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size decision regions centered at these levels and decision thresholds placed halfway between
consecutive levels. In our case, the problem is complicated by the fact that the noise at the
processor output is signal-dependent, calling for a more sophisticated quantization scheme.
Formally, for a given maximum tolerable average probability of error per signal level,
denoted P,, and for equal a priori probabilities P(v;) = 1/L, i = 1, 2, ..., L, the maximum
attainable accuracy can be found by solving for the maximum value of L in the equation

L i Zin L %
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where the choice of signal levels v, i = 1, 2, ..., L, and decision thresholds z,, i =0, 1, ..., L,
subject to the constraints V,;, =z, <v, <z, <v, - <v; <z, <y, <z, =V, comprise the
optimal quantization scheme [10].

Alternatively, we can formulate the problem in the context of parameter estimation
theory by ascribing an a priori parameter PDF p(mj) to the signal we wish to estimate. Upon
the observation of k samples of the output signal, creating the sample vector v with a joint
PDF p(v|my), we can form the a posteriori parameter PDF

p|mg) p(my)

p(mg|y) =
) fp(glms)p(ms) dmy

3

which we ideally expect and desire to satisfy p(m|v) — & (mg - 1ig) as k — eo. Here s is
the true value of the signal [10]. In this approach, accuracy can be quantified by the

Cramér-Rao lower bound on the variance of the estimate [11], which offers a tradeoff

between accuracy and speed.

In both approaches, the difficulties due to the signal dependence of noise at the output
can be alleviated by the use of suitable normalizing transforms which remove from the noise
power the dependence on the signal mean [10, 12].
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Abstract

Signals with significant overlap in both the space and frequency domains may have little
or no overlap in a fractional Fourier domain. Spatial filtering in these domains may allow
us to eliminate distortion components which cannot be eliminated in the ordinary Fourier
domain.

1 Introduction

Space-invariant filtering may be performed by multiplying the Fourier transform of the input
signal by the Fourier transform of the impulse response. Recently we have discussed how various
space-variant operations can be performed by multiplying with a filter function in a fractional
Fourier domain [1]. These operations can be realized optically, because the fractional Fourier
transform can be realized optically. One approach is based on the use of quadratic graded
index media [2, 3, 4], whereas another is based on the use of bulk lenses [5]. The graded index
approach is closely connected to the definition of the fractional Fourier transform in terms of its
spectral decomposition, whereas the bulk implementation is closely connected to its definition
in terms of its linear transform kernel [1].

The many mathematical properties of the fractional Fourier transform, its relation to the
Wigner space-frequency distribution, wavelet transforms, and chirp basis expansions, its appli-
cations to signal processing, and issues relating to its optical implementation are discussed in
the references. Due to limited space, we will here content ourselves with the presentation of
two examples of how space-variant filtering can be achieved by applying simple binary masks in
fractional Fourier domains. Among the many things we cannot mention, of particular interest
Is correlation in fractional Fourier domains and its application to pattern recognition.

2 Definition of the fractional Fourier transform

The ath order fractional Fourier transform of a function f(-)is denoted by F(f](2) and may
be defined as [1, 6):

o gilnd/1-¢/2) o, , )
(FD () = / 7 explim(a® cot o~ 20" cse 4 2 cot ¢)] f(2') da',
— |sing|1/2
where ¢ = an/2 and ¢ = sgn(sin@). Some of its properties are: i.) lincarity; ii.) F° and
F1 correspond to the identity operation; iii.) F! corresponds to the conventional Fourier
transform; iv.) Fa1Foz = Fartaer,

