) can be kept constant, as argued by Thompson.
We simply agree to increase the driver size in proportion to £, thus reducing
R4 o< 1/£ and increasing Cy o< £. Since the area occupied by the wire also
increases, the area of the driver can always be absorbed in the area of its
wire [73].

Such arguments may not always be possible. However, remember that
it is suboptimal to work with lines which satisfy T; > T} and that in any
case, we are mainly interested in small values of Ty. If Ty is very small
(< 10-100 psec or so), dispersion and attenuation models may have to be
introduced for optical and superconducting interconnections.
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