Invited Paper

Constraints in the Construction of Computers with ever Larger
Numbers of Processors

Joseph W. Goodman
Department of Electrical Engineering
Stanford University
Stanford, CA 94305 USA
and
Haldun M. Ozaktas
Department of Electrical Engineering
Bilkent University
06533 Bilkent, Ankara, Turkey

1. INTRODUCTION

As the parallelism of digital computers increases, the limitations associated with inter-
connecting a large number of processors becomes a greater and greater constraint on
system performance. For example, as we pack more and more processors of a given size
together in a single machine, naturally the physical dimensions of the machine must
grow, and with that growth comes an increase in the maximum time delay experienced in
communicating between the most distant processors in the array. To a degree that
depends on the algorithm being executed and its communication requirements, that
communication latency between different parts of the machine ultimately poses a limit to
the speed with which the machine can solve problems. The growth of size of the machine
and the associated latency limitations in fact take place even in the idealized case of pro-
cessors that occupy no volume themselves. We rapidly find that these infinitesimal pro-
cessors must be separated by finite distances for both of two reasons: 1) a volume of
space is required to allow the many interconnections between such processors to be
realized, and 2) a minimum separation between processors is required to allow heat
generated by both the processors and the interconnections to be removed from the
system.

Our purpose in this paper is to discuss some of the fundamental aspects of the problem
described above. We consider in what follows two different cases: 1) all interconnections
are optical, and 2) all interconnections are electrical. Of course with a hybrid set of
interconnects (i.e. part optical and part electrical), better performance can be achieved.
However, we do not consider hybrid strategies in this paper. This work is the result of a

Ph.D. thesis at Stanford University 1 from which a number of publications resulted 2-6.
2. MODELS AND ASSUMPTIONS

We assume an ideal model of a parallel computer consisting of N processors that can
communicate with one another. The computer can be modeled as a graph, where the
nodes of the graph represent computing elements, while the edges of the graph represent
interconnections between computing elements (see Fig. 1). Naturally the graph structure
contains all necessary information about the interconnectivity of the elements. The
bisection H of a system is defined as the number of graph edges crossing an imaginary

boundary dividing the system in two. A graph edge may be implemented with y = /
parallel interconnections (e.g., physical wires). Thus yH physical interconnections cross
the imaginary boundary.

82/ SPIE Vol. 1806 Optical Computing (1992) 0-8194-1006-3/93/$6.00



For the purposes of this discussion, we assume that the processing elements in the array
are arbitrarily fast, and therefore that all time constraints are imposed by the interconnec-
tions. Of course, finite processor speed can also be included in the theory, but we will
not do so here.
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Figure 1. Connected grid model

Rent’s rule may be used as a model for the “reach” of the interconnections from one pro-
cessor across the array. If there are k interconnections leaving each processor, then
Rent’s rule states that the number of interconnections emanating from an array of N’
nodes in an array of N total nodes is given by

P(N)=kN"?, 1)
where p is the Rent exponent (0 < p <1 ) and we have assumed that N’ < I%

For a system satisfying Rent’s rule, and for p > (e —1)/e, where e is the dimension of the
layout (e = 2 or 3), the bisection is given by

H = kkN?, )
where x is a coefficient of the order of unity (c.f. Eq. (14)). Note that this relation
implies that H grows faster than N172 in two dimensions and faster than N2/3 in three

dimensions.

3. WIREABILITY LIMITATIONS
Optical Interconnections

In two dimensions we assume that there is a minimum width A associated with a single
interconnection, where A represents the optical wavelength. Practical constraints usually
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prevent one from achieving the ultimate limit, so that the actual width is typically some
(often large) multiple fA, where f > 1. If the bisection of graph is H, then clearly the

minimum linear dimension L of a planar processor array is L = fAH , assuming only one
layer of interconnections. Hence we see that we must be dealing with a planar array that
is at least L x L in size, and the propagation delay between the most widely separated

elements is of the order of % where v is the velocity of propagation on the

interconnections. Equivalently the propagation delay 7 is of the order of

T___f?LH___ﬂkth"
v

v
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In three dimensions, the cross-sectional area of a single interconnection is (Af )2, and

therefore the cross-sectional area of the system must be at least ( ﬂl)zH for H channels
to pass. The square root of this cross-section gives the minimum linear dimension of the
1

array, L= fAH?. The propagation-limited delay becomes
1 1
fAH? _ fAe?)?

v A4

T= (4)

We note a slower rate of growth of 7 with N in three dimensions than in two dimensions,
as might have been expected.

Let B represent the maximum bit repetition rate. The maximum value of this repetition
rate is limited by the transducers, since both attenuation and dispersion are not significant
over the short distances of interest here. If we wish to increase B beyond the limit B,y
allowed by the transducers, we can do so only by adding parallel connections and
transducers. As we do so, system size and delay will increase. Thus there is a relation-

ship between B and propagation delay 7. For bit repetition rates above the transducer
limit, as we increase B, we also increase 7.

The bisection-bandwidth product, HB can be arbitrarily increased at the cost of increas-

ing 7. The bisection-inverse-delay product H/1 is found to rise as N2/ with N,
where e again represents the dimension of the layout . Thus the bisection-inverse-delay
product can increase with N if the dimensionality of the layout is greater than 2.

