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Effect on scaling of heat removal requirements in three-dimensional
systems

HALDUN M. OZAKTASt, HAKAN OKSUZOGLUY,
R. F. W. PEASE§ and JOSEPH W. GOODMAN§

A first-order discussion of convective heat removal from a hypothetical
3-dimensional computing system is presented. A textbook treatment indicates that
our heat removal capability can be characterized by a quantity Q, the amount of
power we can remove per unit cross-section. Thus the minimum length of the
system is proportional to the square root of the total power dissipated. We predict
Q~10*Wem™2 assuming an applied pressure difference of 1atm, a maximum
temperature rise of 100K and the use of water as the coolant fluid.

1. Introduction

It is desirable to pack the elements of a computing system as closely as possible
so as to minimize signal delay. Wiring and heat removal requirements both set
bounds to the maximum achievable density (Pence and Krusius 1987).

In two dimensions, wiring requirements dictate that the linear extent of a system
of N elements (for instance gates) grow as oc N¥ where 1/2<¢<1 is a measure of the
connectivity of the system (Feuer 1982, Bakoglu 1990, Ozaktas and Goodman 1991).
Most logic circuits are known to exhibit g~0-6 whereas, for instance, neural
networks may exhibit g~1. If we assume the power dissipation per element is
constant and the amount of power we can remove per unit area is specified, heat
removal requirements dictate that the linear extent of the system grow as oc N2,
Thus, unless ¢=1/2, wiring requirements will surpass heat removal requirements
with increasing N. Larger values of q enable greater parallelism in data transfer, but
result in larger layout area and delays, so that a detailed analysis is necessary to
determine the optimal value of g resulting in a system with optimal properties
(Bakoglu 1990). - :

In three dimensions, writing requirements dictate that the linear extent of th
system grow as oc N¥2 where 2/3<g<1 (Ozaktas and Goodman 1991). Here we
show that heat removal again dictates a growth rate of oc N¥/2, Thus, for large N,
the choice of ¢ has little if any effect on the resulting system size. Since smaller values
of ¢ will not reduce system size and delays, we might as well employ high values of g,
increasing parallelism and connectivity. Thus it will be more beneficial to employ
highly interconnected approaches in large scale 3-dimensional computing systems.

The above arguments can be modified if the power dissipation per element is not
constant. However, it should be evident that 3-dimensional systems exhibit a
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tendency to be heat removal limited, so that highly interconnected approaches can
be employed with little effect on system size and delays.

2. Analysis

Let 2 denote the total power dissipated in a square prism of volume W x W x L
with L<W (see the Figure). We keep L/W fixed throughout our discussion. The
total power 2 is dissipated uniformly in the solid volume between the tubes. A
coolant fluid flows through W2/4r? tubes of diameter 2r, and axial separation 2r,.
So as to ensure that the volume of the tubes does not exceed a certain fraction of the
total volume W2L, we will require that n=ro/r; <fmax<1.

Our purpose is to determine the minimum value of W at which we can
successfully remove the dissipated power 2. To illustrate the general principles,
several textbook (Holman 1981) assumptions will be employed:

(a) Laminar flow of an incompressible fluid,

e
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Heat removal from a square prism via fluid convection.
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(b) Temperature gradients do not affect fluid flow and the pressure is uniform at
any cross-section, decreasing linearly in the axial direction,

(c) The flow is fully developed, i.e. invariant in the axial direction (Holman
1981), -

(d) Ignore edge effects,

() Based on similar arguments as in (Keyes 1987), heat conduction is significant
only in the transverse plane (thus, the heat flux entering from the walls of the
tube is uniform along the axial direction, resulting in a constant temperature
gradient in the axial direction),

(f) Material parameters are constant.

Our analysis is modelled on that of Tuckerman and Pease (1981) and Tuckerman
(1984). The two dominating components of thermal resistance are those due to the
heating of the fluid (@, =AT,,,/#) and due to the transfer of heat at the solid—fluid
interface (@yony = AT, o0y/2). O, may be expressed as 1/pC,f where pC, denotes the
volumetric heat capacity of the fluid and f is the total fluid flow rate. The flow rate
through a single tube is given by nr$AP/8uL where AP is the applied pressure
difference and u is the viscosity of the fluid (Holman 1981). Multiplying this with the
number of tubes to find f, we obtain

321 u L
ec'l_I?pCAP;%Wj (1)

© ..., may be expressed as 1/hs where s denotes the total internal surface area of the
tubes and 4 is the heat transfer coefficient. 4 is given by Nux/D where x is the
conductivity of the fluid and D is the hydraulic diameter, equal to its geometrical
diameter for a tube (Holman 1981). The Nusselt number Nu is chosen as its steady

state value of 48/11, based on similar arguments by Tuckerman and Pease (1981)
and Tuckerman (1984). Thus:

1M1 7
conv =5 e IWZ @

Note that it is optimal to set y=1,,,. Then the value of r, minimizing @ =0,,,
+©,,ny and the resulting thermal resistance is found to be

uK

4_ 4 — 34. 2
7o =(Nma"1)* =349 2CAP L 3
345/ p 2 1
©=20, = P (———p Crh P) Wi “

Note that the optimum value of r, depends only on L whereas the minimum value of
© depends only on W. The resulting temperature rise is AT=AT, +AT,,,
=2AT,,,=02. We can now define the more intrinsic quantity Q by the relation
QW?=2, so that Q=AT/@W?2. If the maximum allowed temperature rise is
specified, we may express Q as '
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1/2
0=02972,, (EE‘EAE) AT (5)

Once W=(#/Q)"'? is calculated, we can go back to (3) to calculate the optimum
value of r, for a given £.