One of the most important properties states that performing the ath fractional Fourjer
transform operation corresponds to rotating the Wigner distribution by an angle ¢ = a(7/2)
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in the clockwise direction. We are unable to discuss the Wigner distribution here, although
it is necessary for a complete understanding of the filtering examples discussed below. The
reader is encouraged to consult [1] and the references given there. Roughly speaking, the
Wigner distribution of a function f(-), denoted by Wy(z,v), can be interpreted as a function
that indicates the distribution of the signal energy over space z and frequency v. Defining
the rotation operator Ry for two-dimensional functions, corresponding to a counterclockwise
rotation by ¢, the property mentioned above can be expressed as Wrapg(z,v) = RogWy(z, ).
Another version of this property (7] is Ry[Wy(z,v)] = |F°[f]|?, where the operator Ry is the
Radon transform evaluated at the angle ¢. The Radon transform of a two-dimensional function
is its projection on an axis making angle ¢ with the z axis.
Applications other than that discussed in this paper may be found in the references.

3 The fractional Fourier transform in optics

3.1 Optical implementation of the fractional Fourier transform

Analog optical implementations of the fractional Fourier transform have already been presented.
In [1, 2, 3, 4] we discussed the fractional Fourier transforming property of quadratic graded
index media. Lohmann suggested two systems consisting of thin lenses separated by free-space
[5). That the two approaches were equivalent and represented the fractional Fourier transform
as defined above was demonstrated in [8].

The fact that the fractional Fourier transform can be realized optically means that the
filtering examples discussed below can also be realized optically. Experimental results may be
found in [9].

3.2 The fractional Fourier transform as a tool for analyzing optical systems

In [10, 11] we show that there exists a fractional Fourier transform relation between the (appro:
priately scaled) optical amplitude distributions on two spherical reference surfaces with given
radii and separation. It is possible to determine the order and scale parameters associated
with this fractional transform given the radii and separation of the surfaces. Alternatively,
given the desired order and scale parameters, it is possible to determine the necessary radii
and separation.

This result provides an alternative statement of the law of propagation and allows us to
pose the fractional Fourier transform as a tool for analyzing and describing a rather general
class of optical systems.

One of the central results of diffraction theory is that the far-field diffraction pattern is the
Fourier transform of the diffracting object. It is possible to generalize this result by showing
that the field patterns at closer distances are the fractional Fourier transforms of the diffracting
object [10].

More generally, in an optical system involving many lenses separated by arbitrary dis-
tances, it is possible to show that the amplitude distribution is continuously fractional Fourie:
transformed as it propagates through the system. The order «(z) of the fractional transform
observed at the distance z along the optical axis is a continuous monotonic increasing function,
As light propagates, its distribution evolves through fractional transforms of increasing orders.
Wherever the order of the transform a(z) is equal to 1j + L for any integer j, we observe the
Fourier transform of the input. Wherever the order is equal to 4j + 2. we observe an inverted
image, etc. [10, 11]
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Figure 1: Example 1 (left) and example 2 (right)

4 Filtering examples

Consider the signal exp[-7(z — 4)?] distorted additively by exp(—ira?)rect(z/16). The mag-
nitude of their sum is displayed in part a.. on the left hand side of the figure. These signals
overlap in the frequency domain as well. In part b., we show their « = 0.5th fractional Fourier
transform. We observe that the signals are separated in this domain. The chirp distortion is
transformed into a peaked function which does not exhibit significant overlap with the signal
transform, so that it can be blocked out by a simple mask (part c.). Inverse transforming to the
original domain, we obtain the desired signal nearly perfectly cleansed of the chirp distortion
(part d.).

Now we consider a slightly more involved example in which the distorting signal is also real.
The signal exp(—r2?) is distorted additively by cos[2m(22/2~4x)]rect(x/8), as shown in part a.,
on the right hand side of the figure. The a = 0.5th transform is shown in part b. One of the
complex exponential chirp components of the cosine chirp has been separated in this domain
and can be masked away, but the other still distorts the transform of the Gaussian. After
masking out the separated chirp component (not shown), we take the a = —1st transform
(which is just an inverse Fourier transform) to arrive at the @ = —0.5th domain (part c.).
Here the other chirp component is separated and can be blocked out by another simple mask.
Finally, we take the 0.5th transform to come back to our home domain (part d.), where we
have recovered our Gaussian signal, with a small error.