Electrical Interconnections
The signal delay of an unterminated electrical line of the RC type is given by
2

-, ®)

T

where W is the line-to-line spacing (some multiple of the width of a line), £ is the length
of the line, and the constant & is proportional to pe, where p is the resistivity of the
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conducting material and € is the dielectric constant of the insulator. In two dimensions
the linear extent of the system must be at least HW. Thus the length of the longest line is
approximately HW, and the delay becomes

_ o(HW)

T W2

= aH® = afkkN?)". ©6)

For an unterminated line, By, is equal to 1/7. Thus By, falls as N 727 with increasing

N, while 7 rises in proportion to N?”. Any attempt to increase B,y by increasing W
(i.e. using wider wires with less resistance) is thwarted by the resulting increase in line
lengths. On the other hand, any attempt to increase By by reducing W (so as to get

shorter lines) is thwarted by the inverse dependence of T on W.

The bisection-bandwidth product and the bisection-inverse-delay product are equal in this
case, and have the dependence

HB = _{1; oc Np(¢-3)l(¢-l) )

With both two- and three-dimensional layouts, these quantities can not be increased by
increasing N.

If we allow the electrical interconnections to be superconducting, then it can be shown
that the square law dependence on H is removed, and electrical interconnections behave
very similarly to optical interconnections.

4. HEAT REMOVAL LIMITATIONS

Optical Interconnections

Our ability to remove heat from a two- or three-dimensional system is characterized by a
quantity O, representing power removable per unit of cross sectional area. We assume
that there is an upper limit to the value of Q that can be achieved. If P represents the
power dissipated in the system, then we must satisfy the constraint

or' 2P, ®
where L is again the linear extent of the system.

Our system has N elements with £ connections each operated at a bit rate of B bits/sec.
The energy per transmitted bit required for optical interconnections is represented by E,
joules. Thus the total power dissipation associated with the interconnections is

P =kNE,B. ®)

This relation, combined with Eq. (9), leads us to the conclusion that the linear dimension
of such a system must satisfy

L>(kNE,B/Q)". (10)
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lectrical In nnection
For simplicity, we consider here only unterminated lines. The terminated case is more

complex but has been analyzed (see comments in the comclusions section). The energy
required per transmitted bit is written

E =7, (11)

where the constant y is proportional to €V2, € being the dielectric constant and V the
voltage to be delivered to the end of the interconnection. Note in particular the linear
dependence of energy on length, in contrast with the optical case, in which the required
energy is, to a good approximation, independent of length.

Let 7 denote the average interconnection length. If the elements in the array are spaced

by distance d, then £ can also be represented as 7d, where 7 is a dimensionless quantity
representing the average length of an interconnection measured in grid spacings.

The heat removal condition of Eq. (8) can now be stated

QI* > kNYIB. (12)

1
Using L = N*d, (e =2 or 3), we obtain

e—1

L>(kyB/Q)FN « . (13)

Using an argument that follows from Rent’s rule, we may replace 7, through

e—1
P

F=xN" (14)

(valid for p > (e—1)/e) so that
L2 (kryB/Q)N’ (15)

independent of the value of e. In these expressions x is the same constant appearing in
the expression for H. We emphasize that the linear extent of a heat-removal-limited
system does not depend on the dimension of the layout! Use of three dimensions rather
than two merely helps with wireability, improving it so that it is no longer the dominating
consideration, leaving heat removal as the dominant problem in three dimensions.

Since we assumed that p > (e—1)/e, we can be sure that p > 1/2. Comparing egs. (10)

and (15) we see that the linear dimension of the system grows with N faster in the
electrical case than in the optical case. This is a consequence of the fact that the electrical
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communication energy grows with length while the optical communication energy does
not.

If p<(e—1)/e, then Fis approximately constant, and in two dimensions the growth rate
is the same for both optical and electrical interconnections. In this case, the average
interconnection length does not increase with N. This corresponds to the locally
interconnected case, which is less interesting than the more globally interconnected case.

In three dimensions, with p <(e—1)/e, the electrical case is again worse. The reason
again lies in the fact that the optical communication energy is is independent of distance
while the electrical communication energy is not. In both the electrical and the optical
cases, the inter-element spacing grows with N due to heat removal. This can be seen
from the fact that L increases in proportion to NI/2 while in three dimensions there are

only N1/3 elements along an edge. Clearly, then, the inter-element spacing grows with N.
In the optical case this causes no extra power dissipation in a given connection, but in the
electrical case it does.

5. CONCLUSIONS

In two dimensions, wireability limitations are more important than heat removal, whereas
the opposite is true in three dimensions.

In both the wireability-limited and heat-removal-limited cases, optical interconnections
are better than electrical interconnections. The reasons lie in two facts: 1) the optical
energy required per bit does not increase as strongly with length as does the electrical
energy per bit, and 2) the optical delay is proportional to length, not to the square of
length as in the electrical case.

Could terminating the electrical lines and propagating short pulses help the electrical
case, since delay would then be proportional to length, rather than its square? For a given
W, resistance increases with the length of the line. After a certain length, the lines
become too lossy, and pulse transmission is not possible. Can the resistance be kept
under control by making the lines wider as they become longer? No, for the lines then
take up more space, requiring greater inter-element spacing, larger system size, and even
longer lines.

A similar argument holds for energetic considerations. Can we save energy by sending
short electrical pulses of constant length along a terminated line (instead of charging the
line up), so that energy does not increase with length? No, for again the effects of
resistance require that the energy per pulse increase with line length.
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