Choosing riocL keeps the hydraulic resistance of the tubes and the mean flow
velocity v through the tubes constant. It can be easily shown that v=r3AP/8uL
=0-74 (xAP/pC )", independent of W-and #. Likewise the mean flow velocity
through the system v,=(nr}/4r3)v is given by 0-58 2. (KAP[pCy1)'/%, in terms of
which we may write the intuitively appealing Q= pC0,AT.0= pC0,AT/2, consistent
with (5).

We finally calculate the viscous power dissipation 2 ,=APf associated with the
fluid flow. Using the previously derived expression for f and expressing everything in
terms of 2, we obtain #,=(QAP/pCAT)?, an exceedingly simple result. 2, is
proportional to the power dissipated by the devices. We will later show that for
typical values, #,< 2.

We have ignored the effects of conduction in the solid medium in which the
circuits are embedded. There will be no heat transfer through the boundaries of a
cell 2r, x 2r; x L enclosing each tube (except near the edges of our system). If we
pretend this cell is a cylinder of diameter 2ry, conduction in the solid may be
accounted for by replacing 1/x—1/k+12mA(n)/11x, where K, is the conductivity of
the solid and A(r) =(n (1/1%)— (1 —1?))/4(1 —n*). Again the largest possible value of
n is preferred, for instance, A(0-5)=0-21. Thus the effects of solid conduction may be
ignored with little error if x,>10x or so. (The value of x, should be taken as an
appropriate average value for the particular materials and structures—including
wiring—involved.)

We also assumed uniform power dissipation throughout the solid. If instead the
power 2, associated with each device is dissipated within a small radius of 74, an
additional temperature rise of ~32,/8nks,r, would be observed. If #,=1mW,
r;20-1pm and ks, ~150Wm™'K™!, we find that this temperature rise does not
exceed 10° and is usually acceptable.

3. Numerical example .

Assume L/W=1, p=10kgm~3, C,=5x103Jkg™* K7/, k=05Wm K™},
p=10"3kgm™'s' (corresponding to water), AP= 10°kgm~'s~2 andf
AT =100K. We take 7, =0-5 so that the volume occupied by the pipes is less than
25% of the total system volume. Then:

r2=187x10""L=1-78 x 10~ 112 ©
4 1 |

©=873x10 7_71_’7:96'07’7 @

g0=11x10® ®)

P,=4x 107 4P <P ‘ (10)

+100K temperature risc has been picked for arithmetic convenience. In practice, a smaller
value can be employed to avoid phase transitions, which are not considered in this paper.
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where everything is in SI units. 10kW can be removed per square centimetre. For a
total power of 1 kW we find W=3mm, ry=24 um and ® =0-096K W~*, For | MW,
we find W=95mm, ry=133 pm and ®=9-6x 10" *KW~!, A megawatt can be
removed from a litre, quite larger than what was previously thought possible. We
also note that the viscous power dissipation is negligible in comparison to the device
power dissipation.

Let us check two major assumptions. The Reynolds number Re=uvpD/u should
be less than 2100 for laminar flow (Holman 1981). This leads to the condition
# <128 MW which would allow 10! circuits each dissipating 1 mW in a cube of
edge length of about a metre. The fluid may be considered to be fully developed
when the distance x from the entrance of the tube satisfies x/(D RePr)=0-02,
provided that the Prandtl number Pr=pC,/k>5 or so (Tuckerman 1984). Upon
substitution we obtain x2>0-35 L, so that the velocity and temperature profiles are
well developed over a greater portion of the distance along the tube. This is not a
coincidence, but a direct outcome of the optimization procedure (Tuckerman 1984).

In 1981 Tuckerman and Pease experimentally demonstrated the removal of
790W from a 1cm x 1 cm surface using cooling fins about 0-04cm in height. This
corresponds to 790 W/(1cm x 0-04 cm)=~20kW cm ™2 of power being removed per
unit area along the direction of fluid flow, in reasonable agreement with our
predictions. (The factor of two discrepancy can be traced down to the different
parameter values employed.) In fact, if we imagine that we stack 25 such assemb-
lages on top of each other, we obtain a system which essentially resembles that
shown in the Figure. The only major difference is that the channels are narrow slits,
instead of circular tubes. Provided their total area is always the same fraction of W2,
the use of alternate cross-sectional shapes for the channels alter the general results of
this paper only by geometrical factors close to unity. Whereas a general proof seems
difficult, it is possible to show that for narrow slits extending along the full width of
our system, the value of Q is within 10% of what has been calculated for circular
tubes.

4. Conclusions

We have considered the problem of heat removal from a square prism of volume
WxW x L in which a total power £ is uniformly dissipated. We showed that
choosing the number and cross-sectional area of the tubes proportional to their
length was the optimal solution. With this choice, we found that a heat-removal-
imposed lower bound to the system linear extent W can be written as W2 > 2/Q
where Q is a function of the material parameters of the coolant fluid, the applied
pressure difference AP and the maximum allowed temperature rise AT. Thus Q is
conveniently interpreted as the maximum amount of power we can remove per unit
cross-section, in analogy with the two-dimensional case where it is customary to
specify the maximum amount of power we can remove per unit area (Keyes 1987).
With AP=1atm, AT=100K and assuming water is the coolant fluid, we have
estimated that Q~10kWcem™2,
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