The examples above have been limited to chirp distortions which are particularly easy to
separate in a fractional Fourier domain (just as pure harmonic distortion is particularly easy to
separate in the ordinary Fourier domain). However, it is possible to filter out more general types
of distortion as well. In some cases this may require several consecutive filtering operations in
wveral fractional domains of different order [1]. There is nothing special about our choice of
Gaussian signals other than the fact that they allow casy analytical manipulation. Also, there
is nothing special about the 0.5th domain. It just turns out that this is the domain of choice
for the examples considered above.

In the above examples we have demonstrated that the method works, but did not discuss
what led us to transform to a particular domain and what gave us the confidence that doing so
will get rid of the distortion. This becomes very transparent once one understands the relation-
ship between the fractional Fourier transform and the Wigner distribution. This relationship,
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as well as the general philosophy behind such filtering operations is discussed in [1].

5 Conclusion

What we know as the space and spatial frequency domains are merely special cases of fractional
domains. These domains are indexed by the parameter a. The representation of a signal in the
ath domain is the ath fractional Fourier transform of its representation in the a = 0th domain,
which we define to be the space domain. The representation in the a = 1st domain is the
conventional Fourier transform. If we set up a two-dimensional space, called the Wigner space,
such that one axis (z) corresponds to the a = 0th domain (the conventional space domain)
the other (1) to the a = 1st domain (the conventional spatial frequency domain), then th
domain corresponds to an axis making an angle ¢ = ar/2 with the z axis.

A desired signal and noise may overlap in both conventional space and frequency domains,
but not in a particular fractional domain. Even when this is not the case, spatial filtering in a
few fractional domains in cascade may enable the elimination of noise quite conveniently. It is
possible to implement these operations optically, as well as with a fast digital algorithm.
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A novel form of incoherent optical correlator
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Abstract. Much work on digital signal processing, DSP, and optical signal process.ing. OSl",
is aimed at pattern recognition. Here we describe a simple and rugged but promising hybrid
digital/incoherent optical approach to this problem.

1. Introduction

The problem of identifying the presence of a given pattern il.l a scen.e is superficially sn.mllar
to that of identifying a given radio or radar signal in a noisy envnronmer.lt. The optimum
solution to the latter problem was devised in WW?2 and takes the ff)rm of either a correla{or
or a matched filter, appropriately modified if the background noise does not have a vx.'t?lte
spectrum. For this reason the first and many subsequent .approaches to pattern re.cogmuon
have been based on these components.!"*! However in reality there are nulﬁerous dlffe'rences
between these superficially similar problems. For example, the electronic problfem is ’one-_
dimensional (time) while in pattern recognition we need [f) ?rocess a two»dilmens:onal
projection of a three-dimensional object, often with no a priori kfmwledge 01.’ its sca c; 0;
orientation. In addition it turns out that the background spectrum is never whlte: M.uc 0
the research effort over the past thirty years has sought to 0verc9me such t':ompllcatlons .of
the pattern recognition problem. The work described here is a revisit of' an earh.er
incoherent optical correlator, but with the incorporation of new features to improve its
performance in various respects. In particular we describe a hybrid OSP/DSP proces??r
incorporating spectral whitening which exploits each technology to advantage, and a multi-
channel version of this device for use with scrolling input data/scenes.

2. Summary of new work on incoherent correlators

A simple and elegant incoherent correlator is described.in various standard te;(]tbootk.s.'lll"‘
1t operates by a shadow casting process based on geometrical Opt.lCS, as shown sc .e;lna IC::, e?;
in Figure 1. As it stands this setup is non-ideal because a?l obJ.ects c.orrelat'e w1.t a g' /
reference to some extent, the output deriving from optical intensity wh¥ch is "pOSF[l\'/'e
definite. This difficulty arises because the (spatial) spectrum of the scenery is not white".



